

Creating Rapport with Virtual
Humans

R.J. van der Werf 1, 2

1University of Twente, Department of Computer Science

2University of Southern California, Institute for Creative Technologies

ICT Technical Report
No: ICT TR 02.2006

ICT Emotions Project

Preface
An important part of my Computer Science studies at the University of
Twente is a 14 week internship, which has to be completed before the
final master research. This internship can be done inside the
Netherlands as well as abroad. Thanks to Anton Nijholt I was able to
do my internship abroad at the Institute of Creative Technologies. This
institute is a research institute of the University of Southern California.
During my internship I, together with two other interns (SLT Morales,
SLT Lamothe) from France, continued the work of R.M. Maatman
under the guidance of Jonathan Gratch. This report will mainly focus
on my work during this period and, where applicable, the work of the
two other interns, since we worked on one project: Building Rapport
with Virtual Humans. My focus within this project lies on the detection
of gestures; the testing of the whole system is another important issue.

Because the whole internship abroad proofed to be quite an
experience, professionally as well as personally, I would like to thank
Deethra Roulac and Jonathan Gratch for making my visit to the United
States possible. I’d also like to thank Martijn Maatman for providing
me with useful information about what to expect and how to arrange
certain things before going to the United States. Thanks to Edward Fast
for his guidance throughout the whole internship, to Ashok
Basawapatna for supporting me with Smartbody, to Aaron Hill for
assisting me with Maya, to Stacy Marsella for giving his insights and
assistance and Scott Rocher for his assistance with Final Cut Pro.
Special thanks to Louis- Philippe Morency and Ronald Poppe for the
support with their software which they made available to ICT. My
personal and professional thanks go out to Patrick Kenny and Arno
Hartholt for assistance during my internship and especially for giving
me the opportunity to test the SASO system inside the VR Theater.
Personally I’d also like to thank Martin van Velsen for lending his
bicycle to me and Arno Hartholt for the great opportunity to be his
roommate.

This work was sponsored by the U. S. Army Research,
Development, and Engineering Command (RDECOM). The content
does not necessarily reflect the position of the policy of the
Government, and no official endorsement should be inferred.

Abstract
This report describes the internship about the assignment Creating
Rapport with Virtual Humans. The assignment is split up into two
separate parts. The first part is to improve the visual feature detection
of the current mimicking system [MAA04]. This is going to be done
using a Computer Vision approach. Together with two other
interns [LAM05] the whole mimicking system was improved, leading
to a new Rapport system. The second part involves subject testing with
the newly developed system.

Firstly the goal is to make a working system that can be reused and
expanded in the future. Secondly the goal is to use the data from the
subject test to determine if rapport can be created with Virtual Humans.

The resulting Rapport system should be a very well reuseable and
expandable system. This system makes it possible for other people,
unfamiliar with the system, to easily use the system for future testing.
Unfortunately too little data was obtained with subject testing to give a
solid conclusion whether or not creating rapport with Virtual Humans
is possible. The subject testing did lead to a improved testing procedure
which makes future testing quite easy.

Chapter 1

Introduction
This document is a report of an internship performed at the Institute for
Creative Technologies (ICT). Chapter 1.1 will give a brief description
of the institute itself and 1.2 of the scenario and project, which is used
for this assignment. A more in depth coverage of this system and its
components will be given in chapter 2.1. Previous work which is
continued in this assignment is described in chapter 2.2. Other (3rd
party) software: Watson and Posio will be introduced in chapters 2.3
and 2.4. The next chapter (3) describes the assignment and its
requirements. In chapter 4 the analysis of the previous system is given,
along with the analysis of both Watson (4.3) and Posio (4.2). The 5th
chapter shows the design of the complete Rapport system (in 5.1),
along with a brief coverage of the Audio component (5.3) and the
Response component (5.2). Both are important components of the
Rapport system as a whole but not part of this internship, the internship
about these components is described in [LAM05]. Chapter 5.4, covers
the design of the GestureDetection component which is, on the other
hand, an important part of the internship at hand. Chapter 6 briefly
covers the implementation of this component. Another main aspect of
the assignment is the testing which is covered in chapter 7. The
conclusions and recommendations follow in chapter 8 and 9.

1.1 The Institute for Creative Technologies
The internship is performed at the Institute for Creative Technologies
(ICT), in Marina Del Rey, California. This institute is a research
institute of the University of Southern California (USC). It’s a national
center for research in virtual reality and computer simulation. The
mission statement on the ICT website [ICT06] states:

The mission of ICT is to build a partnership among the
entertainment industry, Army, and academia with the goal of
creating synthetic experiences so compelling that
participants react as if they are real. The result is engaging,
new, immersive technologies for learning, training, and
operational enviroments.

Figure 1.1: The Institute for Creative Technologies

The actual assignment is performed under supervision of Jonathan
Gratch, a research professor at ICT involved in the Virtual Humans
group. This group combines a wide selection of technologies, a few of
these technologies involve: emotions, natural language understanding
and generation, virtual human embodiment. One of the goals of this
Virtual Humans group is to develop a scenario called Stability and
Support Operations–Simulation and Training. The assignment for this
internship was performed within this SASO project. The next
paragraph describes this project.

1.2 The Stability and Support Operations
Project–Simulation and Training
The SASO-ST project [SST05], which could be called an application of
the Virtual Humans project, actually combines numerous research
efforts of USC and ICT. The project applies several technologies (a
few of them are mentioned in the previous paragraph) and combines
them into one large system. The different components will be, were
applicable, discussed later on in this report. More information about the
project can be found on the ICT website[ICT06].

The actual scenario used in this project takes place in Iraq. The
training is intended for military officers. Operations are planned in the
area of a medical clinic. As an officer your mission is to persuade the
head of this clinic, an Iraqi doctor, to relocate his clinic without
revealing operational plans.

The VR Theater is the ideal system to run the SASO system. This
VR Theater is shown below, together with the description shown on the
ICT website.

The system includes an 8’x30’ wrap-around screen, 10.2
channels of immersive audio, and interactive synthetic
humans that can interact with the trainee and respond
emotionally to their decisions [ICT06].

Figure 1.2: The SASO system in action inside the VR Theater

Chapter 2

Background
The system which is developed during this internship is the Rapport
system. This system will work as a part of a larger system, the SASO
system. The SASO system is an application scenario for the research
within the Virtual Humans group. A previous application scenario was
the Mission Rehearsal Exercise system (MRE) [HIL03]. Previous
interns from the University of Twente worked with this MRE system.
Tijmen Muller was one of these interns who worked on an
implementation for the tracker device [MUL04]. A functional tracking
system on its turn led to the research of Maatman [MAA04] on the
topic of responsive behavior.

The scenario of the SASO system [SST05] is covered in the
previous chapter. The first part of this chapter shows the different
components of this system which are relevant for the Rapport system.
The remainder of this chapter will cover previous work carried out by
Maatman on the same topic (2.2) and two available 3rd party software
packages which could aid in the detection of gestures. These two
software packages have been chosen because both of them are
available to use (at ICT) and a lot of other papers and reports about
gesture detection only cover a theory or algorithm for gesture detection.
An important focus within this internship is to end up with something
functional. For this reason the choice for an existing system is prefered
above using an existing theory or algorithm to produce a new system
from scratch.

2.1 The SASO System
The SASO system has many different components which are used
together as one system. Most of these components are not needed for
the Rapport Project, such as natural language understanding, speech
recognition and a lot of other components. This section will focus on
the different components which were needed for our project. The
required components are Elvin/Elvish for communication, DIMR/SBM
for animation and Unreal for showing the actual animations. The
simple figure below illustrates the work flow between these
components.

Figure 2.3: Simple illustration of the work flow

2.1.1 Elvin/Elvish
For communication between the different components the SASO
system uses Elvin [ELV05]. This is used to send messages back and
forth between the components. The Elvin component is very important,
since the different Rapport programs need to communicate with each
other as well as with the animation programs (DIMR/SBM see next
section). Most programs use a special library (tt_utils) to communicate
through Elvin. Without going into too much detail, using Elvin
involves a few steps. Firstly a connection has to be made to a specific
Elvin server. After the connection has been established certain channels
can be registered, to be used to receive messages. Once this has been
done, Elvin messages can be sent using a header and a message. Using
a callback mechanism, messages with headers corresponding to the
registered channels can be received. In this way all programs which are
connected to the same server and are registered to the same channel
will receive the same messages, without having the sender explicitly
send the original messages out multiple times. The Tcl (Tool Command
Language) version of Elvin is Elvish, but other than that it works in a
similar way. No in depth coverage of Elvin/Elvish will be given in this
report. It will suffice to know that Elvin is the communication program
which sends and receives messages using a specific header.

2.1.2 DIMR/SBM
DIMR (in combination with a component calle DI-guy) and Smartbody
(SBM) are two different systems. They are mentioned together because
they both have similar functionality; they serve as the animation system
for the SASO system. At the time of this internship DIMR was the
animation system used within the SASO system and SBM was still
under development. SBM will replace DIMR in the future. Both
programs can receive commands through Elvin which can be used to
play various animations. This animation is then sent to an Unreal server
where the actual animations are viewed.

2.1.3 Unreal
Unreal is a game engine used to visualize the actual SASO scenario on
the screen. A separate modification (mod) has been made for the SASO
project so it can be controlled by using DIMR or SBM.

2.2 Mimicking/Maatman’s work
Previous work on the same subject within ICT has been carried out by
R.M. Maatman. However much of his work has not been thoroughly
tested or evaluated. It consists of two programs. One is to mirror
physical features of the human and one is to extract speech features of
the human voice. These programs are combined and the effect of the
resulting behavior was tested on the human interactor [MAA04]. Due
to lack of time, this system has never been tested extensively. The work
and research carried out by Maatman was used as a base for our
project. The head tracker used in Maatman’s work wasn’t widely
available, so this part of the system had to be replaced for a more
portable solution.

2.3 Watson
Watson, developed by Louis-Phillipe Morency at the massachusetts
institute of technology (MIT), is a key frame-based tracking library that
uses stereo images to track the position and orientation of a rigid
object [LPM05]. The functionality of Watson is to track head motion in
6 degrees of freedom. Since Watson has been extensively tested on
Videre Design stereo camera’s and such a camera was available at ICT,
Watson was a candidate to be part of a more portable head tracking
solution. There are two different ways of using Watson within a larger
system. Through direct usage of the C++ library, or by using the
Watson program itself as a server. Both ways will be explained later on
in this report since both of them were used throughout the internship.

2.4 Posio
Posio is a system that estimates human body poses from image
sequences using silhouettes. This system has been developed by
Ronald Poppe at the University of Twente [POP04, POP05]. The Posio
software can be used for detecting things like hand gestures. However
replacing the head tracker used in the previous mimicking system isn’t
possible. This system doesn’t use stereo images like a lot of other
programs with the same sort of functionality; therefore this software
doesn’t need expensive hardware, which makes it more portable. For
this reason and the fact that functionality of this program can be useful
within the Rapport project; this software is used during the analysis
phase to see if it is possible to integrate it into the SASO system within
the time span of the internship.

Chapter 3

The assignment
Due to the standard of modern technology, the behavior of virtual
speakers is quite smooth and realistic. However, compared to ’human
to human’ conversation, conversations with one or more ’virtual
humans’ lack responsiveness. This leads to less rapport in these types
of conversations. Having less rapport on its turn will lead to a less
pleasant and less natural experience in a conversation with a virtual
human as opposed to a conversation with a real human.

In current systems a greater deal of the virtual listeners tend to sit or
stand still or do some random behavior. In most systems responsive
behavior is related to semantics which can only be determined after an
utterance is completed. To create responsiveness, there has to be (real
time) detection of other features. Former research [MAA04] introduced
a few real time obtainable features. These features can roughly put be
into two categories: speech quality and body postures/gestures. This
focus within this assignment will lie on the second category.

The assignment is part of a larger project, within ICT, in which the
responsive behavior is to be integrated. The project, called the SASO
(Stability and Support Operations) project [SST05] (see chapter 1.2).
This project involves a military scenario, where the user (an officer)
has to convince the doctor (the virtual human) of doing a certain action.

The previous work on the SASO project (already mentioned in
chapter 2) in creating responsive behavior [MAA04] hasn’t been fully
tested and integrated into the system. The first part of the assignment
involves the creation and integration of a working version. This part
involves replacing the current head tracker system [MUL04, MAA04]
with a Computer Vision approach. This system will use a stereo camera
for detecting the posture and gestures of the head, using existing
software. This software only tracks the head and not the body or arms.
The position of the head would also make it possible to detect slouches.
Depending on the progress made with the head tracker, the possibility
of tracking body and arm gestures will be researched and implemented
using another approach. This Computer Vision system is going to be
combined with someone working on the audio part and someone
implementing a mapping program, which maps detected features onto
behavior.

The second part of the assignment involves testing and evaluating,
the responsive behavior component. This can be an iterative process;
however the goal is to see if this responsive behavior leads to more
rapport, which should lead to a more natural conversation between
(virtual) humans and virtual humans. The final goal is to pass the
“Duncan test” mentioned in [IVA05] where a person watches a cartoon
and describes it to the virtual human.

Chapter 4

Analysis
The purpose of the research at hand is to build upon previous work
done by Maatman. The first paragraph of this chapter will provide an
analysis of this previous work. The second paragraph will cover the
available hardware and a few programs which could be used with this
hardware to replace the head tracker from the previous system.

4.1 The mimicking system
The work of Maatman [MAA04] lead to a first version of a mimicking
system within ICT. Most of the research results could be reused for the
Rapport system. Maatman also constructed a few simple programs
using Elvin, which could be used as a starting point to integrate Elvin
into the GestureDetection program. In his report Maatman shows the a
mapping (shown in table 4.1) between real time obtainable features and
their correct responsive behavior.

• if the speech contains a relatively long period of low pitch then
perform a head nod

• if the speech contains relatively high intensity then perform a
head nod

• if the speech contains disfluency then perform a posture shift,
gazing behavior or a frown

• if the human performs a posture shift then mirror this posture
shift

• if the human performs a head shake then mirror this head shake
• if the human performs major gazing behavior then mimic this

behavior
Table 4.1: mapping given by Maatman.

With these findings, extensive research with regard to responsive
behavior wasn’t necessary, since this mapping could be used in the new
system as well.

The detection of the speech features and the mapping of features to
their responsive behavior isn’t the main focus of this report and
therefore it will not be discussed in more detail. This part of the
Rapport project is covered by SLT Lamothe and SLT Morales in
Response Behavior [LAM05].

The detection of the visual features is the main focus of (the first
part of) this assignment. If we take another look at the list of obtainable
features we’ll see three visual features. In the system developed by
Maatman all these three features where detected by the tracker device,
an Intersense IS-900 tracker. This tracker consists of a headset and a
handheld device which both can be tracked in the VR-theatre within the
ICT building [MAA04, MUL04]. However, this Intersense tracking
system is quite expensive and not very portable. Maatman already
mentions the drawbacks of a tracking system in his report: operational
in limited areas and only one point of the body is tracked, not the body
as a whole. Drawbacks of a computer vision approach are also
mentioned: too computational intensive and too much work to create
from scratch. These two drawbacks and the fact that a tracking system
was available at ICT made Maatman opt for that system. However, the
first mimicking system was developed one year prior to the new
Rapport system. Creating a computer vision solution from scratch
would still be too much work. However there are two other solutions
which could be used and integrated for this purpose. These two options
are: Posio and Watson. Both of these options as well as the required
and available hardware will be discussed in the remainder of this
chapter.

4.2 Posio
As mentioned before Posio [POP04, POP05] is a system which can be
used to estimate human body poses from image sequences using
silhouettes. The system was developed at the University of Twente. For
this reason the software was fully available. With instructions (see
appendix 4.2) and guidance from Ronald Poppe Posio was installed.
Since the stereo camera wasn’t available in the first two weeks of the
internship the possibilities of a regular camera were analyzed. However
the Posio program should work with a normal webcam, this part of the
program wasn’t working properly. The program itself without the
camera functionality did compile fine and after some fine tuning of the
configuration it seemed to work with some prerecorded test data. To
integrate the Posio system into the Rapport system it had to work with
a webcam. Posio relies on the OpenCV library [OCV06], due to the
lack of knowledge of this library and the actual Posio source code it
wasn’t possible to fix Posio to work with a webcam. Because there
would be a stereo camera available to be utilized with Watson, Posio
wasn’t used in the further design process.

4.3 Watson
Before the internship started a Videre Design [VID05] STH-DCSG-C
stereo camera was ordered. This camera wasn’t available until two

weeks after the start of the internship, but the software which could be
used with this camera was already available. This software is called
Watson (already mentioned in the previous chapter). Watson is able to
track the motion of the head within 6 degrees of freedom and can also
report nods and shakes. With this software it would be possible to
replace the detection of all the visual features (previously done by the
tracker) with a computer vision approach. The Watson software comes
with a demo program, a C++ library and an example (stereo) image
sequence. With this example sequence it was possible to test the library
and the program without having an actual stereo camera. Both the
usage of the the program and the library will be discussed below.

4.3.1 The program
The program itself provides a graphical user interface (GUI) which can
be used to start the Watson head tracker. Within this program it’s
possible to change a number of configuration parameters. However
these parameters (and others) can be configured through the
configuration files as well. The configuration parameters will not be
covered here. The program offers a good opportunity to discover the
possibilities of Watson by displaying the results on the screen fitting a
3D cube around the head. The display of this cube proofed very useful
after the actual stereo camera arrived, since the tracker wasn’t working
perfectly all the time. Having a cube (as opposed to raw coordinates) to
check the performance of the tracker would be useful for debugging
purposes. If the above mentioned functionality of the demo program
would be all, then it would be useless to consider using this program
and integrate it into the Rapport system. As mentioned before, the
different components of the SASO project communicate using Elvin.
Therefore there had to be a way to retrieve the information from the
head tracker, of the demo program, in order to make it useful. To solve
this, the program offers client/server functionality. It can be configured
to act as a server and send out data over a socket (either UDP or TCP).
Using a few programming examples (using winsock) from Watson this
functionality could easily be tested. How to configure the program to
use this client/server functionality will be discussed in more detail in
the implementation chapter (chapter 6). The kind of data that is sent
over the socket will also be covered in that chapter.

4.3.2 The library
Another option would be to use the C++ library which comes with
Watson. The drawback of using this approach would be not having a
3D-cube to easily check the performance of the head tracker. On the
other hand it would be easier to integrate the Watson functionality as a
component of the SASO system. Just like the client/server approach

mentioned above the library came with an example program to get
started. This example program was pretty straightforward and therefore
could easily be altered and expanded to create a basic version which
could communicate with other programs within SASO.

4.4 Conclusions
As mentioned earlier in this chapter, Posio hasn’t been used after the
analysis phase. Watson, on the other hand, proofed to be a decent
Computer Vision replacement for the previously used tracking device.
A choice between using either the library or the client/server approach
hasn’t been made yet, this needs to be done during the design or
implementation phase. The implementation phase might be a bit late to
make such a choice. But when carefully designed no big changes
should be necessary, when the choice for either one of the options, will
be made later. Table 4.2 shows the components to be used in the design
process.

• Response program (section 5.2, more detail in [LAM05])
• Audio program (section 5.3, more detail in [LAM05])
• GestureDetection program (section 5.4)
using Watson, either through the library or using the client/server

approach.
Table 4.2: Components to be used in the design process.

Chapter 5

Design
After the analysis phase it was decided to continue with Watson to
replace the previous head tracking system and not to use Posio for now.
This chapter will cover the design of the GestureDetection program
using Watson and the design of the Rapport system as a whole. The
design of the launcher program, to launch the different Rapport
programs for testing, will also be covered in this chapter.

5.1 Rapport system
Chapter 2 already mentioned the components which were going to be
used for the Rapport project. There are three components which are
needed for the Rapport system: one for communication, one for
animation and one for visualization. The Rapport system itself also
consists of three components (shown in table 5.3).

• one for detecting speech features (section 5.3)
• one for detecting visual features (section 5.4)
• one to map the detected feature to a responsive behavior (section

5.2)
Table 5.3: The three components of the Rapport system.

In total this means the need for six different components. The different
test (explained later in chapter Testing) also require a replay and a
loging program. Since they all need to be launched in the right order
with the right parameters a launcher program has been designed to
handle the task of launching the different programs. The setup of the
whole system looks like figure 5.4 shown on the next page.

The Audio component developed by SLT Morales and the Response
component developed by SLT Lamothe will be briefly covered here.
For a more in depth coverage, reference Response Behavior [LAM05].
The design of the GestureDetection component will be covered in more
detail later in this chapter.

Figure 5.4: The design of the Rapport system (figure from [LAM05])

5.2 Response
This component, replacing Maatman’s synchronization program (see
chapter 11 of [MAA04]), maps features to behavior. Although this
mapping is an important part of the Rapport system and the final output
of the system (the behavior), it will not be fully covered in this report.
Due to the complexity of the Response program and its configuration,
it’s not possible to fully cover the mapping. The design and
implementation of the Response program is covered in Response
Behavior, part 2 [LAM05]. A simplified behavior mapping is listed
below; this mapping looks like the mapping rules given by Maatman in
paragraph 6.10 of his report [MAA04].

[Sorry. Ignored \begin{small} ... \end{small}]
Table 5.4: Simplified mapping of the features

All of the ‘visual features’ listed in table 5.4 are mapped to
mimicking behavior. However, the Response program can be used for
both plain mimicking and also for producing responsive behavior based
on (more) complex mapping rules. The complete mapping
(configuration file) of the Response program can be found in appendix
3 of [LAM05]. More extensive testing has to point out which mapping,
plain mimicking, small variations of mimicking or a total different
mapping, will lead to the best results (creating rapport).

5.3 Audio
The audio program to detect speech features is developed by SLT
Morales. The detected features [LAM05] are shown in table 5.5.

[Sorry. Ignored \begin{small} ... \end{small}]
Table 5.5: list of features detected by the Audio program.

This is a superset of the features detected by Maatman’s
software [MAA04]. The final version made by Maatman used Matlab

for speech feature detection. However since the goal was to expand and
improve his work SLT Morales decided to switch to C++. The pros and
cons and the arguments which justify the switch to C++ can be found
in part 3, chapter 4.2 of Response Behavior [LAM05].

5.4 GestureDetection
The previous chapter showed there were two possible ways to use and
integrate Watson into the Rapport system. Both approaches were used
during the implementation phase. However, for the design there isn’t
much difference between the two. Figure 5.5 shows the class diagram
for the GestureDetection program.

Figure 5.5: Class diagram for the GestureDetection program.

Table 5.6 lists the features detected by the GestureDetection program.
[Sorry. Ignored \begin{small} ... \end{small}]

Table 5.6: list of features detected by the GestureDetection program.
The detection of these features will be discussed in the last

paragraph of this chapter. Together with the features detected by the
Audio program this is a complete list of input for the Rapport system.
These features are also listed in appendix 12 which explains how
configuration parameters of the GestureDetection program effects the
different sorts of detection.

5.4.1 Flow of control
The main class is the GestureDetection class. This class contains the
other objects. The control loop will be contained in this class. Within
this loop the following tasks will be done: a keyboard listener will be
used to update the settings of the GestureDetection object and the
WatsonControl(TCP) object will be used to retrieve data from the
stereo camera (through Watson). Using the retrieved data the Head
object will be updated depending on the settings of the
GestureDetection object. After updating, if a certain feature is detected
the GestureDetection will use its ElvinControl object to send this
information to the Response program.

5.4.2 Parser
This object will be used to load and parse the configuration file once
the program is started and also when the keyboard listener receives a
request to reload the configuration file.

5.4.3 ElvinControl
This object will be used to connect to an Elvin server and send Elvin
messages when features are detected. In addition to sending messages
this object will also listen to Elvin messages, which will make it
possible to close the program (i.e. from the SASO Launcher) by using
an Elvin message.

5.4.4 WatsonControl(TCP)
The WatsonControl(TCP) object will be used to obtain all the data
from Watson, either by using the C++ library or the client/server
approach. Within this object the raw data obtained from Watson will be
stored.

5.4.5 Head
The Head object is the object with the core functionality. Within this
object all the logic and mathematics to extract the features (listed in
table 5.6) from the raw Watson data. This object also contains the
position and orientation of the head, which normally will be a copy of
the raw data from Watson. The actual implementation of the detection
of all the features will be covered in the next chapter about the
implementation.

5.4.6 GestureDetection
This object is constructed once the program is started and also creates
all the other objects. This object will also contain parameters to toggle
the detection of the different features. The program can be started with
arguments which will set these parameters to enable which features to
detect. This construction also makes it possible to enable mimicking
mode or response mode. In the mimicking mode, the positional and
rotational data will be sent directly instead of only sending detected
features. The reason of the use of the mimicking mode will be clarified
in chapter 6.

5.5 Rapport Launcher
The design process for the Rapport launcher was rather short, because
of time restraints. Designing a separate launcher wasn’t part of the

original requirements but without a launcher it would be quite hard to
start all programs in the right order, make sure everything is logged and
then restart the right programs for the next test. Also, since other
people would use the Rapport system, the launcher was constructed to
streamline the testing process. Further details about the launcher and
launching the programs can be found in appendix 11.

5.6 Conclusions
This chapter briefly covered the design of the Response and Audio
programs, these programs where developed by SLT Lamothe and SLT
Morales. For this reason the implementation of these system will not be
covered in this report. The implementations of these programs is
covered in [LAM05]. For this internship only the GestureDetection
program (using Watson) was implementated (see chapter 6. Additional
implementations, done during the internship, but outside of the scope
of it, are covered in appendix 15.

Chapter 6

Implementation
An extensive explanation of the implementation is outside the scope of
this report, other than that the source code is well documented. This
chapter will follow the same order as the previous chapter. After
general implementations issues, the flow of control will be covered and
a description of the different source files will follow. These files
correspond to the class diagram given in the previous chapter.
Additional work which has been implemented during this internship
will be briefly covered in appendix 15.

6.1 General Implementation Issues
Chapter 2 already mentioned there were two possible animation
systems within the SASO project [SST05]. The first system DIMR was
still the system actively used by the complete SASO system. The
second system Smartbody (SBM) was still under development and was
going to be the system to replace DIMR. In the first setup of the
Rapport system, there wasn’t any link between the GestureDetection
program and the animation software. Towards the end of the
implementation phase it was decided to communicate directly with the
animation software when mimicking mode was used. This decision was
made because mimicking mode involves a lot of network traffic, due to
the large amount of data which has to be sent to mimic head gestures
and slouches. Due to this decision in a late stage of the development
the design of the GestureDetection program had to be compromised. At
first the mimic data was just like any other data (i.e. nods, slouches,
gazes, etc). Which was: just send to the Response program, where the
link to the animation software was made. The actual function which
had to be changed for this will be discussed further in the coverage of
the GestureDetection class. Another issue involving the animation
software is that DIMR uses rotational data whereas SBM uses
quaternion data. In case of gaze shifts it could be useful for the
Response program to have some notion of the rotation of the head. A
mechanism had to be implemented to cope with the issue of two
different types of data. Normally it would be logical to implement this
switch into the Response program, because this program communicates
with the animation software. However this program was designed with
openness in mind and implementing something specific to either SBM

or DIMR would certainly compromise this goal. For this reason the
switch was implemented in the GestureDetection program which was
quite easy. One could note, having read the first issue, that the
GestureDetection program already needed this switch because of the
mimicking mode. This would be true, although mimicking using DIMR
isn’t possible, because direct bone rotations can’t be done and using
bone animation produces to much slowdown to make it work.

One ongoing implementation issue was whether to use DIMR or
SBM as the animation software. For the GestureDetection program this
no issue since DIMR isn’t directly used. The issue was even bigger for
the Response program, since a large part of the actual program
contained code specific to either SBM or DIMR. The choice for either
one of the animation systems would have its effect on the end result:
the visualization in Unreal. For this reason the whole Rapport team was
working on finding a proper solution for this issue. Having started
using DIMR, we ended up using SBM in the end. Starting using DIMR
was the obvious choice, since some of the software used by
Maatman [MAA04] also used DIMR and these pieces of code could be
easily used as starting point. Part of this code involved animating with
head nods and shakes. Using DIMR created the possibility to hook up
the detection of nods and shakes from Watson with an animation,
which offered some (visible) results in the early stage of the
development. Another reason to start using DIMR is that there was
documentation listing all the possible animations which wasn’t there
for SBM, in fact it was told that there weren’t any animations for SBM
at this point. Something which introduced the switch to use SBM is the
possibility to directly rotate bones (i.e. the neck or head bone). This
made it quite easy to mimic the head motion. At this point, in a quite
early stage, there were already two different aspects to demonstrate,
mimicking the head and reacting with nods and shakes, however using
two different animation systems. This is the main reason both
animation systems where used for a long time and no final choice was
made until the stage were the actual testing was prepared. The final
choice for SBM was made when a way to use animations was
discovered (see appendix 15). After this choice only SBM was used,
until then both systems were used which led to a lot of extra work.

6.2 GestureDetection source
This section will cover the source code of the GestureDetection
program. All source files will be covered after the flow of control is
explained in the first paragraph. Most of the files mentioned in this
chapter correspond to classes in the class diagram shown in the
previous chapter. These corresponding files implement the design. The
main() function was kept in a separate file. Utility functions were kept

in Calculation.cpp/.h, which contains a few functions to ease
calculations within the rest of the source code.

6.2.1 Flow of control
The flow of control of the implementation corresponds to the flow
mentioned in the previous chapter. This chapter will cover the
functions calls which are used during this flow. The program starts
within int main(). In this function a GestureDetection object is
constructed and the function parseCommandLine() is used to parse
commandline input and send this information to the newly constructed
GestureDetection object. After the command line has been parsed
successfully the go() function of the GestureDection object will be
called.

The go() function constructs the other objects. The ElvinControl
object is constructed first, the parameters used are the elvinserver and
the elvinheader, which are the default values unless they are set using
command line arguments. The parameter used to construct the parser
can also be set using a command line argument; otherwise the default
will be used. Upon construction of the parser the configuration file is
parsed and the values in it are stored. After these values have been
stored the Head object is constructed using these stored values (or the
default values). The last object that’s constructed before the function
will enter its main loop is the WatsonControlTCP object, which is
going to be used to communicate with Watson over TCP/IP.

The functionality of the loop within the go() function will be
covered below in the paragraph about GestureDetection.cpp/.h.

6.2.2 Main.cpp/.h
These files are used when the program is started. The main function
actually does three things, it constructs a GestureDetection object with
a default constructor, it uses the parseCommandLine function to parse
commandline arguments and if this succeeds it starts the
GestureDetection object. The code within the main function is pretty
obvious, although the parseCommandLine function might require some
explanation. This function has three arguments, the first (argc) is the
argument count, the second (argv) is the argument vector and the last is
the GestureDetection object. The first two objects are commonly used
in C-programming, although without giving any further information
about the usage of these objects, the names (argument count and
argument vector) should clarify the purpose of these two objects. What
the parseCommandLine function actually does is loop through the
argument vector using the argument count. All the command line
arguments are compared to the list of possible command line options

and if a valid option is parsed the appropriate value will be passed to
the GestureDetection object. If the -h option is parsed the help will be
printed and the function will return false and the program will exit, the
program will also exit if an unknown option is detected. More details
about the different command line options can be found in appendix 11.

6.2.3 GestureDetection.cpp/.h
The main loop of the complete program is contained in the go()
function. This is also the function which constructs all the other objects
with the appropriate parameters. Before the main loop starts it is
checked if ’mimicking mode’ is enabled, in this case a message will be
sent to Smartbody to enable direct bone rotations instead of animations.
The loop itself has two main tasks, the first is to listen for keyboard or
Elvin input, the second to retrieve data using the WatsonControlTCP
object and use this data to detect and report certain features. The
_kbhit() function is used to detect keyboard input and the _getch()
function is used to retrieve the actual character corresponding to this
key. In case there is no keyboard input the second method of obtaining
input is using the poll() function of the ElvinControl object. The code
within ’the inputhandler’ itself is mainly used to toggle certain features
of the program and should be self-explanatory.

The second part of the loop is the communication with Watson and
the interpretation of the received data. First grabFrames() is used to
obtain data, and if successful the beginTime is set. The beginTime is
only set the first time after the WatsonCtrl is ready, at this time the
timestamp is written to the log file to indicate the start time. Once the
program is up and running each time a new ’frame is grabbed’ the
settings of the GestureDetection object will be read to determine which
kind of features should be detected. When detection of a certain feature
is enabled the Head object will be updated (if necessary) and the
appropriate function will be called to extract the needed information.
This information is then used to detect and report this feature. The
sendRoll(), sendSlouch() and sendHeadGesture() all retrieve the
appropriate state from the head object and if this indicates a certain
feature, this feature is reported. The sendGaze() actually does the same
thing, but also uses a construction which makes it possible to send
either quaternions or angles, this used to support both dimr and
Smartbody. The sendHeadPose() functions and sendMimick() are used
to directly send bone rotations to Smartbody when ’mimicking mode’
is used.

6.2.4 Calculation.cpp/.h
Calculation.cpp contains a few functions simplifying calculations
within the rest of the source code. The sign() function is used to see

whether or not the sign of two numbers is equal. The max3nums()
function, returns the maximum of the 3 given arguments. The maxrot()
function returns the maximum of the change in pitch and yaw between
two quaternions. The radiansToDegrees() function does exactly what
the name suggest, it turns radian angels into degrees.

6.2.5 ElvinControl.cpp/.h
The constructor of this class has two arguments: the name of the Elvin
server and the name of the Elvin header to use. Once these values are
stored the initElvin() function is called which sets a callback function
for receiving Elvin commands and connects to the specified Elvin
server. Upon successful connection the connection is registered to the
elvinheader, ’vrKillComponent’ and ’reponseGD’. The last two
registrations are use for control from the different launchers. This class
contains 3 functions which are used when sending an Elvin message.
The private method _sendMsg() is the one which actually sends the
message. The sendMsg() functions are used to send multiple messages
in case there is more then one ’world’. In this case for each world a
new header will be constructed and the message will be sent to each
world. See appendix 11 for more information about the numworlds
parameter.

For the receiving part a bit more complicated solution was required,
since the ttu_utils libraries which are used for sending/receiving Elvin
messages are written in C and thus are not object oriented. The
aformentioned callback function which is used when messages are
received has to be a static function. Since a static function cannot
access members of a certain instance of a class a static char is used to
store the input received by Elvin. The function poll() is the function
which calls the ttu_poll() function and checks the static char, returns it
value and resets it again.The ElvinCallback() function is used to
process the actual input and map it to a single character before storing
it. If a kill signal is received the program has to quit and therefore the
character is set to ’q’. The GestureDetection program can also receive
messages from the Rapport Launcher, these are one character messages
corresponding to the character which can be used in the command line
interface. One thing which might look a bit weird is taking the second
character (args [1]) from the received character pointer, this is because
Tcl (Rapport Launcher) puts quotes around the message, therefore the
second character is needed and not the first (the opening quote) (see
chapter 9).

6.2.6 Head.cpp/.h
The Head object contains the main functionality concerning the
detection of the different features. This class contains a few self-

explanatory get functions, and the storePosition(), print() and reInit()
functions should be self-explanatory as well. The detect functions and
update functions are the functions which are used to actually detect
certain features. Since this chapter is meant to be used as a guideline
when looking at the implementation, no line by line explanation will be
given here. All the functions itself are well documented and the
functionality behind the detection process is explained in more detail in
appendix 12 about the Configuration Parameters. It is advised to study
this appendix when more information about the implementation of the
Head class is needed.

6.2.7 Parser.cpp/.h
The parser is used to parse settings from a configuration file. The
constructor has one parameter which is used to set the file name. Once
this file name has been set the readFromFile() function will be called.
This function will create an fstream to open the configuration file.
Using this fstream the getline() function is used to read the file line by
line. The parser expects a well formed configuration file, which means
something like: ’name = value’ on each line. Assuming the
configuration file is well formed for each line the name and the value
will be stored. Other functions used in this class are: setParam(),
getParam(), findParam(), writeToFile() and printParams(). The latest
just prints out all configuration names with their corresponding value.
The set/getParam() functions are used to set/get parameters, the
getParam() function returns a floating point number instead of a string
which is actually stored within this class. Since there was no reason nor
easy way to use different types besides floats it was decided to let this
function convert the strings to floats, just for easy of use within the rest
of the program. The findParam() function does the same as the
getParam() function, however instead of returning a float, it returns an
integer (actually boolean) to indicate if a parameter is stored. The last
function: writeToFile() can be used to write the stored values back to
the configuration file, also using a fstream.

6.2.8 WatsonControlTCP.cpp/.h
The larger part of this code consists of get and set functions, which will
not be covered here. The construct sets all the parameters used in this
class to their default values and calls the function initWatson(). This
function sets up a Winsock TCP/IP connection (just like one of the
sample programs included with Watson) and listens for a client to
connect. The code will not be discussed line by line because this
requires an introduction into Winsock programming first. However the
code is more or less the same as the code given in the sample (included
with Watson) and also quite similar to many Winsock frameworks

which can be found in most Winsock tutorials. The
quit/record/stop/playWatson() functions all have similiar functionality,
which is sending the appropriate message over the socket. The last
group of functions in this class consist of the parse functions, these
functions are used to parse the input received over the socket and store
it.

The actual receiving of data happens in the grabFrames() function
which is called by the GestureDetection object in its ’main loop’. As
soon as data is received the parseData() function will be called to parse
the incoming data. The data is represented as a CAtlString which can
easily be parsed and split using given tokens. The parser looks for
tokens like Watson\Nods (the actual headers used by Watson are
specified in its configuration file, once a specific token is found in the
input, the input is passed to a specialized parsing function (i.e.
parseNods()) together with the current posisition within the data. This
function on its turn continues parsing the data, storing each parameter
received to the proper variable. The order and the number of
parameters for each type of data (i.e. Nods, Links) are specified in the
Watson Manual [LPM05]. The current position used by the
parseData() function is passed on as a reference to the specialized
parsing functions, this way the position is updated when a specialized
function is parsing the data. The parseData() function parses all the
data received, using specialized functions to parse the data
corresponding to a specific token. When the function is finished all
variables have been updated, so their new values can be accessed for
further use.

6.3 Watson
Since Watson is implemented at MIT by Louis-Philippe Morency the
implementation of this program is not within the scope of this
internship. However, the Watson program is an important component
of the Rapport system. Because of its importance the changes which
Watson underwent during the internship will be briefly covered in this
paragraph.

The Videre Design [VID05] stereo camera comes with the Small
Vision System software [SVS05]. Version 1.4 was designed to work
with version 3.x of this SVS software. The website of Videre Design
however, recommends using version 4.x of the SVS software. One
important difference between both versions of the SVS software is the
implementation of both the confidence and the uniqueness
filters [SVS05]. Since neither the implementation nor the source code
of Watson or the SVS software are available for this internship details
of these changes are not available. For an unknown reason the 1.4
version of Watson had incidental crashes on the system at ICT, those

crashed were resolved by switching to version 1.5 of Watson. This new
version is using the 4.x version of SVS rather then 3.x.

The new version (1.5) came with a few new features, most of which
were irrelevant for this internship, which seemed to slow down the
head tracker. By changing the configuration these features were
disabled. Howeve, even with this features disabled, version 1.5 seemed
to perform poorer than 1.4. Because no reason or (perfect) solution was
found to configure Watson 1.5 to perform like 1.4 no solution will be
given here. Appendix 13 covers tips how to use and improve Watson.
Setting aside the performance and the irrelevant features, Watson 1.5
does bring an interesting feature. Version 1.5 made it possible to store
timing information when saving the camera input (as an image
sequence). This feature can be quite important in the future, when
further testing has to be done. The need for timing information arises
when the data has to be annotated, see appendix 14.

Chapter 7

Testing
An important part of the research at hand is the testing procedure.
There hasn’t been actual testing with the previous system developed by
Maatman. For this reason it was important to get to actual testing with
our system. The testing procedure itself was already available before
the internship. The procedure and the results will be discussed here.
The testing can be divided into four different tests. Due to lack of
functionality in the current SASO tools, replaying and logging wasn’t
working as planned; therefore test 2 and 4 weren’t possible at the time
of testing. Another matter of the testing is that it’s time consuming and
for this reason only a limited number of test were done. The 4 different
tests and the procedure of testing will be explained first, after that the
test results will be analyzed.

7.1 The testing procedure

7.1.1 The four tests
The four different tests are best explained by a few simple illustrations
made by SLT Lamothe. These illustrations are displayed in
appendix 10.

As shown in the illustrations, a speaker is present in all of the tests.
The speaker is instructed to watch a short movie (in our case a part of a
Sylvester and Tweetie cartoon) and explain this movie to the “listener”.
In the eyes of the speaker he/she is telling a story to the doctor. In the
first test an actual human listener is present. In this case the
GestureDetection program will be used in “mimicking-mode” to mimic
the head gestures and slouches. The second test is similar to the first
one, except that the doctor will be controlled by logs of a test run of
test 1. The third test actually uses all the three components of the
Rapport system; in this case no human listener is present. The behavior
of the listener (the doctor) will be controlled by the Response program
using the Audio and the GestureDetection program to detect audio and
visual features. Test 4 compared to test 3 is what test 2 is compared to
test 1. This test will be run with logs from a previous run of test 3. To
make a more reasonable comparison between test 1 and 3, the
animations and the behavior used in test 3 weren’t as expressive as

possible (for more information see appendix 15). More expressive
behavior could be used in the future when there is more to mimic in
test 1 besides head gestures and slouches (see chapter 9)

7.1.2 The goal
The goal of these tests is to see if it’s possible to build rapport with
virtual humans. Quoting from the information sheets accompanied with
the tests:

PURPOSE OF THE STUDY We are asking you to take part
in a research study because we are trying to learn more about
how nonverbal behavior influences the effectiveness of face-
to-face interaction.

With a limited number of tests performed it’s hard to learn a lot more
about the influence of nonverbal behavior. Another point of interest
will be the differences between the results of test 1 and test 3.
Comparison of these results can shed light on the additional value of
the use of audio features and the mapping rules of the Response
program compared to plain mimicking.

7.1.3 Used hardware
To have a more convenient testing experience, a separate testing room
was used. To avoid moving all the hardware everytime separate testing
hardware was used. The used hardware is shown in table 7.7.

[Sorry. Ignored \begin{small} ... \end{small}]
Table 7.7: Overview of used hardware.

7.2 The results
A total number of eight tests were done, four times with test 1 and four
times with test 3. All test subjects were asked to complete a test survey
after the test. The test were done in pairs, so the listener for test 1 of
subject 1 was subject 2 and the other way around. The test survey is
shown in table 7.8.

1. Do you feel that you established a rapport with the character?
2. How confident are you in this determination (0=not at all,

7=completely)?
3. Do you feel the character understood your description?
4. How confident are you in this determination(0=not at all,

7=completely)?
5. Please rate how well these attributes apply to the character

(0=not at all, 7=very):
– sociable
– likeable
– kind
– friendly
– warm
– attractive
– tense
– polite
– formal
– charming
– flirtatious
– seductive
– spontaneous
– genuine

6. How realistic/natural were the behaviors displayed by the
character?

Table 7.8: Test survey
The results of the surveys are shown in table 7.9. The header of the
table shows ‘subject nr. / test nr’. To limit the size of the table the
question mentioned in the survey are abbreviated. Because of the
limited amount of test results it’s hard to conclude something from
these results. The second test person also seems to have an opposite
opnion on most question compared to the other 3 subjects. The first
question of the survey has been answered No just as often as Yes,
therefore it’s hard to conclude something from this question. Although

when the video data is analyzed both subject 3 and 4 seem to be more
active in front of the camera compared to subject 1 and 2. Subjects 1
and 2 seem to react more in terms of eye blinks and eye gaze which
aren’t detected by the current system (see chapter 9. Havining noted
that the first two subjects weren’t active enough to trigger a lot of
detections it might be good to focus on the results of the other two
subjects. If we compare the results of test 1 and 3 for both of these
subjects we can see that for every single item under “5.”, test 3 is rated
better than test 1. However this is a nice result, the reason for this result
cannot be brought back to one certain cause. It might be because the
mapping rules are superior to plain mimicking. Another explaination
could be that the output of test 1 wasn’t expressive enough because of
imperfection of the tracker (see appendix 13.2). Since test 3 uses
feature detection (instead of mimicking everything) imperfection of the
tracker would be harder to notice.

Since there are too many difference’s between the results of all the 4
subjects no valid conclusion can be made at this point, however testing
did prove to be useful. Experience in running the system was gained
and the need for a structured testing procedure using a specific launcher
was made very clear. Because of this the Rapport Launcher was
constructed which should ease future testing.

[Sorry. Ignored \begin{small} ... \end{small}]
Table 7.9: Simplified mapping of the features

Chapter 8

Conclusions
The assignment is divided into two parts, a separate conclusion will be
given for both of them followed by a general conclusion.

The first part of the assignment involved producing a working
system to replace the previous mimicking system. An important task
within the first part was to replace the head tracking system with a
Computer Vision approach. The Watson program used for this proved
to be a good option for this. The final system detects the same features
as the previous system, therefore the replacement can be seen as
successful. However there are still unresolved performance issues in
the newest Watson version.

The final part of the assignment was to use the system developed in
the first part for subject testing. Too little subject tests were actually
done to come to a conclusion which was hoped for. The few tests that
were actually done did prove useful. Because with the experience of
the testing (see section 7.2), the whole process of testing was
structured. Due to the clarified testing procedure (see appendix 11) it
should be easy for other people to use the Rapport system for further
testing.

Looking back at the assignment not all goals were met 100%.
However together with SLT Morales and SLT Lamothe [LAM05] a
working system and test procedure was developed. The most important
goal was to develop a system which could easily be reused for further
development and testing. Although the future has to prove the
reuseability, it can be said that this part of the assignemnt was very
succesful. This success makes future testing quite easy. Even though
the second goal of the assignment wasn’t accomplished, the threshold
for future testing was made as low as possible, which makes
achievement of the second goal, in the near future, very likely.

Looking back at the internship from the perspective of my
Computer Science studies, it can be said that the internship was quite a
success. Knowledge obtained during my studies like: quaternion
algebra, C++ programming, working in groups, designing and
implementing a system could all be put to use within the internship.
Most important experience was obtained in working together on a
(large) Virtual Reality project.

Chapter 9

Recommendations
This chapter will cover pending issues and recommendations for the
future. The chapter has been divided into different sections to maintain
readability. First the testing procedure is disscussed, after that the
addition of new features will be disscussed followed by new
animations to display. The final section of this chapter covers the
current software. A small portion of the time during this internship was
dedicated to annotation of data. Because it’s outside of the scope of this
report and too much to be included into this chapter it will be discussed
in a separate appendix (14).

9.1 Testing procedure
Within the internship no intensive testing has been done, there have
been numerous informal test and a total of eight tests. The first
informal tests have been done by manually starting each program. This
was possible because of nearly three months of experience with self
made software and the rest of the SASO system. However, for people
with less experience with the systems it can be quite complicated to
start all the components with the proper settings. Even if the programs
are started manually it will be quite error prone, because all log files
and all the video and audio data has to be stored for each test. To aid in
the process of starting the tests and keeping all data sorted per test a
Rapport Launcher has been made. Appendix 11 shows how the current
Rapport system can be started. During the last stage of the internship a
separate testing room has been used. There still was a problem that the
hardware had to be setup and put back each time, since the room was
also used for other purposes. To ease the testing process, the following
can or should be done:

• Use a separate (and permanent) testing room and testing
hardware.

• Use stable versions of the software or a decent updating
mechanism, to make sure all machines use the same versions.

• Improve the Rapport Launcher.
• Automatically change configuration of the different programs

using test and/or annotation results (also see appendix 14).

9.2 Features to detect
The current system detects only a small portion of potentially
interesting features. The Watson program, which is used for the
detection of gestures is still under development, therefore it’s likely this
program will be able to detect more features in the future. Even without
the Watson software but with the same hardware more detections are
possible. Even though the Posio software isn’t used in the current
implementation of the Rapport System, it’s still an interesting option
for the future. Looking at the video data from the tests, shows that most
people aren’t that expressive with their bodies. They don’t use many
slouches or gaze shifts. On the other hand eye blinks and eye gazes
seem to occur quite frequent. Together with facial expressions and
hand gestures this may be the most interesting features for the near
future. Looking at the small number of test which have been conducted,
arm gestures seem to be less frequent than eyes gazes and blinks. Table
9.10 lists the above mentioned features in order of relevance, from the
current point of view. However, extensive research might suggest
another order. SLT Lamothe mentions the same features in chapter 4.3
of Part 1 of [LAM05], the procedure to follow to add these programs to
the Rapport System is discussed in this same chapter.

1. Eye gazes (or gaze shifts)
2. Facial expressions
3. Eye blinks
4. Hand/arm gestures

Table 9.10: Potential new features in order of relevance.

9.3 Animations to display
Near the end of the internship the choice has been made to use
Smartbody instead of DIMR. Since Smartbody is still under
development it’s expected to support more animations in the (near)
future. At this point not all available animations are actually used. The
reason for this is that there is only a limited amount of features detected
right now. Before the actual tests were carried out more animations
were used. This would however, create too big a difference between
test 1 and test 3. For this reason not all available animations are used at
the moment. Although not all animations where used, the possibility to
use facial expressions (even static) would be a welcome addition. For
example a smiling doctor would have a better effect. The actual
procedure to use animations in Smartbody (see appendix 15) wasn’t the
correct way to use this system, since the system officially wasn’t ready
to be used in this manner. This might also be a point of interest for
future work, improving the way Smartbody is actually used, because as
soon as the whole SASO system switches to Smartbody it would be a

good idea to have a uniform way of using Smartbody. Why the current
way to use Smartbody is not the ideal way is shown in appendix 15.

9.4 Current Software
Like mentioned in section 9.2, Part 1, chapter 4.3 of [LAM05] shows
how new components can be added to the Rapport system. Other then
adding completely new components it’s possible to expand the current
components. Since the implementation of the Audio and Response
software are not covered in this report it’s hard to judge about the ease
to expand these two programs. At this point there is no direct need to
expand the Audio component since as of now there are no new audio
features to detect. The expansion of the Response program depends on
the complexity of future mapping rules. Possible reasons for expanding
this component can be the need for (more) complex dependencies
between rules or the need for delay in reactions.

With regard to the GestureDetection program it might be useful to
use it solely for features for which Watson can be used. This might be
eye gazes and eye blinks as mentioned in section 9.2. To use Posio, or a
new piece of software to detect arm gestures, it might be just as easy
(or maybe even easier) to add this new software as a new component to
the Rapport system. An issue which has to be resolved to make this
possible is to share the camera data, so both Watson and the new
software can access it.
What needs to be done to add a new feature to the GestureDetection
program (in general) is shown in table 9.11.

1. Make sure Watson detects the new feature or at least extracts the
data to be able to detect the new feature.

2. Change the Watson configuration (see appendix 13) to send out
the newly available data.

3. Change the WatsonControlTCP class (see chapter 6.2.8), this
may involve:
adding new variables to store the newly available data,
add functionality to the parseData() function to support the
reception of the new data.

4. Change the Head object (or add a new object), so the new data is
available within this class.
this class also should have the actual detection functionality
(unless it’s all done by Watson)

5. Add an apprioate function to the GestureDetection class to
extract the feature from the Head and
send the proper message to the Response component.

6. Updates which are not directly necessary: add new configuration
parameters and change the CLI1 to support the new detection

Table 9.11: Steps to follow to add a new feature to the
GestureDetection component.

To also support test 2 and test 4 (see chapter 7) the replaying and
logging programs have to be altered. The current limitations lie in the
fact that Tcl is used for both of these programs, which introduces
problems when communicating with components like Smartbody. The
reason for this problem is that Elvish (Tcl version/wrapper of/for Elvin)
seems to put extra quotes around the message, which aren’t expected
on the receiving end. Another problem with the current logger and
replayer is that they use timestamps in seconds, especially for test 2 this
will give weird results. Replaying for test 2 already has been tested and
this indeed looked weird, what happens is that all the ‘mimicking data’
will be played back but a lot of bone rotations happen at the same point
in time. Looking at this shows a doctor which does the correct
movements within the correct time span, but it all looks very jerky and
tense. This is because a lot of rotations are done at once and not divided
over the second they originally occurred in.

Bibliography
[LAM05] Franrçios Lamothe, Mathieu Morales: Response

Behavior (2005)
[MAA04] Martijn Maatman: Responsive Behavior of a Listening

Agent (2004)
[IVA05] Martijn Maatman, Jonathan Gratch, Stacy Marsella:

Natural Behavior of a Listening Agent (2005)
[POP04] Ronald Poppe: Real-time pose estimation from

monocular image sequences using silhouettes (2004)
[POP05] Ronald Poppe, Dirk Heylen, Anton Nijholt, Mannes

Poel: Towards real-time body pose estimation for presenters
in meeting environments (2005)

[MUL04] Tijmen Joppe Muller: Everything in perspective (2005)
[HAR04] Arno Hartholt, Tijmen Joppe Muller: Interaction on

emotions (2005)
[LPM05] Louis-Phillipe Morency: Watson, Stereo Tracking

System, User Guide, Version 1.4 (2005)
[MSL05] Louis-Phillipe Morency, Candace Sidner, Christopher

Lee, Trevor Darrell: Contextual Recognition of Head
Gestures (2005)

[VID05] Videre Design: http://www.videredesign.com/ (2005)

1Command Line Interface

[SVS05] Kurt Konolige and David Beymer: SRI, Small Vision
System, User’s Manual (2005)

[ELV05] Elvin - Content Based Messaging: http://elvin.dstc.com/
(2005)

[OCV06] Open Source Computer Vision Library:
http://www.intel.com/technology/computing/opencv/index.ht
m (2006)

[ICT06] Institute for Creative Technologies:
http://www.ict.usc.edu/ (2006)

[SST05] Stability and Support Operations.Simulation and
Training: http://www.ict.usc.edu/content/view/33/86 (2005)

[UTS99] Akira Utsumi, Jun Ohya: Multiple-Hand-Gesture
Tracking using Multiple Cameras (1999)

[UED01] Etsuko Ueda, Yoshio Matsumoto, Masakazu Imai,
Tsukasa Ogasawara: Hand Pose Estimation for Vision-based
Human Interface (2001)

[MAL02] S. Malassiotis, N. Aifanti, M. G. Strintzis: A Gesture
Recognition System Using 3D Data (2002)

[MIT03] Anurag Mittal, Liang Zhao, Larry S. Davis: Human
Body Pose Estimation Using Silhouette Shape Analysis
(2003)

[ROS04] Bodo Rosenhahn, Gerald Sommer: Pose Estimation of
Free-Form Objects (2004)

[RKS04] Bodo Rosenhahn, Reinhard Klette, Gerald Sommer:
Silhouette Based Human Motion Estimation (2004)

[IWA02] Yoshio Iwai, Keita Manjoh, Masahiko Yachida: Gesture
and Posture Estimation by Using Locally Linear Regression
(2002)

[MOE00] Thomas B. Moeslundi, Erik Granum: A Survey of
Computer Vision-Based Human Motion Capture (2000)

[ROS05] B. Rosenhahn, U. G. Kersting, A. W. Smith, J. K.
Gurney, T. Brox , and R. Klette: A system for marker-less
human motion estimation (2005)

[HIL03] Randall W. Hill, Jr., Jonathan Gratch, Stacy Marsella,
Jeff Rickel, William Swartout, David Traum: Virtual Humans
in the Mission Rehearsal Exercise System (2003)

[KAK98] Ioannis A. Kakadiaris, Dimitri Metaxas: Three-
Dimensional Human Body Model Acquisition from Multiple
Views (1998)

Chapter 10

Test setups

10.1 Test 1

Figure 10.6: Setup for test 1

10.2 Test 2

Figure 10.7: Setup for test 2

10.3 Test 3

Figure 10.8: Setup for test 3

10.4 Test 4

Figure 10.9: Setup for test 4

Chapter 11

How to run the rapport programs
Above all one should check that the ELVISH_SESSION_HOST and
ELVISH_SCOPE are set to the same values on all machines which are
going to be used.

The current Rapport system uses 3 different programs, one to detect
features in the audio, one to detect features in the video and one which
maps the detected features to behavior. In fact there are 3 ways to run
these programs: launching the executable itself (possibly with
command line options), running the provided batch files or using the
Rapport-launcher. Since the launcher uses the batch files and the batch
files use the possible command line options, the batch files will be
discussed first.

11.1 The batch files

11.1.1 Response

Running the programs using the batch files:
The %1,%2..,%n refer to the 1st,2nd,..,nth
command line parameter.
- Response using run-saso-rapport-response.bat
:
@if not defined ELVISH_SESSION_HOST set
ELVISH_SESSION_HOST=%3
@if not defined ELVISH_SCOPE set
ELVISH_SCOPE=%4
@echo ELVISH_SESSION_HOST =
%ELVISH_SESSION_HOST%
@echo ELVISH_SCOPE = %ELVISH_SCOPE%
pushd ..\core\rapport\response\bin
start response.exe -d -a %ELVISH_SESSION_HOST%
-c ../conf/%1 -n world -o %2
@popd

Since the launcher will start the different programs on different
machines and this is done by psexec (which sometimes has trouble

finding environment variables) the ELVISH_SESSION_HOST and
SCOPE are to be used as arguments when launching this batch file, the
batch file will use these if the variables are not found in the
environment. After these two values are setup correctly, the batch file
changes to the right directory and launches the Response program in a
separate window (using start). As one can see this line uses a few
command line parameters: -d, -a, -c, -n and -o. The -d switch is used to
launch the Response program in debug mode so it will print more
useful information on the standard output. The .a is used to specify the
elvinhost which is to be used, -c the configuration file to use and -o the
output file. The Response program has additional parameters which are
not used in this batch file, these will be discussed later on when
launching of the executable itself is discussed.

11.1.2 Audio

- Audio using run-saso-rapport-audio.bat:
@if not defined ELVISH_SESSION_HOST set
ELVISH_SESSION_HOST=%1
@if not defined ELVISH_SCOPE set
ELVISH_SCOPE=%2
@echo Using Elvinhost: %ELVISH_SESSION_HOST%
@echo Using Elvinscope: %ELVISH_SCOPE%
pushd ..\core\rapport\audio\bin
start laun.exe
@popd

For the exactly the same reason as the Response program this batch
file uses command line parameters to set the
ELVISH_SESSION_HOST and SCOPE when they are not found in the
environment. Other then that this batch file just changes the directory
and launches the executable, which doesn’t use any command line
parameters.

11.1.3 GestureDetection

- GestureDetection using run-saso-rapport-
gesturedetection.bat
@if not defined ELVISH_SESSION_HOST set
ELVISH_SESSION_HOST=%1
@if not defined ELVISH_SCOPE set
ELVISH_SCOPE=%2
pushd ..\core\rapport\gesturedetection\bin

@if %3 == 0 "C:\Program
Files\Watson14\Sequences\SRI\Watson 1.4.lnk"
@if %3 == 1 "C:\Program
Files\Watson15\Sequences\SRI\Watson 1.5.lnk"
start GestureDetection.exe -e
%ELVISH_SESSION_HOST% %4 %5 %6 %7 %8 %9
@popd

This batch file uses the same mechanism like the batch file for the
Audio and the Response program regarding the
ELVISH_SESSION_HOST and SCOPE. The 3rd command line
parameter should be either 1 or 0 indicating respectively indicating if
version 1.5 (of the Watson program) should be used or not. Using this
parameter the batch file decides which shortcut should be used, after
that the GestureDetection program itself is started. Just like the -a
switch for the Response program the GD program uses the -e switch to
specify the elvinhost to be used. The rest of the command line
parameters correspond to command line parameters of the executable
itself and will be discussed later on.

11.2 Running the programs using the executables

11.2.1 Response
The layout and the functionality of the configuration file used by this
program can be found in chapter 3.2 of [LAM05]. Launching response
-h gives us:

response.exe [-c configfile] [-a adress] [-v]
[-d] [-h]

-n name name of the simulation, default is
config file name
-c file config file, default is
"world.rsp"
-a adress adress for elvin connection,
default is environment variable
 ELVISH_SESSION_HOST
-o file output all messages to this file
-v verbose mode: output all Agents
data
-d debug mode: output all data
-av avatar mode: non-reactive Agents
are modeled
-h displays help

You can edit or create your config file with
"respedit.exe".
To use Response, you also need to start a dimr
session.

11.2.2 Audio
This program uses no command line parameters, all settings are
specified in the default configuration file default.cfg. Most of these
values are self-explanatory and normally don’t need to be touched. The
adress line in the configuration file is only used as the elvinhost when
the variable ELVISH_SESSION_HOST isn’t found.

11.2.3 GestureDetection
The layout and the functionality of the configuration file used by this
program can be found in appendix 12. When the program is ran without
any parameters all possible detection is disabled.

Launching GestureDetection .h gives us:
Possible command line options:
 -h | --help
 This output.
 -s | --slouch
 Use slouch detection.
 -r | --roll
 Use roll detection.
 -n | --nodsShakes
 Use detection of nods and
shakes.
 -g | --gaze
 Use detection of gazeshifts.
 -m | --mimick
 Mimick the head motion, better
not used with -n or -g.
 -e | --elvinserver <servername>
 Specify the elvinserver to
use. (default: %ELVISH_SESSION_HOST%)
 -c | --config-file <configfile>
 Specify configfile to use.
(default: test.cfg)
 -w | --numbers-of-worlds <numworlds>
 Specify the number of worlds
to use.

 -W | --worldname <worldname>
 Specify the name of first
world to use. (default: world)
 -y | --yaw-pitch-roll
 Send out yaw,pitch and roll
instead of Quaternions.
 -a | --agentname <agentname>
 Specify the agentname to use.
(default: user)

11.3 Running the programs using the Rapport-
launcher
A first thing to note about the Rapport-launcher is that it was made last-
minute and is based on the design of the SASO-launcher, therefore
there is a lot of code which should be removed from this launcher, and
there is also a lot of code which should be expanded to suit this
launcher (i.e. the save and load functions). This chapter will explain the
working of this launcher and the main functions which differ from the
regular launcher and how these are used. At the time of the first version
of this launcher the logger and replayer weren’t working optimal to be
used properly with the Rapport programs, therefore, this first version
shouldn’t be used for test 2 and 4, test 1 and 3 should work, but the log
file produced by the logger won’t be in the right directory and may
contain errors or might (for some reason) be unplayable for the
replayer. However as soon as new versions of the logger and replayer
become available, it’s not that much work to include the needed
functionality into this launcher.

11.3.1 How it works
As soon as the launcher is up and running (initialization and loading
and saving is the same as the SASO-launcher), only the ‘Start Test’ and
‘Stop Test’ buttons should be used to start and stop different programs.
The only case when the individual ‘Launch’ or ‘Kill’ buttons should be
used is when a program might crash during a test and needs to be
relaunched during this same test. Just below the ‘Start Test’ button
there are two input boxes, one for the subject number and one for the
number of the listener (only applicable for test 1). In the upper right
hand corner there are 4 radio buttons which can be used to select which
test is going to be done. Using this radio buttons all the necessary
programs for the selected test will be select with the proper settings.

When the ‘Start Test’ button is used for the first time (with SBM
and Unreal selected) it will run SBM and Unreal, deselect both

programs (they should be launched only once for a whole sequence of
tests) and raise a warning. Since there will be a warning the first time,
this means that the actual test won’t be started. After both SBM and
Unreal are up and running ‘Start Test’ should be pressed again to
launch the actual test. This will launch every single program needed for
the particular test, but NOT start them. The reason that the current
launcher doesn’t start the programs automatically is because the
moment the program involves things which cannot be detected by the
launcher (i.e. is the subject ready and sitting in the correct position?).
This means that the different programs must be set to start or record
manually. An exception is when running the Response program, this
program will start automatically and send out initial commands when
this is done, for this reason the logger will most likely not log these
commands. (this is not a feature, but a BUG and needs to be fixed in
the next version).

After the test is completed the ‘Stop Test’ button should be used,
this will make sure that the programs which need to be restarted (in
case of another test) are closed, and that the logs (together with audio
and video) are copied to the directory corresponding to the test. As
mentioned above the log file of the logger won’t be copied to the right
directory in the current version.

11.3.2 The code which makes this work
Starting from line 1654
(after the line #---------------------OWN STUFF)
there are a few start, stop and reset function which aren’t doing much
more then sending out a proper Elvin message so the individual
programs should do what they are asked to. The same goes for the
reloadConfigFileGD function and the toggle functions after that. The
toggle functions are used to toggle detection options of the GD
program can be used before the program is started or when it is
running. Besides the Elvin message which is send, the color of the
corresponding buttons will change, indicating if an option is On (red)
or off (yellow). The changeTestNumber function is called when the
radiobutton mentioned earlier is changed, this function checks the
programs which should be used for the specific test, sets the right
options for the GD program and sets the machines, on which to run the
different programs. The startTest function starts the programs checked
(and needed) for the specific test. If SBM and/or Unreal are not started
yet (still checked) it starts them, unchecks them and aborts the start
function. The function also aborts if the test is already running
(maintained by a boolean). If the function isn’t aborted for any of the
reasons mentioned above a perl script is used to change the
ParamWatsonUser.cfg file to use the right directory to record the image

sequence. A new directory specific for this test is created as well. After
this the needed programs are started (if checked). The stopTest function
kills the running programs (except for SBM and Unreal) and copies the
logs (and the audio and video data) to the directory which has been
created for this test.

The last function specific for this launcher are the openConfigFile
functions, for the Audio and the GD program this just opens the used
configuration file (on the specified computer!) with notepad. For the
Response program, respEdit is started and the path of the used
configuration file (on the specified computer!) is put into the paste
buffer so it can easily be opened.

Next to the code mentioned above there are a
few initialization lines:
set isRunning 0
set isRunningAudio 0
set dirname ""
set rapportMachine1 Freud
set rapportMachine2 Darwin
set rapportMachine3 Folkman

Which are self explanatory but the last 3 values are the only way to
change the 3 machines used by the launcher. Which machines is used
for which program in which test is handled by the changeTestNumber
function mentioned earlier.

Besides al this the function initGUI has been changed to display all
the buttons needed for this launcher, the different (additional) GUI
components and related functions are not in a tool array just like in the
SASO-launcher, this is because the lack of time and lack of knowledge
of tcl and the diversity between the different programs. The different
launch and kill functions also contain a lot of .hard-coded. paths and
references to certain programs or pieces of code.

Chapter 12

Configuration Parameters
This appendix is meant to provide as an explanation for the
configuration parameters for the GestureDetection program. The full
list of feature which the GestureDetection program sends out:

[Sorry. Ignored \begin{small} ... \end{small}]
Table 12.12: Complete list of features detected by the

GestureDetection program.
(Under the current implementation the featurelist (see figure 12.12)

can be obtained by :
grep %s GestureDetection.cpp | perl -pe
"s/.*\"(%s.*)\".*/\$1/;") The %s is the agentName used
and the %f corresponds to parameters which are send with the message.

At the moment the features mentioned above can be divided into 4
(+mimicking) categories, which can be detected and configured
separatly:

1. Nods and Shakes
2. Gaze shifts
3. Slouches
4. Rolls
5. Mimicking
Under most circumstances the default parameters as provided in this

document will suffice, however there can be situations where fine
tuning is needed. The configuration file can be altered and reloaded
once the program is running, so this will make it possible to test
multiple settings in a short amount of time. Most of the time the system
is used, the environment will be different from previous situations, so
there is no perfect configuration. However these parameters can be
used to fine tune the performance of the system.

12.1 The Parameters

Threshold used to detect changes in the
direction of the pitch,
used to filter out noise and minor changes.
This is used in the nod detection process.
PitchThreshold = 0.001

Threshold used to detect changes in the
direction of the yaw,
it is used to filter out noise and minor
changes.
This is used in the nod detection process.
YawThreshold = 0.001

Number of 'gazes' (no nod or shake,
this is obtained from the Watson component)
to detect before the counters are reset.
gazeLimit = 15

Number of nods to detect (by the Watson
component) before considering
to report a headnod.
(the PitchShiftCount is also used for this)
nodLimit = 1

Number of shakes to detect (by the Watson
component) before considering
to report a headshake.
(the YawShiftCount is also used for this)
shakeLimit = 1

When the timer reaches this limit, there is a
gaze shift.
gazeShiftTimeLimit = 500

The minimum angle (in degrees) to discriminate
between two gazes.
gazeMinimumAngle = 5.0f

The maximum angle (in degrees) which keeps a
possible gaze shift alive.
In fact the timer is reset when this angle
exceeded
while measuring a possible gaze.
gazeNoiseAngle = 1.0f

The displacement in mm from the central(stored
position) along the x-axis.
Used to detect slouches when the roll is less
then slouchMaxRoll.
slouchThreshold = 100.0f

When the roll exceeds this angle (in radians)
the slouchRollFactor is used
to determine the slouch instead of the
slouchThreshold.
slouchMaxRoll = 0.3f

Factor used to determine slouches when the
slouchMaxRoll is exceeded.
slouchRollFactor = 90.0f

Factor used to set a different condition for
slouching back and forth,
so there is not one specific turning point.
slouchUnSlouchFactor = 0.7f

The minumum angle (in degrees) before a roll is
detected.
rollAngle = 15.0f

The following parameters are only used in
mimicking mode and are used amplify the
rotational values and to set boundaries for
those values as well.
mimickRotXAmpl = 2.0f
mimickRotYAmpl = 2.0f
mimickRotZAmpl = 0.65f
mimickRotXMax = 0.3f
mimickRotYMax = 0.45f
mimickRotZMax = 0.25f

12.2 How the parameters are used

12.2.1 The Nods and Shakes detection
This detection uses both the detection by the Watson and the raw data.
The configuration parameters are used to combine both detection
methods in the right way. In fact shakes and nods are quite similar
except for the fact that the one is about rotation around the x-axis and
the other about rotation around the y-axis, therefore we will only
consider nods in this explanation. The GestureDetection program uses
the Watson system with learned Hidden Markov Models
(NODS_DETECTION_ALGO: HMM) for nod detection, for each
frame it reports a 1 for a nod (or -1 for a shake) and a 0 otherwise. The
reporting of nods uses two Watson configuration parameters:
NOD_LOG_MIN_THRESHOLD and
NOD_LOG_MAX_THRESHOLD. The second method uses the raw
data obtained from Watson. The method counts the number of pitch
shifts. A pitch shift is defined as a change in the direction of the pitch.
This counter will keep increasing when there is no movement at all,
since there will be small fluctuations around 0, because the data
obtained from Watson isn’t perfect. To take away this unwanted effect
the PitchThreshold is used to filter out these fluctuations. There are 3
parameters for combining both methods. The systems counts the
amount of nods received from Watson, when this counter exceeds
nodLimit-1 and the number of pitch shifts exceeds 1 a nod is reported
and the number of pitch shifts is decreased by two. When the number
of pitch shifts reaches 0 in this way, everything is reset. Next to nods
all the ‘not nods/shakes’ are counted too and this counter is compared
with the gazeLimit. When this counter is greater or equal to this limit
everything will be reset too. In fact the combination of both methods is
used for the detection and the ‘shift count’ method is used to count the
nods, so the system doesn’t send out too much nods, this could happen
when the Watson detection is used in a straight forward way.

12.2.2 Gaze shift detection
The gaze shift detection can be configured through three different
parameters. The gazeShiftTimeLimit is used to make sure a certain
gaze is held long enough to report it as being a gaze shift; this will filter
out stuff like nods and shakes and will prevent the system from sending
out too much data. The gazeMinimumAngle is the minimum angular
displacement (in either pitch, yaw or roll), between the current pose
and the last recorded gaze, before the timer to report a gaze shift can be
started. The gazeNoiseAngle is the maximum angular displacement,
between the possible new gaze and the current rotation, which is
allowed without the timer being reset.

12.2.3 Slouches
The GestureDetection program is meant to be used with sitting
subjects, although it may work just as good for standing subjects. When
it comes to slouching there are three different positions: slouch right,
normal and slouch left. A slouch to the side is reported when the
subject moves his upper body to the side and/or when the head is tilted
to this side. During initialization the normal position is stored, the
detection of slouches uses this position and is configured with four
additional parameters. The main parameter is: slouchThreshold, this is
how far the head (due to upper body movement or tilting) should be
displaced (along the x-axis) from the normal position before a slouch is
reported. This threshold is only used when the roll (the tilting) of the
head is smaller then the slouchMaxRoll. If the roll exceeds the
slouchMaxRoll then the slouchRollFactor is also used. Since the x-
coordinate of the head also changes when the head is tilted the
slouchRollFactor can be used to detect slouches when the head is tilted
more then slouchMaxRoll. The slouchRollFactor multiplied by the
absolute roll (in radians) is added to the threshold to calculate the new
threshold for this case. To avoid switching between slouch and normal
(and back) repeatedly when the subject is on the edge of slouching (or
not) the slouchUnSlouchFactor is used. This factor multiplied with the
slouchThreshold is used as a range around the stored position within
which a ‘unSlouch’ (switching back to normal) is reported.

12.2.4 Rolls
The roll detection only uses the rotation along the z axis; a roll to either
the right or left is reported when this rotation exceeds the rollAngle.
Since rolls are expected to hold shorter then slouches and are more
frequent to change no unRoll construction was used here.

12.2.5 Mimicking
The mimicking rotates the head (skullbase) using the rotational data
received from Watson. Since the tracker doesn’t always work 100%
accurate and tends to be more conservative as opposed to what is really
happening, the mimickRot[X—Y—Z]Ampl can be used to amplify the
rotation. To filter out unrealistic values the mimickRot[X—Y—Z]Max
can be used. All these rotations are radian angles. The current slouch
implementation rotates three spine bones; the angle of the lowest spine
bone is computed in the way described below. The angle shown below
shows the (estimated) height (default: 300 mm) from the lowest spine
bone to the skullbase. The distance v.x shown in the figure is the
horizontal displacement from the starting position. Using trigonometry
the shown angle is computed and used to construct a quaternion to
rotate the lowest spine bone. The other two spine bones are rotated in
the opposite direction with 50% of the angle to compensate the rotation
and make the slouch look more realistic. If v.x exceeds the maximum
value (default: 250 mm) it is set to this value to avoid unrealistic
slouches.

Chapter 13

Watson
This appendix should aid in how to get Watson up and running and
tune the performance.

13.1 Getting the software installed
To install the Watson program the normal installer can be used, after
the SRI software has been installed, since the current version(s) of the
Watson program doesn’t work with the current IEEE 1394 WinXP SP2
driver, therefore these instructions
(http://www.videredesign.com/xp2_workaround.htm) must be
followed to reinstall the SP1 driver. After that the supplied
configuration files (ParamUser.cfg and calib-own.ini) must be copied
to:
C:\Program Files\Watsonxx\Seqeunces\SRI (where xx is
the version number i.e. 15). To use Watson from the launcher a
shortcut has to be made from this same directory named: Watson
x.x.lnk (where x.x is the version number, i.e. 1.5) and it has to point to
the watsonxx.exe executable in the C:\Program
Files\Watsonxx\bin directory, the start directory has to be:
C:\Program Files\Watsonxx\Seqeunces\SRI.

13.2 Performance
Once everything is up and running it could be that the performance of
the tracker isn’t optimal. This can have all kinds of reasons; there are a
few relative quick and easy ways to tweak this performance.

In general much background light is not a good thing, the
background light and the ambient light should light the whole shot but
too bright is not good. If the face isn’t bright enough a spot light can be
used to brighten only the face itself. If the overall image remains too
bright, the calibration file can be altered, by lowering the gain value
(default : 100), doing this will likely bring up the need for a spotlight
to brighten the face itself.

The best distance from camera to the user is a little over 3 feet.
Ideally the camera should be placed at the same height as the user’s
eyes. Since there is a screen at this position, most tests were done with

placing the camera a little lower and facing up. To initialize the tracker
properly, it.s best that the user is looking directly into the camera when
the tracker is started.

13.3 Configuration
An example ParamUser.cfg is shown below. The meaning of the
different parameters are explained2 in the ParamWatson.cfg file.

[SECTION_WATSON]
COMPUTE_SIMPLE_POSE: FALSE
AUTO_REINIT: TRUE
[SECTION_SIMPLE_TRACKER]
DETECTION_TASKS: DEPTH_FILTER DETECT_FACE
DETECT_MULTI_FACE END
STATE_TASKS: ALWAYS ON_INIT ON_REINIT END

[SECTION_NETWORK]
CONNECT_SOCKET: TRUE
NAME_HOST: 127.0.0.1
TYPE_INFO_SENT: INFO_TIMESTAMPS INFO_POSES
INFO_PREVIOUS_LINKS_ONLY
INFO_HEAD_NODS END
ENABLE_REMOTE_COMMANDS: TRUE

[SECTION_RECORDER]
IMAGE_PREFIX_FILENAME:
C:\saso\saso\core\rapport\testdata\
12_21_2005_11h42m32s_Subject1-Test3-
Listener1\imageseq\Image-
OUTPUT_PARAMETER_FILENAME:
C:\saso\saso\core\rapport\testdata\
12_21_2005_11h42m32s_Subject1-Test3-
Listener1\imageseq\ParamSeq.cfg

13.4 Current issues
Most of the time the tracker doesn’t follow the head all the way to the
right or left (when rotating), if the light and calibration is setup poorly
this can even lead to tracking no rotation along the y axis at all. The
same problem arises with the rotation around the x axis, sometimes this
rotation is not detected properly by the tracker and when doing head

2feel free to contact me for more details about the configuration, I also have more
information I received from Louis-Philippe Morency, which isn’t shown here

nods the tracker seems to move up and down instead of rotating along
the x axis.

Chapter 14

Annotating data
Because of the lack of time, priority and the number of testdata not
much time was spend in annotating data. However a number of tools
were used during the internship. These tools are discussed in section
14.2. The actual data which is subject to be annotated is covered in
section 14.3, suggestions for future work will be given in the last
section of this appendix. The next section will cover the reason for
annotating data.

14.1 Why annotate data?
There are several reasons why annotating data could be useful within
the Rapport project. First of all, if data is annotated and stored, it can
easily be reused in the future. This data can then be reused with the
same system with a different configuration, to compare the results and
see which configuration works better. It is also possible to annotate
more features than available to detect with the current system. In this
way, when new feature detection is available, it can be tested at once
(assuming it can load the previously recorded data). If the process of
testing and comparing results with annotated data can be automated,
machine learning can be used to improve the performance of the
different detection programs. Even with a system under development,
annotated data could be useful (as long as it can be used as input). For
instance annotated data could have been useful during the development
of both the GestureDetection and Audio component, because this takes
away the need to shake, slouch and shout all day just to test the system.
With new components being added in the future, annotation can be
even more useful even if it’s just to demonstrate the functionality of the
system. With multiple components it’s likely to have multiple audio
and video sources, however for annotation and demonstration purposes
and for reusability it might be useful to combine all these source into
one video.

Even outside of the Rapport project it could be useful to share
annotated data with other research groups, because good annotated data
is not widely available.

14.2 Possible tools
This section will cover the three different annotation tools used during
this internship. It will briefly show what each tool can and cannot do.
Since all three the programs have a lot of features3 this chapter will not
give a full list of features. This chapter is meant to give an idea of the
three programs which were used. It should also aid in the choice4
which has to be made when serious annotation is going to be done for
the Rapport project.

14.2.1 Transcriber
This annotation tool is used by the current version of the Audio
program, as mentioned in part 3, chapter 4.4.2 of [LAM05].
Morales [LAM05] already mentions that this program has many
features which aren’t used right now but could be useful in the feature.
The software has been tested on several Unix system and on Windows
XP/Windows 2000, the program can be found at:
http://trans.sourceforge.net/ .

14.2.2 ELAN
ELAN is a multimedia annotation tool developed at Max Planck
Institute for Psycholinguistics in Nijmegen, the Netherlands. Unlike
Transcriber, this tool works with audio and video files. It can even
open multiple files. ELAN uses JRE and therefore is available for
Windows, Mac OS X and Linux. After a bit of clicking and exploring
or just by reading the quickstart guide or consulting the manual it’s
quite easy to use. Although it’s quite easy to get started using ELAN, it
does have a lot of functionality which can be useful for annotation. The
software, including the manual and some examples can be found at:
http://www.mpi.nl/tools/elan.html .

14.2.3 Anvil
Anvil is a annotation tool, by Micheal Kipp and is also used at USC.
Just like ELAN, Anvil can be used to annotate video data. Anvil didn’t
seem to work with a number of video files or wave files we used. The
possibility to use several files at once isn’t possible either. Other than
that Anvil has loads of possibilities, for this reason it takes a bit more
time to get up and running with Anvil compared to ELAN. A very
useful feature of Anvil is that you can create your own specification
file which allows you to completely customize how your annotation
scheme looks like. Since Anvil is also used at USC we received their

3most of them unknown to me
4which annotation tool to use?

specification file5 (from Serdar Yildirim) which can be used for
annotations for the Rapport project as well. The fact that the same
program is used at USC would be a good reason to use Anvil for the
Rapport project as well, since the program has a lot of features and
comes with a good documentation. Using the same program with the
same specification file (or almost the same) would ease the exchange of
annotated data. The program only works on windows systems and can
be found at: http://www.dfki.de/k% ipp/anvil/ .

14.3 The data
The current Rapport system has 3 different outputs which can be used
for annotation (see table 14.13). Morales already mentions the use of
annotation tools for his Audio program in part 3, chapter 4.4.2 of
[LAM05]. The trs file generated by the Audio program can be
compared to a hand annotated file and the results of this comparison
can be used to improve the performance of the Audio program. The
same can be done with the GestureDetection program, which at this
point only generates a simple text file containing timestamps together
with the detected feature. Because annotating wasn’t the highest
priority and because no definite choice was made which annotation
program to use, the output was kept simple. However once a choice has
been made which annotation tool to use this simple text file can easily
be converted to an xml file compatible with this tool. This way a
movie, constructed from an image sequence of the Stereo Camera (see
appendix 15.3), can be annotated by the GestureDetection program and
compared to hand annotated data. The output from the DV camera,
which contains both audio and video can easily be annotated. However,
none of the components of the system can use this data as input. Log
files of both the Audio and the GestureDetection program will not be of
any use when a comparison is going to be made with the data from the
DV camera, since the timing is different. If the video of Unreal is
recorded (with a screen capture program) the same problem will arise;
the fact that there is no timing or synchronization between this video
and the other sources.

• Output from the DV camera (Audio + Video)
• Output from the stereo camera (Video)
• Output from the microphone (Audio)
• Unreal (Video)

Table 14.13: Output data of the Rapport system, which can be
annotated.

5I still have a copy of this file, on request this file can be send

14.4 Future work
Annotating is already possible and definitely useful within the Rapport
project, but there is still a lot of work to be done before all potential can
be utilized. Table 14.14 shows suggestions for future work on the topic
of annotating within the Rapport project.

• Choose one Annotation tool (or maybe a separate one for audio).
• Collect more data and annotate it.
• Use data as input for both the Audio and the GestureDetection

program,
and store the results.

• Convert the results of the GestureDetection (and/or Audio) to
a format readable by the used annotation tool.

• Use machine learning to tune the performance of the systems.
• If all the data sources need to be combined into one video,

a synchronization solution has to be found.
Table 14.14: Future work regarding annotation.

Most of the suggestions given in table 14.14 are already possible with
minor alterations or additions. Serious problems may arise when trying
to combine the different sources. This has already been tried and done
for one demonstration movie, using Final Cut Pro. For demonstrational
purposes this might proof to be good enough but since all
synchronization and timing has to be aligned and corrected by hand this
task is subject for human error. At this point there is no proper way of
synchronizing and timing all the different sources, if a proper solution
for this can be found putting together the different sources would be
quite easy.

Chapter 15

Additional work
This appendix will cover additional work which is outside of the scope
of this report. All the files mentioned in this appendix can be found in
the data or scripts directory of the Rapport system.

15.1 Smartbody
Through personal interest in the Smartbody system, the currently
available animations were discovered. However, these animation
couldn’t be used in the way that was needed. The default behavior of
Smartbody was to animate back to the default pose after an animation
was finished. An important group of animations, which were available
in DIMR and not in Smartbody, are the slouches. The process how the
(non-existing) slouch animations were made will briefly be covered in
section 15.1.2. The workaround to actually put these animations to use
will be covered first, in the next section.

15.1.1 SKM / SKP, the workaround
Several types of files can be used by Smartbody to lead to an actual
animation. Table 15.15 shows these file types.

File Extension Meaning/Usage
.SKM File describing a certain animation

(using key frames)
.SKP File describing a pose
.XML Beavin XML files used to set a

default pose
.SEQ Sequence files to load a sequence

of Smartbody animations
.ME Mapping from poses and motions

to controller which can be used by
SBM

Table 15.15: The different file types used in the workaround.

The animations which were found were .SKM files, where the M
stands for motion. Smartbody also uses .SKP files where the P stands

for pose. Both of these (like all other types mentioned in table 15.15)
are plain text. Leaving out the details, both .SKP and .SKM files list all
bones used and after that list the quaternions (only x,y,z) describing the
bone rotations. The difference between both files lies in the fact that
.SKM files use multiple lines with a timestamp to support multiple
frames where .SKP files only describe one set of bone rotations, hence
the name .SKP(ose). As mentioned above the Smartbody system
animates back to the default pose after an animation has been played.
To support slouches in SBM there were two options: disable the
animation to the default pose or set a new default pose. Since the first
option wasn’t possible the second one has been used. This was in fact
quite useful, since there also were some poses which weren’t included
in any animations but could be useful for the Rapport system.

To actually utilize the changing of the default pose, more .SKP files
were needed. Since both .SKP and .SKM files were plain text some
perl scripts were made to convert the first or the last frame of a .SKM
file to a .SKP file. Some other scripts were made to aid in the
construction of the corresponding .XML and .SEQ files and add the
proper lines to a .ME file. In the end to play an actual animation, SBM
was used to load a sequence file6 which points to several BML (Beavin
XML) files to set a new default pose. Since SBM automatically
animates between poses this was a fair enough work around to use
Smartbody with slouches and a few other animations.

15.1.2 Maya
The .SKM and .SKP files mentioned in the previous section were
converted from Maya. During the internship there wasn’t much active
Maya development for the doctor (the agent in the SASO system),
therefore new animations had to be made by myself. Fortunately Aaron
Hill had quite some Maya experience and he provided me with a Maya
model of the doctor. He also assisted in the animation and exporting
process. Finally it was possible to make a few simple (mainly slouches)
animations which could be exported to an .SKM file for further usage.

15.2 Making movies out of image sequences
To make it possible to use the data from the stereo camera for
annotation (see appendix 14), a few perl scripts were made (see table
15.16). The first attempt to create a movie from an image sequence was
done by creating a Camtasia project file and loading this file into
Camtasia. This approach was working, although Camtasia isn’t suitable
to load project files which contain a lot of images within a small time

6Using a sequence file multiple times made the system crash at first, thanks to
Andrew Marshall this problem was resolved

span. For this reason it took hours to load and to process the sequence
into a final movie.

The second approach uses a perl script to create a new image
sequence (with fixed frame rate) from an existing one. If the existing
sequence has been recorded with Watson 1.5 (with timestamps
enabled), a timestamps.txt file will be present. If no timestamp file is
present one can be obtained by using another script to create such a file
using the timestamps from the filesystem. The final sequence then can
be loaded by a movie processing program (i.e.: TMPGenc
http://www.tmpgenc.net/) to load a sequence with fixed frame rate and
produce a movie.

File Meaning/Usage
imageseqToConstantFrameRateSeq
.pl

Uses a image sequence

 and timestamp to create
 a new sequence with constant fps
createTimestamps.pl Creates a timestamp.txt file
 for a given
 imagesequence using timestamps
 from the filesystem
imageseqToXML.pl (DEPRECATED),
 Constructs a valid
 Camtasia project file from
 an image sequence

Table 15.16: Scripts to produce a movie from a (Watson) image

sequence.

15.3 Putting together different movies
To make a short demonstration movie, some time has been spent trying
to combine the different audio and video sources. Final Cut Pro has
been used for this purpose with help of Scott Rocher. The
demonstration movie which has been made, uses data from subject 4
doing test 3 (see chapter 7). This movie combines the stereo camera
output, the DV camera output and a screen capture of Unreal. The same
has been done for an informal test 3. With some time and effort the
demonstration movies were produced. Although sOme video sources
had to be cropped, sped up and others had to be slown down. Producing
such a movie is quite a laborious task and with the current data it’s
nearly impossible to get a (close to) perfect result. If the final movie
only serves as demonstration this could be good enough but otherwise

some sort of timing between the different sources is needed during the
recording.

Chapter 16

Posio
These are the installation notes I received from Ronald Poppe. I also
had some mailings with Ronald about certain issues I ran into, upon
request this information is available as well.

POSIO installation:

1. Install DirectX 9.0:
 - extract dx90bsdk.exe
 - check to install samples and code
 - check debug version

2. Install IPL 2.5
 - extract ipl25.exe

3. Install OpenCV 3.1:
 - extract OpenCV_b3.1.exe
 - have OpenCV add itself to your path

4. Build streams.h:
 - This is described in <OpenCV
Root>\docs\faq.htm under
 "When I try to build one of the apps, I get an
 error, streams.h not found."

5. Patch syncfilter:
 - from streocam.zip overwrite Syncfilter.h
 and Syncfilter.cpp in <OpenCV
Root>\filters\SyncFilter
 - from streocam.zip overwrite cvcam.cpp in
 <OpenCV Root>\otherlibs\cvcam\src\windows
 - from streocam.zip overwrite cvcam.h in
 <OpenCV Root>\otherlibs\cvcam\include
 - open Syncfilter.dsp and build Syncfilter.ax
in Release mode
 - execute <OpenCV Root>\bin\regsvr32
Syncfilter.ax to register filter

6. Patch CVcam:
 - from cvcam_combi.zip overwrite everything
except cvcam.h
 in <OpenCV Root>\otherlibs\cvcam\src\windows
 - from cvcam_combi.zip overwrite cvcam.h in
<OpenCV Root>\otherlibs\cvcam\include
 - open <OpenCV
Root>\otherlibs\cvcam\make_win\cvcam.dsp and
build in
 both Release and Debug mode

7. Build CVAux:
 - open <OpenCV Root>\cvaux\make\cvaux.dsp and
build in Release and Debug mode

8. Extract and compile Posio:
 - unzip posio.zip
 - open posio.dsw en check if
 under Tools->Options->Directories <OpenCV
Root>\otherlibs\cvcam\include
 and
 <OpenCV Root>\bin are listed under include
files
 - check if Build->
 Set Active Configuration "Main - Debug" or
"Main - Release" is selected
 - build all and run

If something goes wrong, check the dependencies
under Project->Dependencies.
Main depends on CV, CVcam and HighGUI.
CVcam depends on CV and HighGUI. HighGUI
depends on CV.
Keep in mind that the program accepts only
images of size
320x240 with a color depth of 24 bits.
AVI's of a limited number of codecs can be
played and not
every JPEG compression is supported.

