
Integrating Logical Inference Into

Statistical Text Classification Applications

Andrew S. Gordon and Reid Swanson

Institute for Creative Technologies, University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292 USA

gordon@ict.usc.edu, swansonr@ict.usc.edu

Abstract

Contemporary statistical text classification is becoming

increasingly common across a wide range of everyday
applications. Typically, the bottlenecks in performance are

the availability and consistency of large amounts of training

data. We argue that these techniques could be improved by
seamlessly integrating logical inference into the text

encoding pipeline, making it possible to utilize large-scale

commonsense and special-purpose knowledge bases to aid
in the interpretation and encoding of documents.

Statistical text classification is good, not great

Contemporary statistical text classification is becoming
increasingly common across a wide range of everyday
applications, used in cases where a label must be assigned
to textual material based on changing or idiosyncratic
characteristics. For example, statistical text classification is
commonly used for email spam filtering, where previous
judgments of spam are used as training data to create a
fully automated spam classifier using machine-learning
techniques. In general, the performance of these techniques
is bounded by two factors. First, large amounts of training
data are typically needed in order to achieve reasonable
levels of performance. Second, the level of inter-rater
agreement in the labeling of training data sets an upper
limit on the possible performance that a machine-learning
algorithm can achieve. Accordingly, research in statistical
text classification focuses on improving learning curves,
i.e. finding ways to achieve the best possible performance
given the available training data.

Statistical text classification technology has a number
of attractive characteristics, particularly when compared to
knowledge-rich approaches that involve logical inference.
For instance, knowledge-based techniques typically require
substantial amounts of knowledge engineering before a
single problem can be tackled. However, statistical
techniques can yield some performance even with small
amounts of training data. Also, knowledge-based
techniques are often brittle in their ability to handle
inconsistent knowledge. In contrast, statistical techniques
simply perform with less accuracy in the face of
inconsistent training data.

On the downside, statistical text classifiers can be
extremely slow learners, particularly when it comes to
generalizing over high-level relations. Ideally, my spam
filter should realize that any offer to sell me

pharmaceuticals is spam unless it is from my pharmacist
and for my ailments, and it should be able to learn this
from two or three examples. Instead, a shockingly large
amount of training data is necessary to get the filter to
recognize the synonymous ways of making an offer in the
English language, the names of all of the varieties of
pharmaceuticals that are out there, and the terms for the
multitude of human ailments that these drugs are meant to
address. No human would require this amount of
instruction to perform this task, largely because of the ease
in which we apply our background knowledge.

In this paper we propose that this downside can be
moderated by seamlessly integrating logical inference into
the text-encoding pipeline of a statistical text classifier.
Our approach retains all of the advantageous qualities of
statistical approaches, but improves performance by
considering the logically inferred consequences of the text.

Changing the text encoding pipeline

Our approach to integrating logical inference involves
modifying the text encoding stage of a statistical text
classifier. Normally, all of the word-level features (e.g.
unigrams, bigrams) that appear in the corpus of training
data are identified, and individual training examples are
encoded as feature vectors with a class label assignment.
Machine learning techniques are then used to identify the
features that are maximally predictive of the label given a
new, unlabeled feature vector encoding of a test instance.
In our approach, additional features are added (alongside
word-level features) that correspond to the logical
inferences that can be drawn from the text, which can then
be considered by the machine-learning algorithm when
determining the statistical regularities that exist in the
learning space. In order to generate these additional
inferential features from training text and test instances,
three additional stages are necessary, as follows:

1. Conversion into logical form. The first step is to
convert the text (training and test instances) into a logic-

form representation. While converting text into logic-form
is a longstanding problem in Artificial Intelligence,
contemporary techniques have made substantial progress
using a combination of automated parsing and semantic
role-labeling methods. In one method, input text
documents can be segmented into sentences and parsed
into a constituency parse trees (Charniak, 2000). These
parse trees can then be represented as atoms in first-order
logic using automated semantic-role labeling (Palmer et
al., 2005), where the head verb of the parse tree is treated
as the predicate and constituents of the parse tree are
assigned as existentially quantified terms. Moldovan et al.
(2003) describe an alternate method of logic-form
conversion where all input words are treated as predicates
over a set of existentially quantified terms that are
combined using parsing axioms and abductive inference.

2. Logical inference using knowledge bases. Given a
logic-form representation of the text (e.g. atoms with
existentially quantified terms), traditional methods of
automated logical inference can be utilized. Commonsense
knowledge bases (e.g. Lenat, 1995) can be used to infer a
set of commonsense consequences of the input, or special-
purpose knowledge bases can be used to infer
consequences that are specific to the classification task
domain. In the simplest case, a knowledge base of axioms
is combined with the conjunction of atoms generated from
the input text, and then given as input to a first-order
reasoning engine (e.g. Kalman, 2001). The output formulas
are then collected as the set of inferred consequences.

3. Encoding logical consequences as features. Finally,
the inferred consequences are encoded as a set of features
to be included in the feature vector representation of the
input text (alongside word-level features). Converting
output formulas into flat feature lists can be done in a
variety of different ways, each preserving different
characteristics of the structured logical form. For example,
bigrams of Predicate+Word can be generated for each of
the words in the constituents that are used as existentially
quantified terms in the inferred consequences, preserving
information about which predications govern particular
words in the input. Alternatively, the inferred
consequences could be represented simply as a count of the
number of times each axiom in the knowledge base fired
given the input encoding (with one frequency-count feature
per axiom), preserving the profile of the inference trace.

This three-stage approach changes only one aspect of a
traditional statistical text classification system, namely
how the training and test cases are encoded before they are
presented to the machine-learning algorithm. By
combining word-level features with those that can be
inferred using logical inference, this approach places no
strong performance requirements for any of the three
challenging steps described above. If none of these three
steps are implemented in a high-performing manner, then
the resulting features are not going to be more predictive of
the output label than the word-level features, and this will
be evident to the machine-learning algorithm in its analysis
of the feature space. Performance should be roughly

equivalent to that which can be achieved without logical
inference. However, if instead each of these three steps can
be implemented in a high-performing manner, then the
inferred features should by highly predictive, and adding
these features will yield improved learning curves.

The challenges of scale

The main challenge in implementing a high-performing
system for generating inferential features is one of scale.
Regardless of which scheme is used to encode logical
consequences as feature vectors, the knowledge base that is
used to produce these features must be of sufficient breadth
and depth to add information to the representation of a text
that cannot be trivially learned through word frequency
statistics. Likewise, for every one of the predications that
serve as antecedents in this knowledge base, sufficiently
large amounts of linguistic information needs to be
encoded to enable the accurate conversion of English
sentences into logical form, e.g. large corpora of text with
labeled predicate-argument relations (Palmer et al., 2005).
In order to scale up in a tractable manner, it makes sense to
pursue both resources in parallel, annotating only the
linguistic forms of predications that correspond to axioms
that exist in the knowledge base. This would, in effect,
concentrate the labor of corpus annotation on forms for
which some useful inferences can be made. As new
commonsense or task-specific knowledge bases are
created, these annotations would enable their integration
into a text-encoding pipeline, with performance gains
proportional to the relevance of the inferences.

Acknowledgments

The project or effort depicted was sponsored by the U. S.
Army Research, Development, and Engineering Command
(RDECOM). The content or information does not
necessarily reflect the position or the policy of the
Government, and no official endorsement should be
inferred.

References

Charniak, E. 2000. A maximum-entropy-inspired parser. In
Proceedings of NAACL-2000.

Kalman, J. 2001. Automated Reasoning with Otter.
Paramus, NJ: Rinton Press.

Lenat, D. 1995. Cyc: A Large-Scale Investment in
Knowledge Infrastructure. Comm. of the ACM 38(11).

Moldovan, D., Clark, C., Harabagiu, H. & Maiorano, S.
2003. COGEX: A Logic Prover for Question
Answering, Proceedings of HLT-NAACL-2003.

Palmer, M., Gildea D., & Kingsbury, P. 2005. The
Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics 31(1).

