
Image-based lighting (IBL) is the process of
illuminating scenes and objects (real or syn-

thetic) with images of light from the real world. It
evolved from the reflection-mapping technique1,2 in

which we use panoramic images as
texture maps on computer graphics
models to show shiny objects reflect-
ing real and synthetic environments.
IBL is analogous to image-based
modeling, in which we derive a 3D
scene’s geometric structure from
images, and to image-based render-
ing, in which we produce the ren-
dered appearance of a scene from its
appearance in images. When used
effectively, IBL can produce realistic
rendered appearances of objects
and can be an effective tool for inte-
grating computer graphics objects
into real scenes.

The basic steps in IBL are

1. capturing real-world illumination as an omnidirec-
tional, high dynamic range image;

2. mapping the illumination onto a representation of
the environment;

3. placing the 3D object inside the environment; and
4. simulating the light from the environment illumi-

nating the computer graphics object.

Figure 1 shows an example of an object illuminated
entirely using IBL. Gary Butcher created the models in
3D Studio Max, and the renderer used was the Arnold
global illumination system written by Marcos Fajardo.
I captured the light in a kitchen so it includes light from
a ceiling fixture; the blue sky from the windows; and
the indirect light from the room’s walls, ceiling, and
cabinets. Gary mapped the light from this room onto a
large sphere and placed the model of the microscope
on the table in the middle of the sphere. Then, he used
Arnold to simulate the object’s appearance as illumi-
nated by the light coming from the sphere of incident
illumination.

In theory, the image in Figure 1 should look about
how a real microscope would appear in that environ-
ment. It simulates not just the direct illumination from
the ceiling light and windows but also the indirect illu-
mination from the rest of the room’s surfaces. The reflec-
tions in the smooth curved bottles reveal the kitchen’s
appearance, and the shadows on the table reveal the
colors and spread of the area light sources. The objects
also successfully reflect each other, owing to the ray-
tracing-based global-illumination techniques we used.

This tutorial gives a basic IBL example using the freely
available Radiance global illumination renderer to illu-
minate a simple scene with several different lighting
environments.

Capturing light
The first step in IBL is obtaining a measurement of

real-world illumination, also called a light probe image.3

The easiest way to do this is to download one. There are
several available in the Light Probe Image Gallery at
http://www.debevec.org/Probes. The Web site includes
the kitchen environment Gary used to render the micro-
scope as well as lighting captured in various other inte-
rior and outdoor environments. Figure 2 shows a few of
these environments.

Light probe images are photographically acquired
images of the real world, with two important proper-
ties. First, they’re omnidirectional—for every direction
in the world, there’s a pixel in the image that corre-
sponds to that direction. Second, their pixel values are

0272-1716/02/$17.00 © 2002 IEEE

Tutorial

26 March/April 2002

This tutorial shows how

image-based lighting can

illuminate synthetic objects

with measurements of real

light, making objects appear

as if they’re actually in a

real-world scene.

Paul Debevec
USC Institute for Creative Technologies

Image-Based
Lighting

1 A micro-
scope, modeled
by Gary Butcher
in 3D Studio
Max, rendered
using Marcos
Fajardo’s Arnold
rendering
system as illumi-
nated by light
captured in a
kitchen.

linearly proportional to the amount of light in the real
world. In the rest of this section, we’ll see how to take
images satisfying both of these properties.

We can take omnidirectional images in a number of
ways. The simplest way is to use a regular camera to take
a photograph of a mirrored ball placed in a scene. A mir-
rored ball actually reflects the entire world around it,
not just the hemisphere toward the camera. Light rays
reflecting off the outer circumference of the ball glance
toward the camera from the back half of the environ-
ment. Another method of obtaining omnidirectional
images using a regular camera is to shoot a mosaic of
many pictures looking in different directions and com-
bine them using an image stitching program such as
RealViz’s Stitcher. A good way to cover a particularly
large area in each shot is to use a fisheye lens,4 which
lets us cover the full field in as few as two images. A final
technique is to use a special scanning panoramic camera
(such as the ones Panoscan and Sphereon make), which
uses a vertical row of image sensors on a rotating cam-
era head to scan across a 360-degree field of view.

In most digital images, pixel values aren’t proportion-
al to the light levels in the scene. Usually, light levels are
encoded nonlinearly so they appear either more correctly
or more pleasingly on nonlinear display devices such as
cathode ray tubes. Furthermore, standard digital images
typically represent only a small fraction of the dynamic
range—the ratio between the dimmest and brightest
regions accurately represented—present in most real-
world lighting environments. When part of a scene is too
bright, the pixels saturate to their maximum value (usu-
ally 255) no matter how bright they really are.

We can ensure that the pixel values in the omnidi-
rectional images are truly proportional to quantities of
light using high dynamic range (HDR) photography
techniques.5 The process typically involves taking a
series of pictures of the scene with varying exposure lev-
els and then using these images to solve for the imaging
system’s response curve and to form a linear-response
composite image covering the entire range of illumina-
tion values in the scene. Software for assembling images
in this way includes the command-line mkhdr program
at http://www.debevec.org/Research/HDR and the
Windows-based HDR Shop program at http://www.
debevec.org/HDRShop.

HDR images typically use a single-precision floating-
point number for red, green, and blue, allowing the
full range of light from thousandths to billions to be
represented. We can store HDR image data in a vari-
ous file formats, including the floating-point version
of the TIFF file format or the Portable Floatmap vari-
ant of Jef Postsanzer’s Portable Pixmap format. Sever-
al other representations that use less storage are
available, including Greg Ward’s Red-Green-Blue
Exponent (RGBE) format6 (which uses one byte each
for red, green, blue and a common 8-bit exponent) and
his new 24-bit and 32-bit LogLuv formats recently
included in the TIFF standard. The light probe images
in the light probe image gallery are in the RGBE for-
mat, which lets us easily use them in Ward’s Radiance
global illumination renderer. (We’ll see how to do pre-
cisely that in the next section.)

Figure 3 (next page) shows a series of images used
in creating a light probe image. To acquire these images,
we placed a three-inch polished ball bearing on top of
a tripod at Funston Beach near San Francisco and used
a digital camera with a telephoto zoom lens to take a
series of exposures of the ball. Being careful not to dis-
turb the camera, we took pictures at shutter speeds
ranging from 1/4 second to 1/10000 second, allowing

IEEE Computer Graphics and Applications 27

2 Several light
probe images
from the Light
Probe Image
Gallery at
http://www.
debevec.org/
Probes. The
light is from
(a) a residential
kitchen, (b) the
eucalyptus
grove at UC
Berkeley, (c) the
Uffizi gallery in
Florence, Italy,
and (d) Grace
Cathedral in
San Francisco.

(a)

(b)

(c)

(d)

the camera to properly image everything from the dark
cliffs to the bright sky and the setting sun. We assem-
bled the images using code similar to that now found
in mkhdr and HDR Shop, yielding a high dynamic
range, linear-response image.

Illuminating synthetic objects with real
light

IBL is now supported by several commercial ren-
derers, including LightWave 3D, Entropy, and Blender.
For this tutorial, we’ll use the freely downloadable
Radiance lighting simulation package written by Greg
Ward at Lawrence Berkeley Laboratories. Radiance is
a Unix package, which means that to use it you’ll need
to use a computer running Linux or an SGI or Sun
workstation. In this tutorial, we’ll show how to perform
IBL to illuminate synthetic objects in Radiance in just
seven steps.

1. Download and install Radiance
First, test to see if you already have Radiance installed

by typing whichrpict at a Unix command prompt. If
the shell returns “Command not found,” you’ll need to
install Radiance. To do this, visit the Radiance Web site
at http://radsite.lbl.gov/radiance and click on the
download option. As of this writing, the current ver-
sion is 3.1.8, and it’s precompiled for SGI and Sun work-
stations. For other operating systems, such as Linux,
you can download the source files and then compile the
executable programs using the makeall script. Once
installed, make sure that the Radiance binary directo-
ry is in your $PATH and that your $RAYPATH environ-
ment variable includes the Radiance library directory.
Your system administrator should be able to help you
if you’re not familiar with installing software packages
on Unix.

2. Create the scene
The first thing we’ll do is create a Radiance scene file.

Radiance scene files contain the specifications for your
scene’s geometry, reflectance properties, and lighting.
We’ll create a simple scene with a few spheres sitting on
a platform. First, let’s specify the material properties
we’ll use for the spheres. Create a new directory and
then call up your favorite text editor to type in the fol-
lowing material specifications to the file scene.rad:

Materials

void plastic red_plastic
0
0
5 .7 .1 .1 .06 .1

void metal steel
0
0
5 0.6 0.62 0.68 1 0

void metal gold
0
0
5 0.75 0.55 0.25 0.85 0.2

void plastic white_matte
0
0
5 .8 .8 .8 0 0

Tutorial

28 March/April 2002

3 A series of
differently
exposed images
of a mirrored
ball photo-
graphed at
Funston Beach
near San Fran-
cisco. I merged
the exposures,
ranging in
shutter speed
from 1/4 sec-
ond to 1/1000
second, into a
high dynamic
range image
so we can use
it as an IBL
environment.

void dielectric crystal
0
0
5 .5 .5 .5 1.5 0

void plastic black_matte
0
0
5 .02 .02 .02 .00 .00

void plastic gray_plastic
0
0
5 0.25 0.25 0.25 0.06 0.0

These lines specify the diffuse and specular charac-
teristics of the materials we’ll use in our scene, includ-
ing crystal, steel, and red plastic. In the case of the red
plastic, the diffuse RGB color is (.7, .1, .1), the proportion
of light reflected specularly is .06, and the specular
roughness is .1. The two zeros and the five on the sec-
ond through fourth lines are there to tell Radiance how
many alphanumeric, integer, and floating-point para-
meters to expect.

Now let’s add some objects with these material
properties to our scene. The objects we’ll choose will
be some spheres sitting on a pedestal. Add the fol-
lowing lines to the end of scene.rad:

Objects

red_plastic sphere ball0
0
0
4 2 0.5 2 0.5

steel sphere ball1
0
0
4 2 0.5 -2 0.5

gold sphere ball2
0
0
4 -2 0.5 -2 0.5

white_matte sphere ball3
0
0
4 -2 0.5 2 0.5

crystal sphere ball4
0
0
4 0 1 0 1

!genworm black_matte twist \

“cos(2*PI*t)*(1+0.1*cos(30*PI*t))” \
“0.06+0.1+0.1*sin(30*PI*t)” \
“sin(2*PI*t)*(1+0.1*cos(30*PI*t))” \
“0.06” 200 | xform -s 1.1 -t 2 0 2 \
-a 4 -ry 90 -i 1

!genbox gray_plastic pedestal_top 8 \
0.5 8 -r 0.08 | xform -t -4 -0.5 \
–4
!genbox gray_plastic pedestal_shaft \
6 16 6 | xform -t -3 -16.5 -3

These lines specify five spheres made from various
materials sitting in an arrangement on the pedestal.
The first sphere, ball0, is made of the red_plas-
ticmaterial and located in the scene at (2,0.5,2) with
a radius of 0.5. The pedestal itself is composed of two
beveled boxes made with the Radiance genbox gen-
erator program. In addition, we invoke the genworm
program to create some curly iron rings around the
spheres. (You can leave the genworm line out if you
want to skip some typing; also, the backslashes indi-
cate line continuations which you can omit if you type
everything on one line.)

3. Add a traditional light source
Next, let’s add a traditional light source to the scene

to get our first illuminated glimpse —without IBL—of
what the scene looks like. Add the following lines to
scene.rad to specify a traditional light source:

Traditional Light Source

void light lightcolor
0
0
3 10000 10000 10000

lightcolor source lightsource
0
0
4 1 1 1 2

4. Render the scene with traditional lighting
In this step, we’ll create an image of the scene. First,

we need to use the oconv program to process the
scene file into an octree file for Radiance to render.
Type the following command at the Unix command
prompt:

oconv scene.rad > scene.oct

The # indicates the prompt, so you don’t need to type it.
This will create an octree file scene.oct that can be ren-
dered in Radiance’s interactive renderer rview. Next,
we need to specify a camera position. This can be done
as command arguments to rview, but to make things

IEEE Computer Graphics and Applications 29

rview -vtv -vp 8 2.5 -1.5 -vd -8 -2.5 1.5 -vu 0 1 0 -vh 60 -vv 40

4 Use your text editor to create the file camera.vp with the camera parameters as the file’s first and only line.

simpler, let’s store our camera parameters in a file. Use
your text editor to create the file camera.vp with the
camera parameters as the file’s first and only line (see
Figure 4). In the file, this should be typed as a single line.

These parameters specify a perspective camera
(-vtv) with a given viewing position (-vp), direction
(-vd), and up vector (-vu) and with horizontal (-vh)
and vertical (-vv) fields of view of 60 and 40 degrees,
respectively. (The rview text at the beginning of the
line is a standard placeholder in Radiance camera files,
not an invocation of the rview executable.)

Now let’s render the scene in rview. Type:

rview -vf camera.vp scene.oct

In a few seconds, you should get an image window sim-
ilar to the one in Figure 5. The image shows the spheres
on the platform, surrounded by the curly rings, and illu-
minated by the traditional light source. The image might
or might not be pleasing, but it certainly looks comput-
er generated. Now let’s see if we can make it more real-
istic by lighting the scene with IBL.

5. Download a light probe image
Visit the Light Probe Image Gallery at http://www.

debevec.org/Probes and choose a light probe image to
download. The light probe images without concentrated
light sources tend to produce good-quality renders more
quickly, so I’d recommend starting with the beach, uffizi,
or kitchen probes. Here we’ll choose the beach probe for
the first example. Download the beach_probe.hdr file by
shift-clicking or right-clicking “Save Target As...” or “Save
Link As...” and then view it using the Radiance image
viewer ximage:

ximage beach_probe.hdr

If the probe downloaded properly, a window should
pop up displaying the beach probe image. While the

window is up, you can click and drag the mouse point-
er over a region of the image and then press “=” to re-
expose the image to properly display the region of
interest. If the image didn’t download properly, try
downloading and expanding the all_probes.zip or
all_probes.tar.gz archive from the same Web page,
which will download all the light probe images and pre-
serve their binary format. When you’re done examin-
ing the light probe image, press the “q” key in the
ximagewindow to dismiss the window.

6. Map the light probe image onto the
environment

Let’s now add the light probe image to our scene by
mapping it onto an environment surrounding our
objects. First, we need to create a new file that will
specify the mathematical formula for mapping the
light probe image onto the environment. Use your text
editor to create the file angmap.cal with the following
content (the text between the curly braces is a com-
ment that you can skip typing if you wish):

{
angmap.cal

Convert from directions in the world \
(Dx, Dy, Dz) into (u,v) \
coordinates on the light probe \
image

-z is forward (outer edge of sphere)
+z is backward (center of sphere)
+y is up (toward top of sphere)
}

d = sqrt(Dx*Dx + Dy*Dy);

r = if(d, 0.159154943*acos(Dz)/d,0);

u = 0.5 + Dx * r;
v = 0.5 + Dy * r;

This file will tell Radiance how to map direction vec-
tors in the world (Dx, Dy, Dz) into light probe image
coordinates (u, v). Fortunately, Radiance accepts
these coordinates in the range of zero to one (for
square images) no matter the image size, making it
easy to try out light probe images of different resolu-
tions. The formula converts from the angular map ver-
sion of the light probe images in the light probe image
gallery, which differs from the mapping a mirrored
ball produces. If you need to convert a mirrored-ball
image to this format, HDR Shop has a Panoramic
Transformations function for this purpose.

Next, comment out (by adding #’s at the beginning
of the lines) the traditional light source in scene.rad that
we added in step 3:

#lightcolor source lightsource
#0
#0
#4 1 1 1 2

Tutorial

30 March/April 2002

5 The Radiance rview interactive renderer viewing the scene as illuminated
by a traditional light source.

Note that these aren’t new lines to add to the file but
lines to modify from what you’ve already entered. Now,
add the following to the end of scene.rad to include the
IBL environment:

Image-Based Lighting Environment

void colorpict hdr_probe_image
7 red green blue beach_probe.hdr
angmap.cal u v
0
0

hdr_probe_image glow light_probe
0
0
4 1 1 1 0

light_probe source ibl_environment
0
0
4 0 1 0 360

The colorpict sequence indicates the name of the
light probe image and the calculations file to use to map
directions to image coordinates. The glow sequence
specifies a material property comprising the light probe
image treated as an emissive glow. Finally, the source
specifies the geometry of an infinite sphere mapped with
the emissive glow of the light probe. When Radiance’s
rays hit this surface, their illumination contribution will
be taken to be the light specified for the corresponding
direction in the light probe image.

Finally, because we changed the scene file, we need to
update the octree file. Run oconvonce more to do this:

oconv scene.rad > scene.oct

7. Render the scene with IBL
Let’s now render the scene using IBL. Enter the fol-

lowing command to bring up a rendering in rview:

rview -ab 1 -ar 5000 -aa 0.08 –ad \
128 -as 64 -st 0 -sj 1 -lw 0 -lr \
8 -vf camera.vp scene.oct

Again, you can omit the backslashes if you type the
whole command as one line. In a few moments, you
should see the image in Figure 6 begin to take shape.
Radiance is tracing rays from the camera into the scene,
as Figure 7 illustrates. When a ray hits the environment,
it takes as its pixel value the corresponding value in the
light probe image. When a ray hits a particular point on
an object, Radiance calculates the color and intensity of
the incident illumination (also known as irradiance) on
that point by sending out a multitude of rays (in this case
192 of them) in random directions to quantify the light
arriving at that point on the object. Some of these rays
will hit the environment, and others will hit other parts
of the object, causing Radiance to recurse into comput-
ing the light coming from this new part of the object.
After Radiance computes the illumination on the object

point, it calculates the light reflected toward the cam-
era based on the object’s material properties and this
becomes the pixel value of that point of the object.
Images calculated in this way can take a while to ren-
der, but they produce a faithful rendition of how the cap-
tured illumination would illuminate the objects.

The command-line arguments to rview tell Radiance
how to perform the lighting calculations. The -ab 1
indicates that Radiance should produce only one ambi-
ent-bounce recursion in computing the object’s illumi-
nation—more accurate simulations could be produced
with a value of 2 or higher. The -ar and -aa set the res-
olution and accuracy of the surface illumination calcu-
lations, and the -ad and -as set the number of rays
traced out from a surface point to compute its illumina-

IEEE Computer Graphics and Applications 31

IBL environment

Surface point being shaded

Rays sampling
the incident
illumination

Rays occluded
from directly
hitting the
environment

6 The spheres on the pedestal illuminated by the beach light probe image
from Figure 3.

7 How Radiance traces rays to determine the incident illumination on a
surface from an IBL environment.

tion. The -st, -sj, -lw, and -lr specify how the rays
should be traced for glossy and shiny reflections. For
more information on these and more Radiance parame-
ters, see the reference guide on the Radiance Web site.

When the render completes, you should see an image
of the objects as illuminated by the beach lighting envi-
ronment. The synthetic steel ball reflects the environ-
ment and the other objects directly. The glass ball both
reflects and refracts the environment, and the diffuse

white ball shows subtle shading, which is lighter
toward the sunset and darkest where the ball contacts
the pedestal. The rough specular reflections in the red
and gold balls appear somewhat speckled in this medi-
um-resolution rendering; the reason is that Radiance
sends out just one ray for each specular sample
(regardless of surface roughness) rather than the much
greater number it sends out to compute the diffuse illu-
mination. Rendering at a higher resolution and filter-
ing the image down can alleviate this effect.

We might want to create a particularly high-quality
rendering using the command-line rpict renderer,
which outputs the rendered image to a file. Run the fol-
lowing rpict command:

rpict -x 800 -y 800 -t 30 -ab 1 – \
ar 5000 -aa 0.08 -ad 128 -as 64 – \
st 0 -sj 1 -lw 0 -lr 8 -vf \
camera.vp scene.oct > render.hdr

The command-line arguments to rpict are identi-
cal to rview except that one also specifies the maxi-
mum x and y resolutions for the image (here, 800 × 800
pixels) as well as how often to report back on the ren-
dering progress (here, every 30 seconds.) On an 800-
MHz computer, this should take approximately 10
minutes. When it completes, we can only view the ren-
dered output image with the ximage program. To pro-
duce high-quality renderings, you can increase the x and
y resolutions to high numbers, such as 3,000 × 3,000
pixels and then filter the image down to produce an
antialiased rendering. We can perform this filtering
down by using either Radiance’s pfilt command or the
HDR Shop. To filter a 3,000 × 3,000 pixel image down to
1,000 × 1,000 pixels using pfilt, enter:

pfilt -1 -x /3 -y /3 -r 1 \
render.hdr > filtered.hdr

I used this method for the high-quality renderings
in this article. To render the scene with different light-
ing environments, download a new probe image,
change the beach_probe.hdr reference in the scene.rad
file, and call rview or rpict once again. Light probe
images with concentrated light sources such as grace
and stpeters will require increasing the -ad and -as
sampling parameters to the renderer to avoid mottled
renderings. Figure 8 shows renderings of the objects
illuminated by the light probes in Figure 2. Each ren-
dering shows different effects of the lighting, from the
particularly soft shadows under the spheres in the
overcast Uffizi environment to the focused pools of
light from the stained glass windows under the glass
ball in the Grace Cathedral environment.

Advanced IBL
This tutorial has shown how to illuminate synthetic

objects with measurements of real light, which can
help the objects appear as if they’re actually in a real-
world scene. We can also use the technique to light
large-scale environments with captured illumination
from real-world skies. Figure 9 shows a computer

Tutorial

32 March/April 2002

8 The objects
illuminated by
the kitchen,
eucalyptus
grove, Uffizi
Gallery, and
Grace Cathedral
light probe
images in Figure
2.

model of a virtual environment of the Parthenon illu-
minated by a real-world sky captured with high dynam-
ic range photography.

We can use extensions of the basic IBL technique in
this article to model illumination emanating from a geo-
metric model of the environment rather than from an
infinite sphere of illumination and to have the objects
cast shadows and appear in reflections in the environ-
ment. We used these techniques3 to render various ani-
mated synthetic objects into an image-based model of
St. Peter’s Basilica for the Siggraph 99 film Fiat Lux, (see
Figure 10). (You can view the full animation at http://
www.debevec.org/FiatLux/.)

Some more recent work7 has shown how to use IBL
to illuminate real-world objects with captured illumi-
nation. The key to doing this is to acquire a large set of
images of the object as illuminated by all possible light-
ing directions. Then, by taking linear combinations of
the color channels of these images, images can be pro-
duced showing the objects under arbitrary colors and
intensities of illumination coming simultaneously from
all possible directions. By choosing the colors and
intensities of the incident illumination to correspond to
those in a light probe image, we can show the objects
as they would be illuminated by the captured lighting
environment, with no need to model the objects’ geom-
etry or reflectance properties. Figure 11 shows a col-
lection of real objects illuminated by two of the light
probe images from Figure 2. In these renderings, we
used the additional image-based technique of envi-
ronment matting8 to compute high-resolution refrac-
tions and reflections of the background image through
the objects.

Conclusion
IBL lets us integrate computer-generated models

into real-world environments according to the princi-
ples of global illumination. It requires a few special
practices for us to apply it, including taking omnidi-
rectional photographs, recording images in high
dynamic range, and including measurements of inci-
dent illumination as sources of illumination in com-

puter-generated scenes. After some experimentation
and consulting the Radiance reference manual, you
should be able to adapt these examples to your own
scenes and applications. With a mirrored ball and a dig-
ital camera, you should be able to acquire your own
lighting environments as well. For more information,
please explore the course notes for the Siggraph 2001
IBL course at http://www.debevec.org/IBL2001.
Source files and more image-based lighting examples
are available at http://www.debevec.org/CGAIBL. !

IEEE Computer Graphics and Applications 33

9 A computer model of the ruins of the Parthenon as illuminated just after
sunset by a sky captured in Marina del Rey, California. Modeled by Brian
Emerson and Yikuong Chen and rendered using the Arnold global illumina-
tion system.

10 A rendering from the Siggraph 99 film Fiat Lux,
which combined image-based modeling, rendering,
and lighting to place monoliths and spheres into a
photorealistic reconstruction of St. Peter’s Basilica.

11 Real objects
illuminated by
the Eucalyptus
grove and
Grace Cathedral
lighting envi-
ronments from
Figure 2.

References
1. J.F. Blinn, “Texture and Reflection in Computer Generated

Images,” Comm. ACM, vol. 19, no. 10, Oct. 1976, pp. 542-547.
2. G.S. Miller and C.R. Hoffman, “Illumination and Reflection

Maps: Simulated Objects in Simulated and Real Environ-
ments,” Proc. Siggraph 84, Course Notes for Advanced Com-
puter Graphics Animation, ACM Press, New York, 1984.

3. P. Debevec, “Rendering Synthetic Objects Into Real Scenes:
Bridging Traditional and Image-Based Graphics with Glob-
al Illumination and High Dynamic Range Photography,”
Computer Graphics (Proc. Siggraph 98), ACM Press, New
York, 1998, pp. 189-198.

4. N. Greene, “Environment Mapping and Other Applications
of World Projections,” IEEE Computer Graphics and Appli-
cations, vol. 6, no. 11, Nov. 1986, pp. 21-29.

5. P.E. Debevec and J. Malik, “Recovering High Dynamic
Range Radiance Maps from Photographs,” Computer
Graphics (Proc. Siggraph 97), ACM Press, New York, 1997,
pp. 369-378.

6. G. Ward, “Real Pixels,” Graphics Gems II, J. Arvo, ed., Aca-
demic Press, Boston, 1991, pp. 80-83.

7. P. Debevec et. al, “Acquiring the Reflectance Field of a
Human Face,” Computer Graphics (Proc. Siggraph 2000),
ACM Press, New York, 2000, pp. 145-156.

8. D.E. Zongker et. al, “Environment Matting and Composit-
ing,” Computer Graphics (Proc. Siggraph 99), ACM Press,
New York, 1999, pp. 205-214.

Paul Debevec is an executive pro-
ducer at the University of Southern
California’s Institute for Creative
Technologies, where he directs
research in virtual actors, virtual
environments, and applying com-
puter graphics to creative projects.

For the past five years, he has worked on techniques for
capturing real-world illumination and illuminating syn-
thetic objects with real light, facilitating the realistic inte-
gration of real and computer-generated imagery. He has
a BS in math and a BSE in computer engineering from the
University of Michigan and a PhD in computer science from
University of California, Berkeley. In August 2001, he
received the Significant New Researcher Award from ACM
Siggraph for his innovative work in the image-based mod-
eling and rendering field. He is a member of ACM Siggraph
and the Visual Effects Society, and is a program cochair
for the 2002 Eurographics Workshop on Rendering.

Readers may contact Paul Debevec at USC/ICT, 13274
Fiji Way, 5th Floor, Marina Del Rey, CA 90292, email
paul@debevec.org.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Tutorial

34 March/April 2002

