
Appears in Proceedings of Innovative Applications of Artificial Intelligence, 1997

Intelligent Agents for the Synthetic Battlefield:
A Company of Rotary Wing Aircraft

Randall W. Hill, Jr., Johnny Chen, Jonathan Gratch, Paul Rosenbloom, Milind Tambe

Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

{hill, chen, gratch, rosenbloom, tambe}@isi.edu

Abstract1

We have constructed a team of intelligent agents that
perform the tasks of an attack helicopter company for a
synthetic battlefield environment used for running large-
scale military exercises. We have used the Soar integrated
architecture to develop: (1) pilot agents for a company of
helicopters, (2) a command agent that makes decisions and
plans for the helicopter company, and (3) an approach to
teamwork that enables the pilot agents to coordinate their
activities in accomplishing the goals of the company. This
case study describes the task domain and architecture of our
application, as well as the benefits and lessons learned from
applying AI technology to this domain.

Task Description

Background
Since 1983 the Defense Advanced Research Projects
Agency (DARPA) has exerted a significant effort to
develop a realistic, distributed, synthetic battlefield that
could be used for training, mission planning and rehearsal,
tactics and doctrine development, and weapon-system
concept evaluation. The underlying distributed interactive
simulation (DIS) technology builds large-scale simulations
from a set of independent simulators linked together in a
network (DIS Steering Committee 1994). It is envisioned
that a synthetic battlefield will make it cheaper and safer to
conduct large scale military exercises than would be
possible with live field units. One of the goals of DARPA’s
Synthetic Theater of War ‘97 (STOW-97) project is to field
several thousand entities during one exercise, using a DIS
environment called ModSAF (Modular Semi-Automated
Forces)(Calder et al., 1993).

Simulation in DIS is high-fidelity: actions in ModSAF
are represented and resolved at the level of individual
combatants and vehicles, which we hereafter refer to as
entities. The synthetic environment includes terrain,

1 Copyright © 1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

oceans, and environmental effects (e.g., weather), all of
which affect the perception and actions of the entities.

It is very expensive to field thousands of human troops
for a field exercise, but deploying thousands of ModSAF
simulation entities is also a challenge. One of the
weaknesses of the synthetic forces in ModSAF is that they
are only capable of a limited amount of autonomy. Entities
can be tasked to perform low-level actions, e.g., move in
formation along a route, and attack an objective, but they
are unable to perform a complex mission without a human
controller to intervene and guide them from task to task.
Furthermore, even with human controllers, the behavior of
the ModSAF entities often does not achieve the desired
level. Consequently, running a large-scale simulation could
potentially be very costly in terms of the number of human
controllers that would be required, and the quality of the
simulation may not reach the desired level. Herein lies the
motivation for applying artificial intelligence techniques to
the development of entities in this domain.

This paper describes our effort to address these
challenges. This work is part of a two phase project by a
consortium of researchers from the University of Michigan
(UM), University of Southern California Information
Sciences Institute (USC-ISI), and Carnegie Mellon
University (CMU). The first phase emphasized the
development of individual Soar/IFOR (Intelligent Forces)
agents for the fixed wing aircraft domain. During this
phase we developed a system using the Soar agent
architecture (Tambe et. al, 1995; Laird et. al, 1995). This
has served as the foundation for the work described in this
paper. The second phase of the project has continued the
development of the Soar/IFOR agents, with UM
developing new missions and capabilities in the fixed wing
aircraft domain and CMU continuing their focus on Natural
Language Processing. At USC-ISI we shifted our focus to
the helicopter domain, while also adding new techniques to
facilitate teamwork (Tambe, 1996a) and command-level
decision making (Gratch, 1996). Here we describe how
these new approaches help address the challenge of
constructing intelligent synthetic forces. We limit the
scope of the discussion to the development of army
helicopter companies although other entities have also been
implemented within this framework.

Overview of the Attack Helicopter Company
The army attack helicopter company (AHC) has eight
attack helicopters and pilots, and a company commander
who plans the company’s missions and makes high-level
decisions for the company. There are usually three AHC’s
in an attack helicopter battalion, and we can deploy all
three companies using our application software. The
battalion also has a commander, but we do not yet model
this agent. Instead, a human represents the battalion
commander: the battalion-level plans are generated by a
human and sent in an operations order, which is the
standard military message for communicating mission
plans to subordinates.

In a typical mission the battalion commander sends an
operations order to each of the AHC commanders, which
are all modeled as Soar/CFOR agents. Each of the AHC
commanders analyzes the operations order and plans the
mission for their respective companies. Once the planning
is complete and the company’s plan has been approved, the
AHC commander sends an operations order to the AHC
pilot agents, who execute the mission. The mission usually
involves following a route to a position deep in enemy
territory, avoiding contact with the enemy along the way to
the battle area, destroying enemy targets in an engagement
area, and returning to home base once the mission’s
objectives have been achieved.

Objectives
Our overall goal is twofold. First, we seek to develop
intelligent agents capable of acting autonomously on the
synthetic battlefield so as to reduce the amount of human
control needed to run large-scale military exercises.
Second, we want our agents to be as human-like in
behavior as possible so that the quality of the simulation
meets the high standards of the domain experts.

To meet these goals, we need to develop AHC pilot
agents that can fly their helicopters and execute their
missions in the context of a complex, dynamic, and
uncertain synthetic-battlefield environment, and they need
to be able to act autonomously for relatively long periods of
time–hours to days at a time. In addition, the individual
pilot agents within the company must be able to act as a
team during the execution of a mission to achieve the
company’s goals.

 With respect to the company command agent, we need
to model decision-making from a broader perspective and
over longer time scales than what is done by the individual
pilot agents. Whereas the pilot agents’ decision-making
tends to be more reactive in nature, the commander must
deliberate about alternate courses of action, project effects
into the future, and detect harmful (or beneficial)
interactions between subordinate units and enemy forces.

This paper is a case study on how we applied AI
technology to the development of the agents in the attack
helicopter company. We begin by describing the

application’s design and implementation, giving an
extended example of what tasks the agents in the AHC
perform. Next we describe the use of AI technology in our
agents, starting with the basic agent architecture and briefly
describing the extensions to incorporate teamwork and
planning. Following this, we briefly describe how the
application is being used, what payoffs are expected, how
much effort went into developing it, and what is involved in
maintaining it.

Application Description

Design and implementation
The overall architecture of the helicopter company is
shown in Figure 1. The distributed interactive simulation
environment is provided by ModSAF: each ModSAF
application program runs on a different machine on the
network. Each ModSAF simulates multiple entities (i.e.,
vehicles), which are multicast to the other ModSAF’s on
the network. While ModSAF provides the simulation of
the vehicles, in our case the AH-64 Apache helicopter, we
implemented the pilot agents who fly the helicopters and
the company command agent in Soar (we describe Soar in
the section on AI Technology).

Company Commander (Soar/CFOR)

Mission Representation

Helicopter Pilot (Soar/IFOR)

Mission Representation

ModSAF

DIS Network

SITREPCompany OpOrder Sensors

Battalion OpOrder SITREP

SITREP Friendly Forces

Helicopter Pilot (Soar/IFOR)

Mission Representation
radio

....

CFOR Infrastructure

motor commands motor commandsperceptionperception

entity state

Figure 1: Architecture of the Attack Helicopter Company

The Soar helicopter pilot agents perceive and take
actions in the synthetic environment via the Soar-ModSAF
interface (SMI), which is a collection of ‘C’ routines that
provide the agents access to the dynamics and state of their
vehicles as well as providing simulated sensors for
detecting other entities in the environment via vision and
radar. The agents control their aircraft, manipulate
simulated lasers and weapons, sense the terrain, and
communicate by radio via the SMI.

Besides using ModSAF radios to communicate, the
Soar helicopter pilot agents and the company commander
agent also communicate via the Command and Control

Communications Interface Language (CCSIL), (Hartzog
and Salisbury, 1996), a structured language that enables the
agents to send standard military messages (e.g., operations
orders or situation reports) to one another. CCSIL
messages are delivered using the Command Forces (CFOR)
Infrastructure software (Salisbury, 1995), which uses
remote procedure calls to enable agents outside of
ModSAF to communicate with agents in ModSAF vehicles.
This is important since the Company Commander agent
(see Figure 1) does not run in ModSAF but needs to be able
to communicate with the Soar helicopter pilot agents that
do. In addition, CCSIL provides a convenient way for
humans to compose, send, and receive messages from
ModSAF and CFOR agents.

The CFOR Infrastructure software also provides an
interface to the sensors on ModSAF vehicles as well as
providing a set of terrain reasoning functions that can be
used by the commander agent in planning routes for tactical
movements.

Examples of how system is used
In developing the behaviors of the company, we have
focused on the primary mission of an attack helicopter
company, the attack mission.1 In a typical attack mission,
the battalion commander, who in this case is a human,
issues a plan, called an operations order, to each of the
company commanders in the battalion. The operations
order contains the battalion’s mission, what is known about
the current friendly and enemy situations, and specific
orders for each of the companies concerning what they are
supposed to do as well as when and where they are
supposed to do it. For example, the section of the
operations order for Company A may state:

On order, ingress on route RED to Holding Area BRAVO,
then move to Battle Position CAIRO and attack by fire to
destroy enemy forces in Engagement Area HORNET.

Besides telling the companies their missions, the
operations order also contains information about the
locations of routes, objectives, phase lines, battle positions,
engagement areas, and other control measures.

The company commander agent receives and analyzes
the operations order, then plans a course of action to
achieve the mission. During its initial planning the
commander agent takes into consideration the terrain and
the enemy situation, and it seeks to find a route to its
assigned battle position that maximizes cover and
concealment from the enemy force while minimizing the
distance traveled. When the command agent has completed
its initial planning, it encodes the plan as an operations
order and backbriefs it to the battalion commander, who
has the option of approving or disapproving it. Once the
operations order is approved, it is sent to the individual

1 Other potential missions include reconnaissance and security.

pilot agents, who read it, identify their tasks and roles in the
plan, and begin to execute the mission.

In a typical attack mission, the company organizes
itself into two teams, a light team and a heavy team. The
light team leads the company formation and performs the
role of scouting the route. The heavy team follows the light
team and overwatches their progress, providing firepower
support when the light team is attacked. The teams take off
from the home base and follow a route to a holding area,
which is an intermediate point just prior to the company’s
battle position. Once in the holding area, the helicopters
assigned the scout role move forward to the battle position,
flying nap-of-the-earth to remain hidden from the enemy.
The scouts reconnoiter the battle position to determine
whether it is safe for the company to move forward and
whether there are enemy targets in the engagement area. If
enemy forces are observed in the engagement area, the
scouts call the company forward to the battle position.

When the company commander agent receives the
locations of the enemy vehicles from the scouts, it replans
the company’s firing positions so as to maximize cover and
concealment and to optimize the missile ranges to the
enemy vehicles. The company commander sends the new
firing positions to the helicopter pilots, who move to and
occupy their individual positions. Once the helicopters are
in their firing positions, the pilots first mask (hide) behind
terrain features such as a hill or ridge to conceal themselves
from the enemy. To engage a target, the helicopter
unmasks, selects one or more targets, fires several missiles,
and quickly re-masks. In order to insure its own
survivability, the helicopter will shift its position laterally
while masked and unmask in another position.

When the termination criteria for engaging targets has
been met, the company re-groups and flies back to the
home base. If they should encounter an unexpected enemy
force enroute to their objective, it is necessary to take
“actions on contact,” which involves immediately reacting
to the situation in order to insure survival and modifying
their current plans to bypass or destroy the enemy. In some
cases it is desirable for the company to evade the enemy
force and avoid contact altogether. In this instance the
commander must re-plan the route to keep the company out
of the enemy’s weapon range, and, if possible, out of visual
contact with the enemy. In other cases it is desirable to
engage the enemy force to suppress or destroy it. In this
instance, if the company can see the enemy and is out of
the enemy’s weapons range, the commander needs to re-
plan the route so that the company can approach and
engage the enemy unit from a position that provides cover
and concealment.

Use of AI Technology

Soar-based agent architecture
The pilot agents and the commander agent are built within
Soar, a software architecture that is being developed as a
basis for both an integrated intelligent system and a unified
theory of human cognition (Rosenbloom, Laird & Newell,
1993; Newell, 1990). Soar provides the agents with
support for knowledge representation, problem solving,
reactivity, external interaction, and learning, (though our
agents do not currently take advantage of Soar’s learning
capabilities), and it allows for the smooth integration of
planning and reaction in decision-making (Pearson et al.,
1993; Laird & Rosenbloom, 1990).

Tasks and goals are represented in Soar as operators.
Operators perform the deliberate acts of the system. They
can perform simple, primitive actions that modify the
internal state and/or generate primitive external actions, or
they can perform arbitrarily complex actions, such as
executing a mission. The basic processing cycle is to
repeatedly propose, select, and apply operators to a state.
Operator selection, application, and termination are all
dynamically determined by the system's knowledge and
preferences, stored in the form of productions. Any
changes in goals, states, and perceptions can cause these
productions to fire.

In our application, agents interact with the DIS
environment in real-time. This ability is facilitated by
Soar’s incorporation of perception within its decision loop.
Decisions are informed by the current state of the world, as
well as by rules that fire to interpret it. The perception
system clusters visual entities based on proximity and
summarizes this data in the agent’s visual input, making it
easier for the agent to reason about groups of individuals.

Execute-Mission

Fly-flight-plan Engage Prepare-to-
return-to-base

Fly-control-route Select-
point

Select-
route

Mask Unmask Employ-
weapons

Initialize-
hover

Return-
to-
control-
point

High-
level

Low-
level

Contour NOE
Initialize-
hover

Maintain-
masked-
position

Select-
mask

Goto-
new-mask-
position

Dip

Employ-
missile

Popup

....

Figure 2: Part of the operator hierarchy for a pilot agent

Figure 2 shows a portion of the operator hierarchy of
the basic helicopter agent. The Execute-mission operator
decomposes into operators associated with different aspects
of the attack mission. For example, the Fly-flight-plan
operator decomposes into operators that enable the agent to
fly a route from one location to another. Once the attack
helicopter company has occupied the battle position, the
Engage operator hierarchy is used for performing the

tactics to destroy an enemy target while minimizing the
danger to oneself. These operators serve to illustrate the
kind of knowledge used and how it is organized for the
attack helicopter domain.

Teamwork
Teamwork in complex, dynamic domains, such as synthetic
battlefields mandates highly flexible coordination and
communication to surmount the uncertainties; e.g.,
dynamic changes in a team's goals, team members'
unexpected inabilities to fulfill responsibilities (because
they may crash, get shot down, run out of ammunition, or
drop off the simulation network), and communication
difficulties. Unfortunately, implemented multi-agent
systems often rely on pre-planned, domain-specific
coordination that fails to provide such flexibility (Jennings,
1995). First, it is difficult to anticipate and pre-plan for all
possible coordination failures, given the complexity of the
domain. Second, given domain specificity, reusability
suffers–coordination has to be redesigned for each new
domain.

A fundamental reason for these teamwork limitations
is the current agent architectures. Architectures such as
Soar (Tambe et. al, 1995), RAP (Firby, 1987), IRMA
(Pollack, 1992), BB1 (Hayes-Roth et. al, 1995), and PRS
(Rao et. al, 1993) facilitate an individual agent's flexible
behaviors via mechanisms such as commitments and
reactive plans. However, flexible individual behaviors,
even if simultaneous and coordinated, do not sum up to
teamwork. A common example provided is ordinary traffic,
which although simultaneous and coordinated by traffic
signs, is not teamwork. Indeed, theories of collaboration
point to novel mental constructs as underlying teamwork,
such as team goals, mutual beliefs and joint commitments
(Grosz, 1996; Cohen and Levesque, 1991), absent in
current agent architectures. Thus, agents cannot explicitly
represent their team goals and plans, or flexibly reason
about their communication/coordination responsibilities in
teamwork; instead they rely on the (problematic) pre-
planned coordination.

In our work, we have integrated a set of teamwork
capabilities within Soar; the combined system is called
STEAM (Tambe, 1996a; Tambe, 1997). STEAM is
founded on the joint intentions theory (Cohen and
Levesque, 1991). It enables explicit representation of team
goals that expand out into goals and plans for individuals'
roles in the team goal. In practice, to enable multiple team
members to maintain a coherent view of their team's goals
and plans, STEAM additionally incorporates (1) team
synchronization to establish joint intentions; and (2)
monitoring and repair capabilities. Unfortunately,
communication in service of coherent teamwork can itself
be a significant overhead or risk (e.g., radio silence in
synthetic battlefields). Therefore, STEAM also integrates
decision theoretic communication selectivity–in the best
interest of the team, agents may selectively avoid
communication.

STEAM’s capabilities are encoded in 251 general Soar
rules that can be reused across domains. (These rules, along
with documentation and traces, are available at
http://www.isi.edu/soar/tambe/steam/steam.html). STEAM
has been reapplied in the context of Marine transport
helicopter simulation, where a team of escorts and
transports transport synthetic troops from sea to land.
STEAM is also in the process of being applied in the
RoboCup soccer simulation. Evaluations of STEAM’s
flexibility and reusability are presented in (Tambe, 1997).

Planning
The demands of command-level decision making require a
greater focus on deliberation than required by pilot agents.
The commander must be proactive rather than reactive,
anticipating the possible outcomes of future actions as well
as potential interactions that might arise between actions.
The greater focus on deliberation has led us to draw
substantially from the classical planning literature in the
course of command entity development. The command
entity incorporates a hybrid of planning styles,
incorporating hierarchical task-decomposition techniques
(as in Tate, 1990) as well as partial-order planning
approaches (as in Penberthy and Weld, 1992; Gratch,
1996). In this respect it closely resembles the IPEM
planning architecture of Ambros-Ingerson and Steel (1988),
with some significant enhancements. Task-decomposition
planners plan by decomposing abstract tasks into a set of
more concrete subtasks. Partial-order planners utilize the
causal relationships between tasks to recognize various plan
flaws such as missing tasks or ordering conflicts.

In the command agent, plans are represented by a
graph structure known as a hierarchical task network
(HTN). Nodes in the network correspond to tasks, and are
represented as STRIPS-style action descriptions (Fikes,
1971). Tasks may be abstract or primitive. Abstract tasks
may be decomposed into a partially ordered set of more
specific tasks. Primitive tasks are those that may be
directly executed without further decomposition.

Tasks in the network are connected by a variety of
relations between them. Subtask relations define the basic
hierarchical structure of the network. Ordering relations
define the order in which tasks should be executed. Causal
links and protection intervals are relations which represent
the causal structure of the plan. (As in standard partial-
order planners such as UCPOP, this causal structure
facilitates reasoning about interactions across tasks.)
Finally, dependency relations record information about how
the plan was generated, for use in replanning.
(Dependency relations are similar to the dependency graphs
of Hayes (1975) and the verification structure of
Kambhampati (1992).)

The three key activities performed by the command
agent are plan generation, plan execution monitoring, and
replanning. For plan generation, initially the planner is
given an abstract plan (a battalion order). Typically the
initial plan cannot be executed. It may contain non-

primitive tasks or tasks may have unsatisfied preconditions.
The flaws in the initial plan are addressed by non-
deterministically selecting planning operations to resolve
these flaws: fleshing out an abstract task (decomposition),
finding existing tasks that satisfy preconditions (simple
establishment), adding tasks (step addition), etc. These
planning operations result in modification to the HTN and a
complete plan is constructed through backtracking search.

Plan execution monitoring is facilitated through the use
of a current world description. This is a variable-free set of
literals that represents the sensed state of the world at the
current time step. Execution operators allow tasks to be
initiated or terminated. Only one task may be initiated or
terminated on a give time step, but multiple tasks may be
executing simultaneously. A task may be initiated if no
unexecuted tasks precedes it and its preconditions unify
with the current world description. A task may be
terminated if its effects unify with the current world
description. Currently, we do not have a general method
for handling execution failure and rely on domain-specific
procedures.

The current world description also facilitates the
recognition of unexpected events. If there is a literal in the
current world description that does not unify with any
effect of any executed action, it is assumed to be the effect
of some external event and is inserted into the task
network.

Replanning may be triggered in response to
unexpected events. If the effect of an unexpected event
creates a flaw in the existing plan, the planner must modify
the plan to address this new factor. The plan can be
repaired in one of two ways: extending the plan (by adding
new constraints or tasks), or retracting some portion of the
plan and replanning. The former is the easiest approach,
however it is not always possible to retain the original plan
structure. If the unexpected event is incompatible with
existing plan structure, this structure must be retracted.
This process is facilitated through the use of the decision
graph. This graph records the dependencies between
planning decisions. In a method similar to Hayes’ robot
planner (1975), the command entity attempts to retract just
those planning decisions directly affected by the new state
of the world, retaining as much of the old plan as possible.

Application Use and Payoff

Operational Usage
The attack helicopter company (along with Marine escort
and transport units) has been deployed in several exercises
and tests as a part of the STOW-97 program. It was first
deployed in the Fall of 1995 for two events, first for a
subsystem integration test in September and then for a
major combined engineering demonstration called ED-1 in
October. It has been deployed numerous times since then:
Combined Test 1, in July, 1996; Combined Test 3, in
October, 1996; and Combined Test 4, in December 1996,

where we successfully ran three companies simultaneously.
Each of these events has been a test leading up to a major
exercise called STOW-97, which will take place in late
1997.

When the AHC has been deployed, thus far, the
software was operated by members of our development
team. The battalion operations orders, which are the input
to the AHC, have been all written by outside subject matter
experts (SME’s). These operations orders are often
provided within hours or days of the exercise, and, in spite
of the short preparation time, the commander agent and the
pilot agents have generally been able to cope with whatever
missions they have been assigned, though we have had to
occasionally refine the agents’ knowledge base to
accommodate new situations.

Benefits of the Application
The payoff from this application is that our AHC has
capabilities currently not available to standard ModSAF
entities1: (1) the commander agent accepts operations
orders from its higher echelon and it plans the mission for
the company, (2) the Soar/IFOR helicopter pilot agents
operate autonomously–they both execute plans from the
commander and react to unexpected contingencies in the
environment, (3) the behavior is higher in quality, and (4)
the Soar/IFOR agents work as a team in executing their
mission.

Taken together, these capabilities should provide a
payoff to STOW-97 by reducing the number of simulation
operators needed to run a large-scale exercise. Without
these capabilities, an operator would have to control
multiple individual entities. Instead, the human will play
the role of battalion commander and write operations orders
and initialize the scenario to control three companies (18-
24 helicopters) at a time. We expect the pay-off to increase
as we make progress toward developing a battalion
command agent so that eventually the human will play the
role of the brigade commander or higher while the rest is
controlled by intelligent agents.

Development Effort Required
The original Soar/IFOR project focused on the FWA
domain, and there is an ongoing development effort to
continue this effort (e.g., see Tambe et al., 1995 and Jones
et al., 1996). We began working on the Soar/IFOR AHC
application in July, 1994. We were able to build on top of a
considerable amount of the original Soar/IFOR FWA
infrastructure code, which included the interface between
Soar and ModSAF. We have invested approximately ten
work-years of effort into the development of the AHC,

1 Hughes Research Laboratory and Science Applications
International Corporation (SAIC) have also built command
entities, but they have focused on the ground force domain.

which includes the pilot agents, commander agent, and the
supporting infrastructure.

Maintenance
Since this application is still being developed, the
knowledge base is currently maintained by us, the
developers. When we participate in an exercise, which
occurs about once every two months, there are subject
matter experts (SME’s) who observe and critique the
behavior of the AHC. The critiques are provided in a
written form and changes are subsequently made to the
knowledge base to incorporate the suggested changes. In
addition to the changes suggested by the SME’s, we are
still adding new knowledge from task description
documents and refining the knowledge as we test the
agents. It is expected that the number of changes needed
will decrease over time as the behavior is refined and the
SME’s validate that it is doctrinally correct.

There are several ways that changes to the domain
knowledge occur. First, the domain knowledge related to
attack helicopter doctrine and tactics should only change
when the US Army decides it is necessary to do so (an
inherently slow process). So, on the surface, the domain
knowledge should be fairly stable. From a practical point of
view, however, a second way that domain knowledge
changes is when two or more SME’s disagree on a fine
point of doctrine or tactics. This may lead to a refinement
of the domain knowledge that was not previously
documented. Finally, there is domain knowledge that we
consider to be common sense in nature–it is not written as
tactics and has to do with the way agents reason about
things like space, terrain, and teamwork. This type of
knowledge is continually being refined as we discover
ways in which the agents’ behavior differs from a human’s.

The process of modifying the knowledge base requires
a detailed knowledge of Soar and of the agents’ problem
space hierarchy. Since the knowledge is organized as a set
of problem spaces, updating the knowledge base is made
somewhat easier since changes are usually localized to a
particular problem space. Alleviating the difficulties of
modifying the knowledge base remains an issue for future
work.

Acknowledgements
We wish to acknowledge the UM team for their role with
USC-ISI in developing the FWA agent architecture: Karen
Coulter, Randy Jones, Frank Koss, John Laird, and Paul
Nielsen.

This research was supported by the Defense Advanced
Research Projects Agency, Information Sciences Office,
and the Naval Command and Ocean Surveillance Center,
RDT&E division (NRaD), under contract N66001-95-C-
6013.

References
Ambros-Ingerson, J.A. and S. Steel, 1988. Integrating

Planning, Execution, and Monitoring. In Proceedings of the
National Conference on Artificial Intelligence, 1988, pp.
83-88.

Calder, R.B., J.E. Smith, A.J. Courtemanche, J.M.F.
Mar, A.Z. Ceranowicz, 1993. ModSAF Behavior
Simulation and Control. In Proceedings of the Second
Conference on Computer Generated Forces and Behavioral
Representation, STRICOM-DMSO, July, 1993, pp. 347-
356.

Cohen, P. R. and Levesque, H. J., 1991. Confirmation
and Joint Action. In Proceedings of International Joint
Conference on Artificial Intelligence.

DeJong, G, and Mooney, R, 1986. Explanation-based
learning: An alternative view. Machine Learning 1, 2,
1986, pp. 145-176.

DIS Steering Committee. 1994. The DIS Vision: A
Map to the Future of Distributed Simulations. Technical
Report, IST-SP-94-01, Institute for Simulation and
Training, University of Central Florida.

Erol, K., Hendler, J., and Nau, D.S.., 1994. HTN
Planning: complexity and expressivity. In Proceedings of
the National Conference on Artificial Intelligence, 1994,
pp. 1123-1128.

Fikes, R. E., and Nilsson, N. J., 1971. STRIPS: a new
approach to the application of theorem proving to problem
solving. Artificial Intelligence Journal, 2 (3/4), 1971.

Firby, J., 1987. An investigation into reactive planning
in complex domains. In Proceedings of National
Conference. on Artificial Intelligence.

Gratch, J.A., 1996. Task-decomposition planning for
command decision making. In Proceedings of the Sixth
Conference on Computer Generated Forces and Behavioral
Representation, STRICOM-DMSO, July, 1996, pp. 37-45.

Grosz, B., 1996. Collaborating systems. AI Magazine,
vol. 17.

Hartzog, S. M., Salisbury, M.R., 1996. Command
Forces (CFOR) Program Status Report. In Proceedings of
the Sixth Conference on Computer Generated Forces and
Behavioral Representation, Orlando, Florida, July, 1996.

Hayes, P. J., 1975. A representation for robot plans. In
Proceedings of the International Joint Conference on
Artificial Intelligence, 181-188, 1975.

Hayes-Roth, B., Brownston, L. and Gen, R.V., 1995.
Multiagent collaboration in directed improvisation. In
Proceedings of International Conference on Multi-Agent
Systems.

Jennings, N., 1995. Controlling cooperative problem
solving in industrial multi-agent systems using joint
intentions. Artificial Intelligence Journal, 75, pp. 195-240.

Jones, R.M., Laird, J.E., and Nielsen, P.E., 1996.
Moving intelligent automated forces into theater-level
scenarios. In Proceedings of the Sixth Conference on
Computer Generated Forces and Behavioral

Representation, STRICOM-DMSO, July, 1996, pp. 113-
117.

Kambhampati, S., 1992. A validation-structure-based
theory of plan modification and reuse. Artificial
Intelligence Journal 55: 193-258.

Laird, J.E., Johnson, W.L., Jones, R.M., Koss, F.,
Lehman, J.F., Nielsen, P.E., Rosenbloom, P.S., Rubinoff,
R., Schwamb, K., Tambe, M., Van Dyke, J., van Lent, M.,
Wray, R.E., III, 1995. "Simulated Intelligent Forces for
Air: The Soar/IFOR Project 1995," Proceedings of the Fifth
Conference on Computer Generated Forces and Behavioral
Representation, STRICOM-DMSO, pp. 27-36.

Laird, J.E. and Rosenbloom, P.S., 1990. Integrating
execution, planning, and learning in Soar for external
environments. In Proceedings of the National Conference
on Artificial Intelligence. Menlo Park, California: The
AAAI Press, July, 1990.

Mitchell, T. M., Keller R. M., and Kedar-Cabelli, S.
T., 1986. Explanation-based generalization: A unifying
View. Machine Learning 1 (1): 1986, pp. 47-80.

Newell, A., 1990. Unified Theories of Cognition.
Harvard University Press, Cambridge, Massachusetts,
1990.

Pearson, D.J., Huffman, S.B., Willis, M.B., Laird, J.E.,
and Jones, R.M., 1993. A symbolic solution to intelligent
real-time control. IEEE Robotics and Autonomous Systems,
11:279-291.

Penberthy, J., Weld, D., 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proceedings of
the 3rd International Conference on Principles of
Knowledge Representation and Reasoning, 103-114.

Pollack, M., 1992. The uses of plans. Artificial
Intelligence Journal, volume 57.

Rao, A. S., Lucas, A., Morley, D. Selvestrel, M. and
Murray, G., 1993. Agent-oriented architecture for air-
combat simulation. Technical Report 42, Australian AI
Institute.

Rosenbloom, P.S., Laird, J.E., Newell, A., (Eds.) 1993.
The Soar Papers: Research on Integrated Intelligence.
Cambridge, MA: MIT Press.

Salisbury, M.R., Booker, L.B., Seidel, D.W.,
Dahmann, J.S., 1995. Implementation of command forces
(CFOR) simulation. In Proceedings of the Fifth
Conference on Computer Generated Forces and Behavioral
Representation, 423-430, Orlando, Florida, May, 1995.

Tambe, M., Johnson, W.L., Jones, R.M., Koss, F.,
Laird, J.E., Rosenbloom, P.S., and Schwamb, K., 1995.
Intelligent agents for interactive simulation environments.
AI Magazine, 16(1):15-39, Spring, 1995, AAAI Press.

 Tambe, M., 1996a. Teamwork in real-world, dynamic
environments. In Proceedings of the International
Conference on Multi-Agent Systems.

Tambe, M., 1996b. Tracking dynamic team activity.
In Proceedings of the National Conference on Artificial
Intelligence.

Tambe, M., 1997. Agent architectures for flexible,
practical teamwork. In Proceedings of the National
Conference on Artificial Intelligence.

Tate, A., 1990. Generating project networks. In Allen,
J.; Hendler, J; and Tate, A., editors, Readings in Planning.
Morgan Kaufman. 162-170.

