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1 Introduction

Modern virtual environments provide new and exciting opportunities for the

learning of complex skills. Rapid progress in the commercial game industry, as well as in

computer graphics, animation, and artificial intelligence research, has produced

immersive environments capable of simulating experiences that can closely resemble

reality. Educators and learning scientists have grasped these opportunities, motivated by

the prospect of providing safe, authentic practice environments for real-world skills not

previously within the scope of computer-supported learning. Greater realism and more

immersion seem to be in harmony modern instructional design methodologies and

theories of learning, such as situated learning (Brown, Collins, & Duguid, 1989):

We argue that approaches such as cognitive apprenticeship that embed learning

in activity and make deliberate use of the social and physical context are more in

line with the understanding of learning and cognition that is emerging from

research (p. 32).

A tenet of situated cognition is that knowledge should be learned in its context of use as

well as within the culture of its practice. Computer-based learning environments that seek

to replace traditional paper-based homework assignments tend to be based on the “culture

of school” rather than the more real-world cultural contexts discussed in the situated



learning literature, and thus rarely leverage the full capabilities of a computer to simulate

these contexts. Virtual learning environments (VLEs), on the other hand, hold the

potential to provide learners with greater authenticity and clearer connections to real-

world applications of skills they are acquiring.

However, there is a natural tension between the realism in virtual learning

environments (VLEs) and efficient, robust learning. For example, real-world skills that

may take months or years to apply (such as building a home) may not require faithful

representation of time in a computer simulation (such as waiting 2 weeks for the delivery

of materials). Relying exclusively on high fidelity and immersion therefore limits a

VLE’s ability to actually promote learning. Numerous studies have shown that learning is

sub-optimal, sometimes even hindered, when pure discovery and trial-and-error are used

as the primary means for skill acquisition (Mayer, 2004; Kirschner, Sweller, & Clark,

2006). Guidance is therefore critical to avoid these pitfalls, especially for novices.

Support can come from a variety of sources, of course, such as instructors, peers,

carefully designed instructional materials, or even from within the learning environment

itself. Our focus here is on the latter – i.e., how we might scaffold learning automatically

and from within a virtual learning environment. This chapter summarizes principles that

have emerged from studies of human and computer tutors as well how artificial

intelligence (AI) and intelligent tutoring system (ITS) technologies can be applied to the

problem of providing guidance in immersive and virtual learning environments.

2 Human and computer tutoring

Students working one-on-one with expert human tutors often score 2.0 standard

deviations – roughly two grade levels – higher than students in a conventional classroom



(Bloom, 1984). In contrast, the very best intelligent tutoring systems achieve learning

gains of about 1.0 standard deviations (Anderson, Corbett, Koedinger, & Pelletier, 1995;

VanLehn et al., 2005). The best computer-aided instructional systems – computer tutors

that do not use AI techniques – produce learning gains of about .4 standard deviations

(Niemiec & Walberg, 1987). Unfortunately, a precise answer to the question of why

tutoring is more effective than other forms of instruction has remained elusive. Most

hypotheses tend to focus either on the behaviors of the tutor – that learning occurs

because of expert execution of tutoring tactics – or of the student – that learning occurs

when the student makes deep contributions during a tutoring session. Each of these

perspectives has implications for how intelligent tutors should behave in virtual

environments and so in this section, we take a brief look at both of these hypotheses and

the empirical evidence supporting them.

2.1 Why is tutoring effective?

A popular claim for the effectiveness of tutoring is that human tutors are able to

adapt, and thus individualize instruction to fit the needs of the particular student being

tutored. These adaptations can be made in response to a variety of student traits including

those involving the knowledge state of the student, or of the affective (emotional) state.

For example, some expert human tutors implement mastery loops that involve the

repeated assignment of problems that test a particular skill (or set of skills) until the

student has confidently demonstrated competence (Bloom, 1984). Another tactic is to

select or formulate problems in ways that will appeal to and motivate the student (Lepper

et al., 1993). Assigning an easier problem when a student’s confidence is low is an

example of a tutoring tactic in this category. Human tutors also implement different



tactics based on student traits. For example, the policy of immediate feedback is a well-

documented tactic applied by both human and computer tutors that increases learning

efficiency (Merrill, Reiser, Ranney, & Trafton, 1992; Anderson et al., 1995), but may

hinder students’ self-assessment and self-correction skills (Schooler & Anderson, 1990).

Immediate feedback is considered individualized in the sense that students’ own specific

sets of correct and incorrect actions determine what kind of feedback they receive – it is

rare that two students will receive exactly the same tutorial interventions. Like problem

selection, the content and timing of tutoring feedback can be based on the knowledge

state of the student or on affective traits. Lepper et al. (1993) document a variety of lower

level tutoring tactics intended to manage affect, such as maximizing success (through

praise) and minimizing failure (via commiseration).

Some have argued that the best tutors balance the need for active participation of

the student with the provision of guidance (Merrill et al., 1992). This means the student

does as much of the work as possible while the tutor provides just enough feedback to

minimize frustration and confusion. Also, effective tutoring has been found to have less

to do with didactic explanations by the tutor and more to do with the interaction between

the tutor and student. Chi, Siler, Jeong, Yamauchi, and Hausmann (2001) conclude that

“students’ substantive construction from interaction is important for learning, suggesting

that an ITS ought to implement ways to elicit students’ constructive responses” (p. 518).

It is a common pattern in ITS research to first identify effective learning events and

patterns in human tutoring, then attempt to emulate them in an ITS.

2.2 Intelligent tutoring systems



Given that research on intelligent tutoring is often inspired by empirical studies

of human tutors, it is not surprising that computer tutors share many similarities with

human tutors (Merrill et al., 1992). For example, when a student reaches an impasse,

human and intelligent computer tutors both use similar approaches to help the student

overcome the impasse: both monitor student reasoning and intervene to keep the student

on a productive path. A major limitation for early generation tutoring systems was that

they interacted with the learner primarily through graphical user interface gestures, such

as menu selections, dragging-and-dropping, and so on. For example, in the Andes physics

tutoring system (VanLehn et al., 2005), students draw force vectors on diagrams and

enter equations into text fields. Andes provides immediate flag feedback by coloring

correct actions green and incorrect actions red. Solicited help is available that allows the

student to ask why an action is wrong or for advice on taking the next step. Andes

implements model tracing, an algorithm originally appearing in the Cognitive Tutors

from Carnegie Mellon University (Anderson et al., 1995). Model tracing tracks a learner

step by step through a problem solving space, comparing the observed actions to those

indicated by an expert model of the targeted skill, and delivering feedback according to

some pedagogical model or policy. Immediate feedback with solicited follow-up help is

one such policy.

Human tutors have an advantage over computer tutors in that a much larger space

of tutorial interventions are possible. For example, some important differences that

distinguish human tutors arise from subtle cues from facial expressions, body language,

conversational cues, or the simple use of dialogue (Fox, 1993). Given the 1 sigma “gap”

between the effectiveness of expert human tutors and the best computer tutors, it is no



surprise that a great deal of research in the last decade has gone into endowing computer

tutors with more of the “features” of human tutors in the hope of narrowing the effect size

difference. The use of interactive dialogue represents a major research focus over the last

decade. Many such systems attempt to leverage the expressivity of natural language input

and dialogue to remediate flawed conceptual knowledge (Graesser, VanLehn, Rose,

Jordan, & Harter, 2001) while others have used dialogue to encourage metacognitive and

reflective thinking on problem solving (Core et al., 2006; Peters, Bratt, Clark, Pon-Barry,

& Schultz, 2004; Katz, Allbritton, & Connelly, 2003). Just as dialogue opens up new

avenues for tutorial intervention, so does research into pedagogical agents and virtual

human instructors.

3 Considerations for intelligent tutoring in virtual environments

Rickel and Johnson (1997), who were among the first to propose the use of

intelligent tutoring in virtual reality environments, point out that much stays the same:

students will still reach impasses, demonstrate misconceptions, and will benefit from the

guidance and help of a tutor. They highlight new methods of interactions afforded by

VLEs:

 The tutor can inhabit the environment with the student, thus providing increased

potential for “physical” collaboration.

 Similarly, an embodied tutor can communicate nonverbally, through gestures and

facial expressions, for example.

 A virtual reality environment allows students to be tracked in new ways, such as

by their visual attention and physical movements.



Thus, the scope of tutorial interactions are greatly increased in VLEs, in both directions:

in performing tutorial interventions and in the bandwidth available for monitoring the

learner. Researchers have explored the ways in which virtual environments differ from

more traditional computer-based learning environments that tend to be developed as

substitutes for written homework. How well do traditional ITS approaches, such as those

discussed in the previous section, map into tutoring in VLEs? What opportunities do

VLEs make available that might enhance the effectiveness of an intelligent tutor? Here,

we consider both directions: (1) how the advances from intelligent tutoring in traditional

environments might be used to promote learning in VLEs, and (2) whether more

advanced immersive technologies might contribute to closing the 1 sigma gap between

human and intelligent tutoring.

We limit our consideration to those VLEs specifically constructed for the

learning of cognitive skills that also include an underlying simulation of some real-world

phenomenon. We also restrict ourselves to those environments that seek a reasonably

high level of fidelity and realism. Thus, included in the discussion are virtual worlds that

permit exploration from a first-person perspective, simulations of complex equipment

(that include an interface modeled directly on actual equipment), and simulations of

natural phenomena, such as social, biological, or meteorological phenomena.

3.1 Expanding the problem space: time and movement

Many VLEs can also be classified as open learning environments. These are

characterized by a greater amount of learner control and are generally considered to be

more appropriate for learning in ill-structured domains (Jonassen, 1997). Because of the

large problem space in many VLEs, solving the plan recognition problem (monitoring,



understanding, assessing, etc.) is often a significant challenge for ITSs. Here, we

highlight two key challenges: tutoring in real-time contexts and in environments that

provide expanded freedom of student movement in a virtual space.

3.2 Tutoring in real-time environments

For problem solving tasks that are not time-constrained (e.g., solving algebra

equations), computer-based learning environments typically wait for the learner to act.

This stands in contrast to many domains targeted by VLEs that require real-time thinking,

decision-making, and acting. Ritter and Feurzeig (1988, p. 286) were among the earliest

to wrestle with the problems of tutoring in a real-time domain and highlight three major

differences:

 The knowledge acquisition problem is more complicated since experts

tend to “compile” their knowledge for efficient execution.

 Diagnosing errors is more complicated because time is typically not

available to ask the student questions during practice.

 Assessing performance and conveying feedback is best done after task

completion to avoid the risk of interrupting the learner (see Chapter 43-

Lampton).

The knowledge acquisition problem is not magnified only by constraints related to real-

time processing, but also by the nature of ill-structured domains in general (Lynch,

Ashley, Aleven, & Pinkwart, 2006), which are common domain targets of VLEs.

Diagnosis of errors and assessment of performance are similarly not unique to real-time

domains, but are nonetheless more complicated because of time constraints during

practice. Time-constrained problem solving often goes hand-in-hand with dynamic



learning environments – i.e., as time moves forward while the student deliberates, the

state of the world may change in favorable or unfavorable ways. Here, we review several

approaches to dealing with these challenges in terms of how ITSs have been implemented

to support learning.

Ritter and Feurzeig (1988) describe TRIO (Trainer for Radar Intercept Officers),

an ITS built to train F-14 interceptor pilots and radar operators to support the real-time

decision-making tasks involved with air defense and collaboration. The system presents

the learner with radar displays and flight instruments that provide both needed

information and the ability to take actions in the simulation. TRIO provides guidance in

three ways:

 before practice: demonstrations of expert performance

 during practice: coaching support while the learner practices

 after practice: post-practice debriefing (after-action review)

These interventions are driven by a rule-based cognitive model of domain expertise

(called the “TRIO Articulate Expert”) that is capable of performing the intercept tasks the

learner is acquiring. TRIO intervenes with a learner only if mission critical mistakes are

being made (or about to be made), and leaves most feedback for the post-practice

reflective period. This is a typical policy for ITSs operating in real-time domains given

the risks of competing for the working memory of a learner. The Articulate Expert

focuses on finding the appropriate intermediate goals throughout execution of the task

and uses these to help the student learn what went wrong, and what should be done. The

model is flexible enough to represent multiple solutions to a given problem.



Roberts, Pioch, and Ferguson (1998) adopted a similar approach in the

development of TRANSoM (Training for Remote Sensing and Manipulation), an ITS for

the training of pilots of underwater remotely operated vehicles (ROVs). Just as in TRIO,

demonstrations, guided practice, and reflection also play key roles. Because of the real-

time nature of the task, TRANSoM also attempts to simultaneously avoid distracting the

learner while preventing session-killing errors from occurring. A key aspect to ROV

operation is the maintenance of a mental model of the vehicle itself. This is a challenge

given the limited inputs regarding the ROV’s status (which is true in reality). To increase

the chances of being nonintrusive, TRANSoM applies two techniques. First, all coaching

support is delivered verbally so the visual modality is not in competition with the learner.

Second, although unsolicited help is delivered in a manner similar to TRIO (when there is

deviation from an expert solution path), students are also given the chance to ask for

guidance when they feel they need it (i.e., solicited help). Among other lessons learned,

Roberts et al. (1998) suggest that the use of discourse cues, short utterances, and the

simultaneous use of directive visual cues along with verbal feedback would increase the

chances of a verbal feedback being effective in a VLE.

3.3 Tutoring in open-movement environments

To promote the feelings of learner control and freedom, many VLEs, especially

those that are game-based, tend to allow free movement within a virtual world. This is

consistent with the motivation for building open learning environments. It is typical in

this category of VLEs to give the learner control of an avatar or vehicle to maneuver

around in a virtual world. Usually done from a first-person perspective, it allows the

learner to make choices like what to explore, when, and for how long. The problem for an



ITS in these environments is twofold. First, if the skill being practiced is directly related

to the movements of the learner’s avatar, it must be determined at what level of action the

ITS should react. For example, does a turn in one direction represent an intention to move

in that direction? Second, to what extent physical/motor skills transfer to the real word

from virtual environments is an open question. Thus, most ITSs that permit free

movement do so in order to maximize the learner’s feeling of freedom and independence,

and less because it contributes to the acquisition of some underlying cognitive or physical

skill.

Very few ITSs precisely track how learners maneuver in a virtual environment.

Most systems observe only gross physical movements (from area to area) and interact

when issues arise related to the events of the game in those physical areas. One exception

is the Collaborative Warrior Tutoring system (Livak, Heffernen, & Moyer, 2004), an ITS

that tracks physical movements in a 3D, first-person shooter environment for the learning

of tactical skills and military operations on urban terrain (MOUT; see Chapter 79-

Livingston). Through the use of a cognitive model of room and building clearing skills

that inspects the dynamically changing environment represented in the 3D world, the ITS

is able to assess the learner’s movements (including buggy knowledge) and give hints

and feedback on the fly. These interventions come as text over laid on the view of the

virtual world alongside communications between characters. The model of expert

performance is also used to drive the behaviors of computer-controlled characters in the

environment.

Most other ITSs that permit free movement in a virtual world do not track

movements at this fine-grained level. For example, in the Tactical Language and Culture



Training System (TLCTS) mission environment (Johnson, Vilhjalmsson, & Marsella,

2005), the learner is given game objectives and is free to move around an Iraqi village to

achieve them. This requires visiting a variety of locations in the village (e.g., café) and

interacting with locals in culturally appropriate ways through Arabic speech and gestures.

This is similar to the approach taken in the narrative-based learning environment Crystal

Island (Mott & Lester, 2006). In this system, the learner plays the role of scientist on an

island where several of the inhabitants have become ill from an infectious disease. The

learner must move around the island interviewing people, collecting evidence, and

running tests. As in TLCTS, actual movements in the environment are important to the

extent that they represent decisions – for example, if the learner walks towards a research

station with a sample, it is reasonable to conclude she or she intends to test it for

contamination.

3.4 Expanding the space of intelligent tutoring interactions

As discussed, VLEs that are open tend to provide a much larger problem solving

space than more traditional computer-based learning environments. Not only does this

provide more freedom for the learner, but also for the ITS to perform a wider array of

pedagogically motivated interactions. In this section we discuss two of these

opportunities: through the use of pedagogical agents and via dynamic manipulation of

the learning environment in ways that promote learning, sometimes called pedagogical

experience manipulation.

3.4.1 Pedagogical agents

Artificial intelligence research into the development of intelligent,

communicative agents and virtual humans has led to interdisciplinary research on natural



language processing, emotional modeling, gesture modeling, cultural modeling, and more

(Cassell, Sullivan, Prevost, & Churchill, 2000; Swartout et al., 2006). Since people tend

to treat human-like computer characters as they would humans (Reeves & Nass, 1996),

there is potential for learners to “bond” more with intelligent tutors that express

themselves through a human-like avatar. Previously in this chapter we discussed the 1

sigma “gap” between the best ITSs and expert human tutors, and how dialogue-based

tutoring systems represent one attempt to bridge this gap. By endowing ITSs with

features similar to those used by human tutors, the hypothesis is that this gap can be

narrowed. For example, facial expressions might be used to express concern or approval,

among other emotions, all of which are potentially useful as indirect feedback.

Pedagogical agents tend serve in one of two roles. The first is in the role of a coach or

tutor with the goal of supporting learning through explicit guidance and feedback. The

second is when the pedagogical agent assumes a role in an underlying narrative or story

playing out in the virtual environment.

A wide range of pedagogical agents have been developed that play the role of

tutor or coach (Clarebout, Elen, Johnson, & Shaw, 2002; Person & Graesser, 2002). Most

provide hints and feedback to a learner during some problem solving task, provide

explanations, communicate verbally and nonverbally, and seek to provide “just-in-time”

support. Steve (Soar Training Expert for Virtual Environments), one of the earliest

pedagogical agents, possessed all of the traditional capabilities of ITSs (delivered

feedback, explanations, gave hints, etc.), but also had the ability to lead the learner

around the virtual environment, demonstrate tasks, guide attention (through gaze and

pointing), and play the role of teammate (Rickel et al., 2002; Rickel & Johnson, 1997).



Using animation, sound, and dialogue techniques, pedagogical agents can also attempt to

manage the learner’s affective state through encouragement and motivational techniques.

For example, in the MIMIC system (Multiple Intelligent Mentors Instructing

Collaboratively), an emotional instructional agent has been implemented that will express

confusion, disapproval, excitement, encouragement, pleasure, and more (e.g., Baylor &

Kim, 2005).

In narrative-based learning environments, pedagogical agents have the

opportunity to be “part of the story” by assuming some role in the underlying narrative

being played out in the environment. For example, in the Mission Rehearsal Exercise

(MRE) system (Swartout et al., 2006), the learner, playing the role of a young lieutenant,

is placed in a situation in which one of his platoon’s Humvees has been in an accident

with a civilian car. The sergeant in the scenario has knowledge of how to resolve the

crisis and will give guidance should the learner need it, such as pointing out the negative

aspects to a particular order (e.g., “Sir, our troops should not be split up.”). A similar

solution is used in TLCTS in endowing an accompanying sergeant with coaching ability,

but making only solicited help available (Johnson et al., 2005). In recent versions of

TLCTS, tutoring by the accompanying aide has been curtailed, as it was found that some

learners got the false impression that only a limited number of choices were available,

namely those that the aide recommends. Instead, tutoring support is provided through the

characters in the game, by their reactions to the learner, and at times by the leading

questions that they ask of the learner. This approach is inspired by the tactics that good

human role players employ in role playing exercises, at training centers such as the

Army’s National Training Center. Crystal Island also provides all of its tutoring support



through the characters in the game (Mott & Lester, 2006) as well as affective support

through empathetic characters (McQuiggan, Rowe, & Lester, 2008).

Empirical research on pedagogical agents is mixed in terms of how well they

close the 1-sigma gap between computer and human tutors (Clarebout et al., 2002).

Moreno, Mayer, and Lester (2000) found that the simple presence of an animated agent

did not impact learning, but that speech (over text) led to improved retention and transfer

in learning. The same study also showed that interactive dialogue was superior to more

didactic utterances by the agent, which is consistent with studies of dialogue-based ITSs

that do not use pedagogical agents (Graesser et al., 2001). In research aimed at

understanding how pedagogical agents can go beyond only possessing domain

knowledge, Baylor & Kim (2005) found evidence that agents playing both a motivator

and expert role simultaneously (which they refer to as a “mentor”) outperformed agents

in each of these roles alone in the ill-defined domain of instructional planning.

Wang et al. (2007) found that a key determiner of the effectiveness of a

pedagogical agent is the extent to which the agent employs socially appropriate tactics

that address learner “face”, consistent with the Politeness Theory of Brown and Levinson

(1987). Learners who interacted with a pedagogical agent that employed politeness

tactics achieved greater learning gains than learners who interacted with an agent that did

not employ such tactics, and the effect was greatest among learners who expressed a

preference for tutorial feedback delivered in a polite, indirect way. Wang has since

replicated these results with TLCTS, using politeness strategies delivered via text

messages. These studies suggest that (a) the manner in which the agent interacts with the

learner determines its impact on learning; (b) the effect varies with the individual



characteristics of the learner, and (c) socially appropriate tactics can affect learning even

without an animated persona.

Studies involving pedagogical agents generally show that learners prefer having a

pedagogical agent to not having one, but more evidence needs to be collected to

determine their actual value in promoting learning beyond what disembodied ITSs are

able to do.

3.4.2 Pedagogical experience manipulation and stealth tutoring

A VLE’s underlying simulation provides more subtle opportunities to promote

learning beyond explicit guidance. In most VLEs, many forms of implicit feedback

already exist which mirror feedback one can observe in real environments. For example,

if a basketball is shot, implicit feedback comes from the visual evidence that the ball flies

through the hoop or bounces off the rim. In a virtual environment, it may be that different

events and behaviors may be more appropriate for learning at different times. It may be

pedagogically beneficial to override a simulation such that it establishes ideal conditions

for learning or produces implicit feedback that meets an individual learner’s needs. In the

basketball example, it may be better for the simulation to have the ball go in the hoop if

the goal is to give the learner practice in playing in a tight game (assuming the basket

would make the score closer). In this section, we briefly describe two such approaches:

experience manipulation and stealth tutoring.

There are at least two strategies available for intelligent manipulation of a

learner’s experience in a VLE that can promote learning. The first is through the

amplification or dampening of implicit feedback. For example, in simulations with virtual

humans, it is possible to tweak their behaviors to achieve certain pedagogical objectives.



For example, if a learner commits a cultural error, such mentioning a taboo subject, it

may be productive to have the character overreact to that error to support the learner’s

recognition of the mistake. If the implicit feedback is amplified in this way, the ITS

would be supporting the metacognitive skill in the learner of recognizing that an error

was made, which is a critical early step in acquisition of intercultural skills (Lane, 2007).

Similarly, if a learner has repeatedly demonstrated knowledge of a given cultural rule, it

may make sense to minimize time spent related to that already mastered material. This

could be played out by virtual humans with shorter utterances and dampened visual

reactions when applicable.

A second category of experience manipulation lies in the actual dynamic

modification of the state of the simulation in ways that establish appropriate conditions

for learning. Although modification of implicit feedback can be used in this way, there

are other means. For example, in the Interactive Story Architecture for Training (ISAT)

system, the learner is guided through plot points which are selected based on an evolving

learner model (Magerko, Stensrud, & Holt, 2006). The version of ISAT that runs in the

domain of combat medic skills will manipulate the environment in ways that address the

needs expressed by the learner model. For example, if a learner has difficulty identifying

the proper order in which to treat multiple injured soldiers, ISAT is capable of adapting

the injured soldiers’ injuries and behaviors such that they test the specific weaknesses of

the learner. In the combat medic domain, ISAT may adjust the damage an explosion

inflicts on victims of an attack or tweak their behaviors resulting from sustained injuries –

for example, rolling around on the ground or yelling. These examples of experience



manipulation are intended to establish conditions for learning and allow the learner the

chance to practice the right skills at the best times within a VLE.

Stealth tutoring, a specific kind of experience manipulation, focuses on methods

of conveying tutor-like explicit guidance from within the VLE. Given that explicit help

comes with the risk of learner dependence on it, there may be times when covert support

may be preferable so that a learner is not aware help is being given. Crystal Island, and

the underlying narrative and tutorial planning system U-Director, demonstrate stealth

tutoring in a particularly elegant way (Mott & Lester, 2006). If the system detects that a

learner is wandering around the island and failing to make progress, the underlying

planning model will decide to direct the nurse character to share her opinion that some of

the food on the island might be making people sick. This “hint” comes only after the

detection of floundering and in an entirely plausible way (via a character who is

concerned about the infectious disease). Of course, an accompanying risk of providing

covert support is that, if detected by the learner, self-efficacy and confidence may

subsequently suffer.

Narrative-based learning environments make this kind of support possible. A

similar method is used by the virtual human sergeant in the MRE when his initiative is set

to “high” – he will more openly share his opinion regarding what needs to be done at any

given time (Rickel et al., 2002; Swartout et al., 2006). Although these approaches both

rely on virtual characters (and thus fit under the space of pedagogical agent interactions),

other opportunities exist to give hints and guidance indirectly through the environment.

Care must be taken, however, as with any pedagogical support approach, that the learner

does not become dependent on this assistance.



4 Conclusions

In this chapter we described many of the issues facing designers of intelligent

tutoring systems for virtual learning environments. Specific challenges arise from the

nature of domains that VLEs make accessible, such as tutoring for real-time skills and the

problem of understanding student actions in open learning environments. Expertise is

generally harder to capture and encode in such domains, when compared to domains that

involve forms of symbol manipulation and that are less dynamic. Research into automatic

approaches to acquiring domain knowledge in VLEs would support the longer term

integration of ITSs. We also described the role of pedagogical agents and how they can

be used to promote learning in VLEs. Although current empirical evidence for the use of

pedagogical agents remains unclear, they have been found to have many appealing

properties for learners and to be beneficial in ways other than just promoting learning

(e.g., motivation). Pedagogical agents can also participate in an underlying narrative, and

thus provide more opportunities for tutorial intervention. We described pedagogical

experience manipulation in terms of how it can be used to adjust implicit feedback to

promote a learner’s recognition of success or failure and how it can be used to

dynamically establish ideal conditions for learning. These new capabilities and new

tactics may support “closing the gap” between expert human tutors and computer tutors,

but significantly more empirical research is needed to find out.

Virtual learning environments with intelligent tutoring capabilities are beginning

to be adopted on a widespread basis. For example, TLCTS learning environments are

being used by tens of thousands of military service members (Johnson 2007), and

additional learning environments are being developed for non-military use. Because



these learning environments are instrumented and log all learner actions, they are an

excellent source of data to assess the effectiveness of tutoring techniques in VLEs.

Several key questions remain unanswered in the literature regarding the use of

ITSs in modern VLEs. For example, how distracting is explicit feedback? How do

different modalities compare with respect to distraction? As far as pedagogical

experience manipulation, what is the proper balance between narrative control and

explicit tutorial control? What other kinds of guidance are possible through stealth

techniques, such as difficulty management and task selection? When are explicit

measures required and how do they compare when delivered via stealth approaches?

What are the risks of stealth guidance and experience manipulation on learners with

respect to confidence, self-efficacy, and help-seeking skills?

Modern VLEs make realistic practice in a computer-based environment possible,

and answers to these kinds of questions will have great impact on how effective VLEs

may become. There is no end in sight to the immersive potential for virtual environments

– it is important to remember, as Rickel and Johnson (1997) pointed out, that learners

will continue to exhibit misconceptions and hit impasses. In order to maximize the

teaching power of modern VLEs, it will be important to continue to consider these

empirical questions, understand the accompanying risks, and create technological

advances that adhere to principles of effective learning.
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