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Abstract
This article shows how rational analysis can be used to
minimize learning cost for a general class of statistical
learning problems.  We discuss the factors that influ-
ence learning cost and show that the problem of effi-
cient learning can be cast as a resource optimization
problem.  Solutions found in this way can be signifi-
cantly more efficient than the best solutions that do not
account for these factors.  We introduce a heuristic
learning algorithm that approximately solves this opti-
mization problem and document its performance im-
provements on synthetic and real-world problems.

1. Introduction
Machine learning techniques are valuable tools both in ac-
quiring important scientific concepts and in support of deci-
sion making under uncertainty.  Unfortunately, learning can
involve a significant investment of resources.  There may be
monetary cost in obtaining data and computational cost in
processing it.  Usually such factors are addressed by infor-
mal or intuitive judgements rather than a rational analysis
of the costs and benefits of alternative learning operations.

There is a significant learning cost in many diverse appli-
cation areas.  In speed-up learning there is substantial cost
associated with processing each training example [Tadepal-
li92]).  In some classification problems it is extremely ex-
pensive to obtain data (e.g. protein folding problems) and
it is essential to make the most effective use of what data is
available.  Somewhat paradoxically, cost is also an issue
when there is an overabundance of data.  In this case it is ex-
pensive to use all of the data and one needs some criteria to
decide how much data is enough to achieve a given level of
performance [Musick93].  Finally, learning may involve
ethical issues, as when experiments require giving poten-
tially harmful treatments to human subjects.  Under these
circumstances it is a moral imperative to utilize as few sub-
jects as possible and to quickly recognize and discard those
treatments that worsen the patients condition.

This article discusses factors that influence cost and con-
siders how to use rational analysis (i.e., [Doyle90, Rus-
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sell91]) of these factors to minimize learning cost.  We dis-
cuss this in the context of parametric hypothesis selection
problems, an abstract class of statistical learning problems
where a system must select one of a finite set of hypothe-
sized courses of action, where the quality of each hypothesis
is described as a function of some unknown parameters (e.g.
[Gratch92, Greiner92, Kaelbling93, Moore94, Musick93]).
A learning system determines and refines estimates of these
parameters by “paying for” training examples.  

We show how such problems can be cast as resource opti-
mization problems, and that solutions found in this way can
be significantly more efficient than solutions that do not ac-
count for the cost of gathering information (more than an or-
der of magnitude).  Surprisingly, standard hypothesis selec-
tion algorithms do not reason about information cost, and
are thus less efficient then they might be.  We introduce a ra-
tional hypothesis selection algorithm that approximately
solves the resource allocation problem and empirically doc-
ument the analytically predicted improvements in efficien-
cy.  This algorithm is quite general and can handle situations
where the cost of processing data is initially unknown.

2. Hypothesis Selection Problems
Hypothesis selection problems are an abstract class of
learning problems where one hypothesis must be chosen
from a predefined set based on performance over an un-
known distribution of problems or tasks.  Performance is
characterized by a hypothesis’ expected utility over the dis-
tribution, which must be estimated from training data.  Hy-
pothesis selections are at the core of many machine learning
approaches.  For example, the utility problem in speed-up
learning is a selection problem in which a problem solving
heuristic is chosen from a set of proposed candidates, where
expected utility is defined as the average time to solve a
problem [Gratch92, Greiner92, Minton88].  The attribute
selection problem in classification learning is a problem of
selecting one of a set of attributes on which to split, where
utility is equated with information gain [Musick93].  In re-
inforcement learning a system must select an action, where
utility is equated with expected reward [Kaelbling93].

Several factors affect the cost of identifying a good selec-
tion.  For example, there may be some cost in obtaining each
training example.  Furthermore, there can be additional cost
for each hypothesis that is evaluated over a given training
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example.1  The challenge is to choose examples and evalua-
tions in such a way as to maximize the likelihood of a good
selection with a minimum of learning cost.

Choosing the best hypothesis is problematic as the under-
lying probability distributions are typically unavailable.
Rather than requiring a hypothesis selection algorithm to al-
ways select the best hypothesis, algorithms typically obey
some probabilistic requirement on the properties of the hy-
pothesis that they select.  Several alternative requirements
have been proposed.  In this paper we adopt the probably ap-
proximately correct (PAC) requirement favored by compu-
tational learning theory [Valiant84].  Under this require-
ment a hypothesis selection algorithm selects a hypothesis
that with high probability is close to the best.

The expected utility associated with a hypothesis can be
estimated by observing its performance over a finite set of
training examples. However, to satisfy the PAC require-
ment an algorithm must reason about the discrepancy be-
tween the estimated and true utility of each hypothesis.  For-
mally, let there be k hypotheses.  Let Hsel denote the
expected utility of the selected hypothesis and (without loss
of generality) let Hi, i=1..k–1, be the expected utility for the
remaining hypotheses.  Let H^ i  be an estimate of the ex-
pected utility of the hypothesis.  The PAC requirement is
that hypothesis estimated to be best must be within some us-
er-specified constant ! of the best hypothesis with probabil-
ity 1–".  It suffices to bound the probability that a hypothesis
is estimated to be worse than the selected hypothesis given
that it is in fact better, for each of the pair-wise comparisons:

k–1

i=1

Pr H^
i < H^

sel –   |Hi > Hsel +          

Thus the problem of bounding the probability of error re-
duces to bounding the probability of error of each of the k–1
comparisons of Hsel to Hi.

To assess these probabilities we must adopt certain statis-
tical assumptions.  In this article we adopt the normal para-
metric model for reasoning about statistical error.  This as-
sumes that the difference between the expected utility and
estimated utility of a hypothesis can be accurately approxi-
mated by a normal distribution (see [Hogg78] for an expla-
nation of the robustness of this common assumption which
is grounded in the Central Limit Theorem).  The expected
cost associated with processing data is also assumed to be
normally distributed.  Choosing a different parametric mod-
el would change the subsequent analysis but analogous re-
sults should hold for the conventional models.

With the normality assumption the probabilities in Equa-
tion 1 are a reduced to a function of the estimates, the num-
ber of examples, n, used for each estimate, the closeness pa-

1. For example, in classification learning a potentially large set of
examples must be partitioned for each hypothesized split.  In speed-up
learning the learning system may have to re-solve the example problem
for each candidate heuristic.

rameter !, and an unknown variance term, #2.  Variance
measures how much each observation can differ from its ex-
pected value, which can be estimated from the data.2  To
simplify the presentation we ignore the ! parameter in the
discussion that follows ([Chien94] offers more details).  For
a given pair-wise comparison, "i, the (simplified) probabili-
ty of incorrect selection is:

i = – (Hsel – Hi)
n
2
sel,i

where the function $ is the quantile function of the standard
normal distribution.  Intuitively, Equation 2 shows that the
probability of a mistake diminishes as the difference in ex-
pected utility between the hypotheses increases, as the num-
ber of training examples increases, and as the variance of
each hypothesis decreases.  This relationship can be used to
determine how many training examples to allocate to each
comparison.  If we wish to achieve a given bound of "i, then
by simple algebra the number of examples needed for a giv-
en pair-wise comparison is:

nsel,i =
2
sel,i

(Hsel – Hi)2 [ –1( )]2

where $–1 is the inverse of the quantile function of the stan-
dard normal distribution.

While the variance and true expected utilities are un-
known, a class of statistical approaches called sequential
approaches has been designed for such problems [Govinda-
rajulu81].  These techniques develop estimates of the un-
known parameters from a small initial sample size and then
incrementally refine these estimates after each subsequent
training example.  For example, after some number of ex-
amples a sequential technique would estimate that the hy-
pothesis it will eventually select is the one with the current
highest estimated utility.  Such techniques terminate sam-
pling based on an estimate of the sufficient number of train-
ing examples.  Section 4 introduces a sequential hypothesis
selection algorithm that uses a sequential approximation to
Equation 3 to decide when to stop sampling.

3. The Value of Rational Learning
The PAC requirement constrains but does not completely
determine the behavior of a hypothesis selection algorithm.
We would like an algorithm to satisfy the requirement with
the minimum cost possible.  Several of the factors that con-
tribute to the cost are unknown before learning begins.  For
this reason standard (non-rational) hypothesis selection al-
2. We “block” examples as in [Moore94] to further reduce sampling
complexity.  Blocking forms estimates by averaging the difference in
utility between hypotheses on each observed example, which can sub-
stantially reduce the variance in the data when hypotheses are related
(e.g. when each hypothesis is a variant on a basic search control strate-
gy).  It is trivial to modify the algorithm to work for the case where it
is not possible to block data.



(4)

0
10
20
30
40
50
60
70
80
90

0 0.05 0.10 0.15 0.20
0
1
2
3
4
5
6
7
8

0 0.05 0.10 0.15 0.20

To
ta

l C
os

t
D1 = D2

Error Level (%1) Error Level (%1)

Figure 1.  An illustration of the difference between equal and
optimal allocation with equal and unequal disparity indices.
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Figure 2:  The potential benefits of rational analysis.
Shows the ratio of equal allocation cost to optimal cost
for several error levels and number of hypotheses.

D2 = 20D1

gorithms ignore these factors when making their selection.
This section discusses the relevant factors and shows that
they can be folded into a single value, the disparity index.
We show that in theory an algorithm can achieve large per-
formance improvements by exploiting this information, if
only it were available.  Comparable performance improve-
ments can be achieved in practice using sequential tech-
niques, as we show in the next section.

Equation 3 illuminates the factors that affect selection
cost.  In order to satisfy the PAC requirement we must, for
each non-selected hypothesis, bound the probability that it
is better than the selected hypothesis.  The total cost is is the
sum of the cost of processing each training example.  Equa-
tion 3  shows that the number of examples allocated to the
two hypotheses increases as the variance increases, as the
difference in utility between the hypotheses decreases, or as
the acceptable probability of making a mistake decreases.

The first two factors are determined by the environment,
but the last, the probability threshold associated with each
comparison, can conceivably vary and thus be placed under
the control of the hypothesis selection algorithm.  The algo-
rithm must only ensure that the sum of these probabilities
remain less than " (Equation 1).  If one comparison requires
a great many examples and another very few, it seems possi-
ble that allowing greater error for the first and less for the
second might reduce the total cost.  In fact, allowing the al-
gorithm to judiciously allocate error to each comparison can
result in a substantial reduction in overall cost.

Reducing the cost of selection can be cast as an optimiza-
tion problem.  Total cost is the sum of the number of exam-
ples allocated to each comparison (from Equation 3) times
the average cost to process an example.  Let csel,i denote the
average cost per example to compare the selected hypothe-
sis with hypothesis i.  Let %i be the error level allocated to
the comparison.  The optimal allocation of error can be de-
termined by solving the following optimization problem:3

3. This assumes that the cost of processing examples for one com-
parison is independent of the other comparisons.  A more complex anal-
ysis is needed to faithfully represent cases where there is significant
sharing of cost between comparisons.

Resource Optimization Problem

Choose %i to minimize 
k–1

i=1

csel,i

2
sel,i

(Hsel – Hi)2 [ –1( i)]2

Subject to the constraint that
k–1

i=1

i

Of course in an actual hypothesis selection problem the
expected utility of the hypotheses, and perhaps the variance
and cost will be unknown before learning begins.  Without
considering such information the only reasonable policy is
to assign an equal error level to each comparison (i.e.
%i="/[k–1]).  However, comparing this equal allocation
policy with the optimal solution shows that equal allocation
can be highly sub-optimal.  To see this, consider the case
with three hypotheses, k=3, which results in two compari-
sons with error %1 and "–%1.  The selection cost is:

D1[ –1( 1)]2 + D2[ –1( – 1)]2

Di =
csel,2

2
sel,i

(Hsel – Hi)2where

The value Di is called the disparity index for comparison i.
To be optimal, %1 must be chosen so as to minimize the

total cost.  The equal allocation policy assigns %1 equal to
"/2.  Equation 4 indicates that the equal allocation solution
is optimal only in the case where the two disparity indices
are equal.  This is illustrated in Figure 1, which shows the
cost equation as a function of %1, first in the case where the
disparity indices are equal, and then when there is a differ-
ence between their values.  The minimum point under this
curve is the optimal cost and the value of %1 at this point in-
dicates the optimal error allocation.  In contrast, the equal
allocation policy yields a cost that may differ significantly
from this minimum.

In practice it is unlikely that the disparity indices will be
equal all for comparisons.  Even if the example cost is simi-
lar for every hypothesis the variance and expected utilities
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of hypotheses will almost certainly differ.  The inefficiency
of equal allocation increases as the differences between dis-
parity indices increases.  The inefficiency also increases as
with the number of hypotheses.  By taking the difference in
disparity indices to the limit it can be shown that for k hy-
potheses the ratio of equal allocation cost to the optimal cost
can be up to [$–1("/[k–1])]2 / [$–1(")]2.  The ratio can be
quite large as illustrated in Figure 2.  Thus, ignoring dispar-
ity information can result in costs up to an order of magni-
tude greater with as few as ten hypotheses under consider-
ation.  This result also shows that the ratio cannot grow
without bound and that equal allocation is near optimal for
cases with few hypotheses and a small error level.

4. Rational Example Allocation
If the disparity indices were known advance, an algorithm
could optimize the cost of selecting a hypothesis.  Although
this information is unavailable before learning begins, with
a sequential approach the algorithm can develop increasing-
ly accurate approximations to this information in the course
of learning.  These approximations can be almost as effec-
tive as the true information in guiding learning behavior.  In
this section we introduce a rational hypothesis selection al-
gorithm that exploits these approximations to minimize se-
lection cost.  This is compared with an efficient non-rational
approach similar to Moore and Lee’s BRACE algorithm
[Moore94].  The superiority of the rational approach is doc-
umented on artificial and real-world data sets.

4.1 Interval-Based Selection Algorithm
We first introduce the basic hypothesis selection approach.
Rational and non-rational algorithms derived from this ap-
proach differ in how they choose hypotheses to further eval-
uate.  The algorithm initially evaluates all hypotheses over
a small initial set of n0 training examples.  This is to develop
initial parameter estimates and to enhance the robustness of
the normality assumption.  The algorithm then incremental-
ly processes training examples, deciding to evaluate one or
more hypotheses on that example.  Learning proceeds incre-
mentally until, to the required level of confidence, one hy-
pothesis !-dominates.  The basic approach is as follows:4

With hypotheses H1..Hk
Evaluate all hypotheses over n0 training examples
While no selection

Let Hsel be hypothesis with highest estimated utility

IF

THEN  select Hsel
ELSE  Obtain next example

Evaluate those hypotheses chosen according to 
rational or non-rational policy as outlined below

k–1

i=1

Pr H^
i < H^

sel –   |Hi > Hsel +   

4. See [Chien94] for complete discussion of such rational and non-
rational algorithms. The probability is computed with equations analo-
gous to Equation 2.  

Equal Allocation Policy. The non-rational algorithm fol-
lows the equal allocation policy.  Each cycle through the
loop allocates an additional example to a pair-wise compar-
ison if its probability of error remains above the fixed level
of "/[k–1].  Eventually every comparison will drop below
this error threshold and the procedure will terminate.

Marginal Rate of Return Policy.  Using estimates of the dis-
parity indices, the rational algorithm calculates the increase
in confidence and the cost of allocating an additional exam-
ple to each comparison.  At each cycle through the main
loop the algorithm allocates an example to the comparison
with the highest marginal rate of return.  This is the ratio of
increased confidence to increased cost.

This rational policy tries to maximize the decrease in sta-
tistical error per unit cost, although we cannot guarantee the
strategy achieves the optimal error allocation.  Complica-
tions include the fact that estimates of the disparity factors
differ from their true value and the initial sample size pa-
rameter restricts the algorithm’s degrees of freedom.  None-
theless, this policy has performed well empirically.  The
marginal rate of return is estimated using an equation analo-
gous to Equation 2, substituting in estimated for actual util-
ity values.  After processing the n0 initial training examples
the algorithm estimates the expected utility, variance, and
cost of the various comparisons.  The change in error can be
estimated by considering how the error would change as-
suming the current parameter estimates are correct:

– (H^
sel – H^

i)
n

^2
sel,i

– – (H^
sel – H^

i)
n + 1

^2
sel,i

The estimated marginal rate of return for a comparison is
computed by dividing this estimate of the reduction of error
by the estimated cost of processing an additional training
example.

4.2 Empirical Evaluation
We illustrate the performance of the algorithms on simu-
lated and real-world data.  The first evaluation uses simu-
lated data with high disparity to illustrate that the rational
algorithm achieves performance improvements compara-
ble to what is predicted by the theoretical analysis.  The sec-
ond evaluation uses data from a NASA scheduling applica-
tion to illustrate the robustness of the approach on a
real-world hypothesis selection problem.

4.2.1 Simulated Data.  A rational algorithm should sig-
nificantly outperform a non-rational approach when there
is a large difference between the costs, variances, or ex-
pected utilities of the various hypotheses.  We test this hy-
pothesis for several number of hypotheses and error levels.
For all experiments ! is set at 1.0 and " varies from 0.05 to
0.25, in 0.05 increments.  We perform tests with three, five,
and ten hypotheses.  The training examples are randomly
generated:   All utility values and example costs are normal-



ly distributed according to some expected value and vari-
ance, denoted N(value,variance).  For all experiments, H1
is distributed N(74,50) with cost N(20,1), H2 is distributed
N(72,50) with cost N(50000,1).  All remaining hypotheses
are distributed N(5,50) with cost N(20,1).  For each configu-
ration the algorithms are run 5000 times and the reported re-
sults are the average over these trials.

Figure 3 summarizes the predicted and observed efficien-
cy ratio.  This is the cost to select using equal allocation over
the cost to select using rational allocation.  The performance
improvement due to rational allocation is surprisingly close
to the limit.  This suggests that for this data set the rational
algorithm has identified a near optimal error allocation.
Note that for large error the observed efficiency drops be-
low the predicted level.  This is a consequence of the initial
sample size parameter n0.  The rational algorithm is forced
to take at least this many examples on every comparison,
while in this problem configuration less would suffice to
achieve the probability bound.  The implication is that when
the hypothesis evaluation problem is easy (requires perhaps
fewer than n0 examples to make a selection) the efficiency
will be effected more by the choice of the initial sample size
than the allocation policy.  An interesting issue we have not
sufficiently explored is possible strategies for setting the
initial parameter size.

4.2.2 NASA Scheduling Data.  The test of real-world
applicability is based on data drawn from a NASA schedul-
ing application detailed in [Gratch93].  This data provides
a test of the applicability of the techniques.  Both algorithms
assume estimated utility varies normally from the expected
utility.  In fact, this common assumption is violated by the
data as most of the scheduling heuristics are bi-modally dis-
tributed.  This characteristic provides a rather severe test of
the robustness of both approaches.

The heuristic system was developed to schedule commu-
nications between earth-orbiting satellites and ground-
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Figure 3.  Shows predicted and observed efficiency of the ratio-
nal allocation policy (the ratio in cost between the non-rational
and rational policies).  The rational policy shows a significant in-
crease in efficiency.
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based antennas.  In the course of development extensive
evaluations were performed with variant scheduling heuris-
tics.  The purpose of these evaluations was to choose a heu-
ristic that generated satisfactory schedules quickly on aver-
age.  This is easily seen as a hypothesis evaluation problem.
Each of the heuristics corresponds to a hypothesis.  The cost
of evaluating a hypothesis over a training example is the
CPU time required to solve the scheduling problem with the
given heuristic.  The utility of the training example is simply
the negation of its cost.  In that way, choosing a hypothesis
with maximal expected utility corresponds to choosing a
scheduling heuristic with minimal average cost.

The application involves several hypothesis selection
problems, four of which we use in this evaluation (A, B, C,
and D).  Each  selection problem consists of a set of schedul-
ing heuristics, and data on the heuristics’ performance over
about one thousand scheduling problems.  For the purpose
of these experiments the data sets are assumed to corre-
spond exactly to the underlying probability distributions.
An experimental trial consists of executing a technique over
examples drawn from one of these data sets.  Each time a
training example is to be processed, some problem is drawn
randomly with replacement from the data set.  The actual
utility and cost values associated with this scheduling prob-
lem is used.  As in the synthetic data, each experimental trial
is repeated 5000 times and all reported results are the aver-
age of these trials.  In this data the cost and expected utilities
of hypotheses are relatively close to each other so the differ-
ence between the disparity indices is relatively small across
comparisons.

Each trial used an error level of 0.05 or 0.25 and ! equal
to 4.0.  The results are summarized in Table 1.  For each al-
gorithm this shows the average number of examples re-
quired to select a hypothesis, the total cost of those exam-
ples, and the observed probability that the selection was
correct for each of the four selection problems.

 k    !   "
 3   4 0.25 180 277 1.00 77 120 1.00 2.3
   0.05 908 1,391 1.00       648 998 1.00 1.4
 2   4 0.25 30 47 1.00 30 46 1.00 1.0
  0.05 74 115 1.00      76 117 1.00 1.0
 7   4 0.25 1189 1758 0.88 779 1148 0.77 1.5
  0.05 2,371 3,493 0.94  2,153 3,184 0.94 1.1
 7   4 0.25 3,274 4,993 0.93 2,241 3,429 0.88 1.5
  0.05 7,972 12,037 0.96 7,621 11,583 0.94 1.0

Equal Allocation Rational AllocationParameters

A

B

C

D

Table 1.  Average number of observations, cost, and probabili-
ty of correct selection for scheduling data.

CostEx. Pr. CostEx. Pr.
Cost
Ratio

Both algorithms performed robustly.  In each selection
problem the PAC requirement was achieved or nearly
achieved.  This result is particularly remarkable given the
data’s significant departure from normality.  The rational al-
gorithm provides a modest improvement over the equal al-



location algorithm on three out of the four selection prob-
lems.  The improvement increased with higher error level
in accordance with theoretical predictions.  In both the
scheduling and artificial data the rational algorithm tended
to exhibit statistical error closer to the requested bound.  The
equal allocation strategies excessive conservatism is due to
its inflexibility in allocating statistical error in cases where
a hypothesis could be discarded with less than n0 datapoints.

While the scheduling improvements may seem modest,
there are three points that must be emphasized.  First, the
number of hypotheses was small and improvements should
grow with the number of hypotheses.  Second, in absolute
terms the savings are significant.  For example, the 350 ex-
amples saved in selection problem D translate into about fif-
teen hours of CPU effort.  Finally, in no case did the rational
algorithm perform worse.  Thus there is little loss, and po-
tential for substantial improvement with rational allocation.

5. Related Work and Conclusions
This analysis can be extended in a number of ways.  In many
learning situations one may be reluctant to assume normal-
ity.  For example, when selecting attributes in a decision tree
a multinomial model may be more appropriate.  We suspect
comparable results will hold for a wide range of statistical
models but further analysis is necessary.  Selection prob-
lems could be formalized in a bayesian statistical frame-
work as in [Moore94, Rivest88].  This would eliminate the
need for an initial sample but require a rigorous encoding of
prior knowledge.  Related to this, Howard [Howard70] has
extensively investigated a bayesian framework for assess-
ing learning cost in the case of single hypothesis problems.

While this article has focused on minimizing cost in the
context of hypothesis selection, the ability to assess both the
benefits and costs of learning has been investigated in a va-
riety of contexts both inside and outside of artificial intelli-
gence.  For example the tradeoff between goal-directed ac-
tion and exploration behavior has been studied in
reinforcement learning [Kaelbling93].  Another active area
of investigation involves the selection of an inductive bias
for classification learning tasks.  A weaker bias allows high-
er potential accuracy but requires more data.  The selection
of an appropriate bias depends on the availability and cost
of obtaining training examples as well as usefulness of bet-
ter prediction (see [desJardins92]).  The same issue arises
in neural networks and in statistics when one must choose
a network topology or statistical model that balances the
tradeoff between the fit to the data and the number of exam-
ples required to reach a given level of predictive accuracy.
Finally, these learning issues can be seen as part of the more
general area of limited rationality.  This is the problem of
developing a theory of rational decision making when in the
presence of limited reasoning resources [Russell91, Wel-
lman92].

To summarize, we argue that learning algorithms must
assess both the benefits and costs of learning.  We provide

a theoretical analysis of the factors that contribute to learn-
ing cost.  By reasoning about a value called the disparity in-
dex a learning algorithm can achieve the same level of bene-
fit at substantially reduced cost.  We introduce a heuristic
algorithm that empirically achieves the predicted perform-
ance improvements over a non-rational approach.  While
the improvements on any given hypothesis selection prob-
lem may lie well below the theoretical limit, the rational al-
gorithm is unlikely to perform worse and may perform sig-
nificantly better.  Therefore there seems little reason not to
adopt this or an analogous rational approach.
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