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Abstract 

Contemporary statistical text classification is becoming 

increasingly common across a wide range of everyday 
applications. Typically, the bottlenecks in performance are 

the availability and consistency of large amounts of training 

data. We argue that these techniques could be improved by 
seamlessly integrating logical inference into the text 

encoding pipeline, making it possible to utilize large-scale 

commonsense and special-purpose knowledge bases to aid 
in the interpretation and encoding of documents. 

Statistical text classification is good, not great 

Contemporary statistical text classification is becoming 
increasingly common across a wide range of everyday 
applications, used in cases where a label must be assigned 
to textual material based on changing or idiosyncratic 
characteristics. For example, statistical text classification is 
commonly used for email spam filtering, where previous 
judgments of spam are used as training data to create a 
fully automated spam classifier using machine-learning 
techniques. In general, the performance of these techniques 
is bounded by two factors. First, large amounts of training 
data are typically needed in order to achieve reasonable 
levels of performance. Second, the level of inter-rater 
agreement in the labeling of training data sets an upper 
limit on the possible performance that a machine-learning 
algorithm can achieve. Accordingly, research in statistical 
text classification focuses on improving learning curves, 
i.e. finding ways to achieve the best possible performance 
given the available training data. 

Statistical text classification technology has a number 
of attractive characteristics, particularly when compared to 
knowledge-rich approaches that involve logical inference. 
For instance, knowledge-based techniques typically require 
substantial amounts of knowledge engineering before a 
single problem can be tackled. However, statistical 
techniques can yield some performance even with small 
amounts of training data. Also, knowledge-based 
techniques are often brittle in their ability to handle 
inconsistent knowledge. In contrast, statistical techniques 
simply perform with less accuracy in the face of 
inconsistent training data. 

On the downside, statistical text classifiers can be 
extremely slow learners, particularly when it comes to 
generalizing over high-level relations. Ideally, my spam 
filter should realize that any offer to sell me 

pharmaceuticals is spam unless it is from my pharmacist 
and for my ailments, and it should be able to learn this 
from two or three examples. Instead, a shockingly large 
amount of training data is necessary to get the filter to 
recognize the synonymous ways of making an offer in the 
English language, the names of all of the varieties of 
pharmaceuticals that are out there, and the terms for the 
multitude of human ailments that these drugs are meant to 
address. No human would require this amount of 
instruction to perform this task, largely because of the ease 
in which we apply our background knowledge. 

In this paper we propose that this downside can be 
moderated by seamlessly integrating logical inference into 
the text-encoding pipeline of a statistical text classifier. 
Our approach retains all of the advantageous qualities of 
statistical approaches, but improves performance by 
considering the logically inferred consequences of the text. 

Changing the text encoding pipeline 

Our approach to integrating logical inference involves 
modifying the text encoding stage of a statistical text 
classifier. Normally, all of the word-level features (e.g. 
unigrams, bigrams) that appear in the corpus of training 
data are identified, and individual training examples are 
encoded as feature vectors with a class label assignment. 
Machine learning techniques are then used to identify the 
features that are maximally predictive of the label given a 
new, unlabeled feature vector encoding of a test instance. 
In our approach, additional features are added (alongside 
word-level features) that correspond to the logical 
inferences that can be drawn from the text, which can then 
be considered by the machine-learning algorithm when 
determining the statistical regularities that exist in the 
learning space. In order to generate these additional 
inferential features from training text and test instances, 
three additional stages are necessary, as follows: 

1. Conversion into logical form. The first step is to 
convert the text (training and test instances) into a logic-



form representation. While converting text into logic-form 
is a longstanding problem in Artificial Intelligence, 
contemporary techniques have made substantial progress 
using a combination of automated parsing and semantic 
role-labeling methods. In one method, input text 
documents can be segmented into sentences and parsed 
into a constituency parse trees (Charniak, 2000). These 
parse trees can then be represented as atoms in first-order 
logic using automated semantic-role labeling (Palmer et 
al., 2005), where the head verb of the parse tree is treated 
as the predicate and constituents of the parse tree are 
assigned as existentially quantified terms. Moldovan et al. 
(2003) describe an alternate method of logic-form 
conversion where all input words are treated as predicates 
over a set of existentially quantified terms that are 
combined using parsing axioms and abductive inference. 

2. Logical inference using knowledge bases. Given a 
logic-form representation of the text (e.g. atoms with 
existentially quantified terms), traditional methods of 
automated logical inference can be utilized. Commonsense 
knowledge bases (e.g. Lenat, 1995) can be used to infer a 
set of commonsense consequences of the input, or special-
purpose knowledge bases can be used to infer 
consequences that are specific to the classification task 
domain. In the simplest case, a knowledge base of axioms 
is combined with the conjunction of atoms generated from 
the input text, and then given as input to a first-order 
reasoning engine (e.g. Kalman, 2001). The output formulas 
are then collected as the set of inferred consequences. 

3. Encoding logical consequences as features. Finally, 
the inferred consequences are encoded as a set of features 
to be included in the feature vector representation of the 
input text (alongside word-level features). Converting 
output formulas into flat feature lists can be done in a 
variety of different ways, each preserving different 
characteristics of the structured logical form. For example, 
bigrams of Predicate+Word can be generated for each of 
the words in the constituents that are used as existentially 
quantified terms in the inferred consequences, preserving 
information about which predications govern particular 
words in the input. Alternatively, the inferred 
consequences could be represented simply as a count of the 
number of times each axiom in the knowledge base fired 
given the input encoding (with one frequency-count feature 
per axiom), preserving the profile of the inference trace. 

This three-stage approach changes only one aspect of a 
traditional statistical text classification system, namely 
how the training and test cases are encoded before they are 
presented to the machine-learning algorithm. By 
combining word-level features with those that can be 
inferred using logical inference, this approach places no 
strong performance requirements for any of the three 
challenging steps described above. If none of these three 
steps are implemented in a high-performing manner, then 
the resulting features are not going to be more predictive of 
the output label than the word-level features, and this will 
be evident to the machine-learning algorithm in its analysis 
of the feature space. Performance should be roughly 

equivalent to that which can be achieved without logical 
inference. However, if instead each of these three steps can 
be implemented in a high-performing manner, then the 
inferred features should by highly predictive, and adding 
these features will yield improved learning curves. 

The challenges of scale 

The main challenge in implementing a high-performing 
system for generating inferential features is one of scale. 
Regardless of which scheme is used to encode logical 
consequences as feature vectors, the knowledge base that is 
used to produce these features must be of sufficient breadth 
and depth to add information to the representation of a text 
that cannot be trivially learned through word frequency 
statistics. Likewise, for every one of the predications that 
serve as antecedents in this knowledge base, sufficiently 
large amounts of linguistic information needs to be 
encoded to enable the accurate conversion of English 
sentences into logical form, e.g. large corpora of text with 
labeled predicate-argument relations (Palmer et al., 2005). 
In order to scale up in a tractable manner, it makes sense to 
pursue both resources in parallel, annotating only the 
linguistic forms of predications that correspond to axioms 
that exist in the knowledge base. This would, in effect, 
concentrate the labor of corpus annotation on forms for 
which some useful inferences can be made. As new 
commonsense or task-specific knowledge bases are 
created, these annotations would enable their integration 
into a text-encoding pipeline, with performance gains 
proportional to the relevance of the inferences. 
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