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Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

This book is the second in a planned series of books that examine key topics (e.g., learner modeling,
instructional strategies, authoring, domain modeling, learning effect, and team tutoring) in intelligent
tutoring system (ITS) design through the lens of the Generalized Intelligent Framework for Tutoring
(GIFT; Sottilare, Brawner, Goldberg, and Holden, 2012), a modular, service-oriented architecture created
to develop standards for authoring, managing instruction, and analyzing the effect of ITS technologies.

This preface introduces tutoring functions, provides instructional best practices, and examines the
motivation for standards for the design, authoring, instruction, and analysis functions within ITSs. Next,
we introduce GIFT design principles, and finally, we discuss how readers might use this book as a design
tool. We begin by examining the major components of ITSs.

Components and Functions of Intelligent Tutoring Systems

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi
& Bourdeau, 2010; Graesser, Conley & Olney, 2012; Psotka & Multter, 2008; Sleeman & Brown, 1982;
VanLehn, 2006; Woolf, 2009): The domain model, the student model, the tutoring model, and the user-
interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding
labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of
the sensor module, which can be viewed as an expansion of the user interface.

(1) The domain model contains the set of skills, knowledge, and strategies of the topic being tutored.
It normally contains the ideal expert knowledge and also the bugs, mal-rules, and misconceptions
that students periodically exhibit.

(2) The learner model consists of the cognitive, affective, motivational, and other psychological
states that evolve during the course of learning. It is often viewed as an overlay (subset) of the
domain model, which changes over the course of tutoring. For example, “knowledge tracing”
tracks the learner’s progress from problem to problem and builds a profile of strengths and weak-
nesses relative to the domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). An ITS
may also consider psychological states outside of the domain model that need to be considered as
parameters to guide tutoring.

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the do-
main and learner models as input and selects tutoring strategies, steps, and actions on what the tu-
tor should do next in the exchange. In mixed-initiative systems, the learners may also take ac-
tions, ask questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus &
Graesser, 2009), but the ITS always needs to be ready to decide “what to do next” at any point
and this is determined by a tutoring model that captures the researchers’ pedagogical theories.

(4) The user interface interprets the learner’s contributions through various input media (speech, typ-
ing, clicking) and produces output in different media (text, diagrams, animations, agents). In addi-
tion to the conventional human-computer interface features, some recent systems have incorpo-
rated natural language interaction (Graesser et al., 2012; Johnson & Valente, 2008), speech
recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner emo-
tions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg,
Sottilare, Brawner, Holden, 2011).

The designers of the tutor model need to decide what best practices of instruction and human tutoring are
represented in the model along with methods to select optimal ITS strategies (plans) and tactics (actions)
based on the learner’s states, traits and data, and the instructional context.
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Principles of Learning and Instructional Techniques, Strategies & Tactics

Instructional techniques, strategies, and tactics play a central role in the design of the Generalized
Intelligent Framework for Tutoring (GIFT). Instructional techniques represent instructional best practices
and principles from the literature many of which have yet to be implemented within GIFT at the writing
of this volume. Examples of instructional techniques include, but are not limited to error-sensitive
feedback, mastery learning, adaptive spacing and repetition, and fading worked examples. Others are
represented in the next section of this preface. It is anticipated that techniques within GIFT will be
implemented as software-based agents where the agent will monitor learner progress and instructional
context to determine if best practices (agent policies) have been adhered to or violated. Over time the
agent will learn to enforce agent policies in a manner that optimizes learning and performance.

As noted many of the best instructional practices (technigues) have yet to be implemented in GIFT, but
instructional strategies and tactics have been implemented. Instructional strategies (plans for action by
the tutor) are selected based on changes to the learner’s state (cognitive, affective, physical). If a suffi-
cient change in any learner’s state occurs, this trigger’s GIFT to select a generic strategy (e.g., provide
feedback). The instructional context along with the instructional strategy then triggers the specific
selection of an instructional tactic (an action to be taken by the tutor). If the strategy is “provide feed-
back™, then the tactic might be to “provide feedback on the error committed during the presentation of
instructional concept ‘B’ in the chat window during the next turn.” Tactics detail what is to be done, why,
when, and how. Additional details on strategies and tactics is discussed in the prologue (Nye, Sottilare,
Ragusa & Hoffman) of this volume.

An adaptive, intelligent learning environment needs to launch the right instructional strategies at the right
time in a mechanism that attempts to be sensitive to the learner model; maximize learning and motivation;
and minimize training time and costs. Instructional management was the theme of the second advisory
board meeting of the collaboration between (1) the Human Research and Engineering Directorate
(HRED) of the U.S. Army Research Laboratory (ARL) and (2) the Advanced Distributed Learning Center
for Intelligent Tutoring Systems Research & Development (ADL CITSRD) in the Institute for Intelligent
Systems (11S) at the University of Memphis. The purpose of this volume is to provide a succinct illustra-
tion of some instructional strategies and associated principles of learning in order to orient participants at
the board meeting.

Instructional strategies have been advocated by researchers and practitioners in many different fields,
such as education, educational psychology, cognitive and learning sciences, military training, computer
based training, artificial intelligence in education, computer supported collaborative learning, educational
data mining — the list goes on. These fields have different missions, so the shared knowledge among
members of different fields is unspectacular. The landscape of instructional strategies in one field would
not necessarily overlap with the other fields. However, a common ground has been emerging from dozens
of reports prepared by interdisciplinary research panels funded by the government and research organiza-
tions, particularly during the last decade. The following are some examples:

e A Roadmap to Educational Technology (2010, National Science Foundation,
http://www.cra.org/ccc/docs/groe/ GROE Roadmap for Education Technology Final Report.pdf)

e The Army Learning Concept for 2015 (2011, United States Army, http://www-
tradoc.army.mil/tpubs/pams/tp525-8-2.pdf)

e Committee on Science Learning: Computer Games, Simulations, and Education (2011, National
Academy of Science, http://www.nap.edu/catalog.php?record_id=13078)
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Assessing 21st Century Skills (2011, National Academy of Sciences,
http://www.nap.edu/catalog.php?record_id=13215#toc)

e Improving Adult Literacy Instruction (2012, National Academy of Sciences,
http://www.nap.edu/catalog.php?record_id=13242)

e Organizing Instruction and Study to Improve Student Learning (2007, Institute of Education Sci-
ences of the United States Department of Education,
http://ies.ed.gov/ncee/wwc/pdf/practice_guides/20072004.pdf)

e Lifelong Learning at Work and at Home (2007, American Psychological Association and Associ-
ation for Psychological Sciences - see Inaugural editorial for Journal of Educational Psychology,
http://www.apa.org/pubs/journals/features/edu-101-2-259.pdf),

These reports emphasize instructional strategies that are supported by empirical tests with scientific
methodologies. Therefore, the strategies are grounded in science and evidence-based rather than a
folklore of educational practitioners. Nevertheless, all of these reports also emphasize practical applica-
tions of these strategies. Some reports go to great lengths describing how human teachers can apply
particular strategies in teaching practice. Most of them describe computer applications that have imple-
mented and tested the strategies. These reports are, therefore, relevant to GIFT.
Two of these reports illustrate some recommended instructional strategies. Organizing Instruction and
Study to Improve Student Learning was to serve as a practice guide for teachers. The goal was to focus on
a small number of strategies that were backed by science and that could also be reliably applied with the
training that teachers typically receive. In other words, the instructional strategies should not be too
complex or subtle. The research group identified the following seven principles:

1. Space learning over time.

2. Interleave worked example solutions with problem solving exercises.

3. Combine graphics with verbal descriptions.

4. Connect and integrate abstract and concrete representations of concepts.

5. Use quizzing to promote learning.

6. Help students allocate study time effectively.

7. Ask deep explanatory questions.
Lifelong Learning at Work and at Home had a larger and more diverse panel of experts, with an eye
toward adult learners in addition to K-12. These experts generated 25 principles of learning and instruc-
tional best practices.

1. Contiguity Effects: Ideas that need to be associated should be presented contiguously in space
and time.

2. Perceptual-motor Grounding: Concepts benefit from being grounded in perceptual motor expe-
riences, particularly at early stages of learning.



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dual Code and Multimedia Effects: Materials presented in verbal, visual, and multimedia form
richer representations than a single medium.

Testing Effect: Testing enhances learning, particularly when the tests are aligned with important
content.

Spacing Effect: Spaced schedules of studying and testing produce better long-term retention than
a single study session or test.

Exam Expectations: Students benefit more from repeated testing when they expect a final exam.

Generation Effect: Learning is enhanced when learners produce answers compared to having
them recognize answers.

Organization Effects: Outlining, integrating, and synthesizing information produces better learn-
ing than rereading materials or other more passive strategies.

Coherence Effect: Materials and multimedia should explicitly link related ideas and minimize
distracting irrelevant material.

Stories and Example Cases: Stories and example cases tend to be remembered better than di-
dactic facts and abstract principles.

Multiple Examples: An understanding of an abstract concept improves with multiple and varied
examples.

Feedback Effects: Students benefit from feedback on their performance in a learning task, but
the timing of the feedback depends on the task.

Negative Suggestion Effects: Learning wrong information can be reduced when feedback is im-
mediate.

Desirable Difficulties: Challenges make learning and retrieval effortful and thereby have posi-
tive effects on long-term retention.

Manageable Cognitive Load: The information presented to the learner should not overload
working memory.

Segmentation Principle: A complex lesson should be broken down into manageable subparts.

Explanation Effects: Students benefit more from constructing deep coherent explanations (men-
tal models) of the material than memorizing shallow isolated facts.

Deep Questions: Students benefit more from asking and answering deep questions that elicit ex-
planations (e.g., why, why not, how, what-if) than shallow questions (e.g., who, what, when,
where).

Cognitive Disequilibrium: Deep reasoning and learning is stimulated by problems that create
cognitive disequilibrium, such as obstacles to goals, contradictions, conflict, and anomalies.

Cognitive Flexibility: Cognitive flexibility improves with multiple viewpoints that link facts,
skills, procedures, and deep conceptual principles.
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21. Goldilocks Principle: Assignments should not be too hard or too easy, but at the right level of
difficulty for the student’s level of skill or prior knowledge.

22. Metacognition: Students rarely have an accurate knowledge of their cognition so their ability to
calibrate their comprehension, learning, and memory should not be trusted and they need to be
trained to improve important metacognitive judgments.

23. Discovery Learning: Most students have trouble discovering important principles on their own,
without careful guidance, scaffolding, or materials with well-crafted affordances.

24. Self-regulated Learning: Most students need training on how to self-regulate their learning and
other cognitive processes.

25. Anchored Learning: Learning is deeper and students are more motivated when the materials and
skills are anchored in real world problems that matter to the learner.

These lists provide an initial glimpse of instructional strategies, but in a number of ways fall short of
providing sufficient guidance for GIFT. The precise conditions in which each strategy should be applied
require further specification. Indeed, each strategy is appropriate for some conditions but not others, e.g.,
distributed over massed practice is typically desirable, but sometimes massed practice is best. There are
contradictions or tradeoffs between some of these strategies, e.g., coherence effect versus cognitive
disequilibrium. Another shortcoming is that these strategies emphasize cognitive mechanisms at the
expense of not giving adequate attention to motivation, emotions, and social interaction. We live in a
world where these non-cognitive factors are just as important as cognitive mechanisms.

Members of the second advisory board were selected because their research fills many of these gaps and
provides more sophisticated instructional strategies for GIFT. More specifically, researchers on the board
have made major advances in four thematic subcategories: (1) meta-cognition and self-regulated learning,
(2) affect, emotions, engagement, and grit, (3) guided instruction and scaffolding, and (4) natural lan-
guage and discourse. Research in these subcategories is destined to move the horizon of instructional
strategies beyond conventional computer-based instruction and onto learning environments with serious
games, virtual reality, self-regulation, social interaction, and scaffolding techniques for enhancing both
learning and motivation.

Motivations for Intelligent Tutoring System Standards

An emphasis on self-regulated learning has highlighted a requirement for point-of-need training in
environments where human tutors are either unavailable or impractical. ITSs have been shown to be as
effective as expert human tutors (VanLehn, 2011) in one-to-one tutoring in well-defined domains
(e.g., mathematics or physics) and significantly better than traditional classroom training environments.
ITSs have demonstrated significant promise, but fifty years of research have been unsuccessful in making
ITSs ubiquitous in military training or the tool of choice in our educational system. Why?

The availability and use of ITSs have been constrained by their high development costs, their limited
reuse, a lack of standards, and their inadequate adaptability to the needs of learners (Picard, 2006). Their
application to military domains is further hampered by the complex and often ill-defined environments in
which our military operates today. ITSs are often built as domain-specific, unique, one-of-a-kind, largely
domain-dependent solutions focused on a single pedagogical strategy (e.g., model tracing or constraint-
based approaches) when complex learning domains may require novel or hybrid approaches. Therefore, a
modular ITS framework and standards are needed to enhance reuse, support authoring, optimize instruc-
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tional strategies, and lower the cost and skillset needed for users to adopt ITS solutions for training and
education. It was out of this need that the idea for GIFT arose.

GIFT has three primary functions: authoring, instructional management, and analysis. First, it is a
framework for authoring new ITS components, methods, strategies, and whole tutoring systems. Second,
GIFT is an instructional manager that integrates selected tutoring principals and strategies for use in ITSs.
Finally, GIFT is an experimental testbed to analyze the effectiveness and impact of ITS components,
tools, and methods. GIFT is based on a learner-centric approach with the goal of improving linkages in
the updated adaptive tutoring learning effect chain (Figure P-1).

inform  jnstructional

strategy =
) selection ) ; ; )
learner % learner ﬂ) mst;: ;;f:nal % learning
data states + selection gains
instructional
confext

Figure P-1. Adaptive Tutoring Learning Effect Chain

(Sottilare, 2012; Sottilare, Ragusa, Hoffman & Goldberg, 2013)

A deeper understanding of the learner’s behaviors, traits, and preferences (learner data) collected through
performance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation
of the learner’s states (e.g., engagement level, confusion, frustration), which will result in a better and
more persistent model of the learner. To enhance the adaptability of the ITS, methods are needed to
accurately classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal
instructional strategies given the learner’s existing states. A more comprehensive learner model will allow
the ITS to adapt more appropriately to address the learner’s needs by changing the instructional strategy
(e.g., content, flow, or feedback). An instructional strategy that is better aligned to the learner’s needs is
more likely to positively influence their learning gains. It is with the goal of optimized learning gains in
mind that the design principles for GIFT were formulated.

GIFT Design Principles

The methodology for developing a modular, computer-based tutoring framework for training and educa-
tion considered major design goals, anticipated uses, and applications. The design process also looked at
enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences beyond the
state of practice for ITSs today. A significant focus of the GIFT design was on domain-dependent
elements in the domain module. This was done to allow large-scale reuse of the remaining GIFT modules
across different training domains and thereby reduce the development costs for ITSs.

One design principle adopted in GIFT is that each module should be capable of gathering information
from other modules according to the design specification. Designing to this principle resulted in standard
message sets and message transmission rules (i.e., request-driven, event-driven, or periodic transmis-
sions). For instance, the pedagogical module is capable of receiving information from the learner module
to develop courses of action for future instructional content to be displayed, manage flow and challenge

Vi
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level, and select appropriate feedback. Changes to the learner’s state (e.g., engagement, motivation, or
affect) trigger messages to the pedagogical module, which then recommends general courses of action
(e.g., ask a question or prompt the learner for more information) to the domain module, which provides a
domain-specific intervention (e.g., what is the next step?).

Another design principle adopted within GIFT is the separation of content from the executable code (Patil
& Abraham, 2010). Data and data structures are placed within models and libraries, while software
processes are programmed into interoperable modules. Efficiency and effectiveness goals (e.g., accelerat-
ed learning and enhanced retention) were considered to address the time available for military training
and the renewed emphasis on self-regulated learning. An outgrowth of this emphasis on efficiency and
effectiveness led Dr. Sottilare to seek external collaboration and guidance. In 2012, U.S. Army Research
Laboratory (ARL) with the University of Memphis developed advisory boards of senior tutoring system
scientists from academia and government to influence the GIFT design goals moving forward. An
advisory board for learner modeling was completed in September 2012, and future boards are planned for
instructional strategy design, authoring and expert modeling, learning effect evaluations, and domain
modeling.

Design Goals and Anticipated Uses
GIFT may be used as any of the following:
1. An architectural framework with modular, interchangeable elements and defined relationships
2. A set of specifications to guide ITS development
3. A set of exemplars instantiating GIFT to support authoring and ease-of-use
4. A technical platform or testbed for guiding the development of concrete systems
These use cases have been distilled down into the three primary functional areas, or constructs:

authoring, instructional management, and analysis. Discussed below are the purposes, associated design
goals, and anticipated uses for each of the GIFT constructs.

GIFT Authoring Construct

The purpose of the GIFT authoring construct is to provide technology (tools and methods) to make it
affordable and easier to build ITSs and ITS components. Toward this end, a set of extensible markup
language (XML) configuration tools continues to be developed to allow for data-driven changes to the
design and implementation of GIFT-generated ITSs. The design goals for the GIFT authoring construct
have been adapted from Murray (1999, 2003) and Sottilare & Gilbert (2011). The GIFT authoring design
goals are as follow:

o Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by auto-
mating authoring processes, developing authoring tools and methods, and developing standards to
promote reuse.

o Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers,
training developers, and trainers) to author, analyze, and employ ITS technologies.

e Provide tools to aid designers/authors/trainers/researchers in organizing their knowledge.

vii
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e Support (structure, recommend, or enforce) good design principles in pedagogy through user in-
terfaces, and other interactions.

o Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype capabil-
ities.

e Employ standards to support rapid integration of external training/tutoring environments (e.g.,
simulators, serious games, slide presentations, transmedia narratives, and other interactive multi-
media).

o Develop/exploit common tools and user interfaces to adapt ITS design through data-driven
means.

e Promote reuse through domain-independent modules and data structures.
e Leverage open-source solutions to reduce ITS development and sustainment costs.

o Develop interfaces/gateways to widely used commercial and academics tools (e.g., games, sen-
sors, toolkits, virtual humans).

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the antici-
pated users, which include learners, domain experts, instructional system designers, training and tutoring
system developers, trainers and teachers, and researchers. In addition to user models and graphical user
interfaces, GIFT authoring tools include domain-specific knowledge configuration tools, instructional
strategy development tools, and a compiler to generate executable ITSs from GIFT components in a
variety of formats (e.g., PC, Android, and IPad).

Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge
elements or reusing existing (stored) knowledge elements. Domain knowledge elements include learning
objectives, media, task descriptions, task conditions, standards and measures of success, common mis-
conceptions, feedback library, and a question library, which are informed by instructional system design
principles that, in turn inform concept maps for lessons and whole courses. The task descriptions, task
conditions, standards and measures of success, and common misconceptions may be informed by an
expert or ideal learner model derived through a task analysis of the behaviors of a highly skilled user.
ARL is investigating techniques to automate this expert model development process to reduce the time
and cost of developing ITSs. In addition to feedback and questions, supplementary tools are anticipated to
author explanations, summaries, examples, analogies, hints, and prompts in support of GIFT’s instruc-
tional management construct.

GIFT Instructional Management Construct

The purpose of the GIFT instructional management construct is to integrate pedagogical best practices in
GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models
for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate pedagogi-
cal models, instructional strategies, or instructional tactics from other tutoring systems into GIFT. The
design goals for the GIFT instructional management construct are the following:

e Support ITS instruction for individuals and small teams in local and geographically distributed

training environments (e.g., mobile training), and in both well-defined and ill-defined learning
domains.

viii
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e Provide for comprehensive learner models that incorporate learner states, traits, demographics,
and historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.

e Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological
measures and use these data along with instructional context to inform models to classify (in near
real time) the learner’s states (e.g., cognitive and affective).

e Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and mi-
cro-adaptive instructional strategies and tactics (adaptation based learner states and state changes
during training).

e Support the consideration of individual differences where they have empirically been documented
to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention,
and performance).

e Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and
learning class (e.g., cognitive learning, affective learning, psychomotor learning, social learning).

e Model appropriate instructional strategies and tactics of expert human tutors to develop a com-
prehensive pedagogical model.

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in
learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes
conditions of learning and theory of instruction (Gagne, 1985), component display theory (Merrill, Reiser,
Ranney & Trafton, 1992), cognitive learning (Anderson & Krathwohl, 2001), affective learning
(Krathwohl, Bloom, and Masia, 1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and
social learning (Sottilare, Holden, Brawner, and Goldberg, 2011; Soller, 2001). Aligning with our goal to
model expert human tutors, GIFT considers the INSPIRE model of tutoring success (Lepper, Drake, and
O’Donnell-Johnson, 1997) and the tutoring process defined by Person, Kreuz, Zwaan, and Graesser
(1995) in the development of GIFT instructional strategies and tactics.

INSPIRE is an acronym that highlights the seven critical characteristics of successful tutors: Intelligent,
Nurturant, Socratic, Progressive, Indirect, Reflective, and Encouraging. Graesser & Person’s (1994)
tutoring process includes a tutor-learner interchange where the tutor asks a question, the learner answers
the question, the tutor gives feedback on the answer, then the tutor and learner collaboratively improve
the quality of (or embellish) the answer. Finally, the tutor evaluates learner’s understanding of the answer.

As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include
both automated instruction and blended instruction, where human tutors/teachers/trainers use GIFT to
support their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be
widely used beyond military training contexts as GIFT users expand the number and type of learning
domains and resulting ITS generated using GIFT.

GIFT Analysis Construct

The purpose of the GIFT analysis construct is to allow ITS researchers to experimentally assess and
evaluate ITS technologies (ITS components, tools, and methods). The design goals for the GIFT analysis
construct are the following:

e Support the conduct of formative assessments to improve learning
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e Support summative evaluations to gauge the effect of technologies on learning

e Support assessment of ITS processes to understand how learning is progressing throughout the
tutoring process

e Support evaluation of resulting learning versus stated learning objectives
e Provide diagnostics to identify areas for improvement within ITS processes

e Support the ability to comparatively evaluate ITS technologies against traditional tutoring or
classroom teaching methods

o Develop a testbed methodology to support assessments and evaluations (Figure P-2)

l Modify learner model
Learner i
Model GIFT

Performance, retention,
enhanced skills, etc

Domai_n- E . tal Empirical
> specific xgers':';:: al > Evaluation of
knowledge Y Learning Outcomes

Tutorvs. Traditional Tutoring
Interventionvs. Non-Intervention
Comparison of learnermodels

Instructional Comparison of instructional tactics
Strategies Ablative tutoring studies
T Optimize strategies
Adapt content

Figure P-2. GIFT Analysis Testbed Methodology

Figure P-2 illustrates an analysis testbed methodology being implemented in GIFT. This methodology
was derived from Hanks, Pollack, and Cohen (1993) to allow manipulation of the learner model, instruc-
tional strategies, and domain-specific knowledge within GIFT, and support analysis of artificially-
intelligent agents that influence the adaptive tutoring learning effect chain. In developing their testbed
methodology, Hanks et al. reviewed four testbed implementations (Tileworld, the Michigan Intelligent
Coordination Experiment [MICE], the Phoenix testbed, and Truckworld) for evaluating the performance
of artificially intelligent agents. Although agents have changed substantially in complexity during the past
20-25 years, the methods to evaluate their performance have remained markedly similar.

The authors designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks et al., 1993) that
testbeds have three critical roles related to the three phases of research. During the exploratory phase,
agent behaviors need to be observed and classified in broad categories. This can be performed in an
experimental environment. During the confirmatory phase, the testbed is needed to allow more strict
characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in
order to generalize results, measurement and replication of conditions must be possible. Similarly, the
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GIFT analysis methodology (Figure P-2) enables the comparison/contrast of ITS elements and assessment
of their effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).

How to Use This Book

This book is organized into four sections:

I.  The Influence of Affect, Engagement and Grit in Instructional Management
Il.  Metacognition and Self Regulated Learning

I1l.  Natural Language and Discourse

IV.  Instruction and Scaffolding

Section I, The Influence of Affect, Engagement and Grit in Instructional Management, examines research,
emerging concepts, and future directions for the instructional management of learner states by computer-
based ITSs. Techniques, strategies, and tactics used by ITSs are reviewed with respect to their ability to
enhance positive affect, moderate the influence of negative affect, promote engagement, and develop grit,
also known as perseverance, as a desirable trait. Section Il, Metacognition and Self-Regulated Learning,
examines how metacognition (thinking about thinking) and self-regulated learning (self-initiated and self-
managed instruction beyond the formal classroom environment) influence the design of ITSs. Section Ill,
Natural Language and Discourse, reviews best practices of dialogue-based tutoring and their impact on
ITS design. Section IV, Instruction and Scaffolding, focuses primarily on scaffolding and the Zone of
Proximal Development as instructional strategies for equalizing the learner’s domain competence with the
challenge level of the domain content in order to maintain/promote engagement.

Chapter authors in each section were carefully selected for participation in this project based on their
expertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for
Intelligent Tutoring Systems: Volume 2 - Instructional Management is intended to be a design resource as
well as community research resource that can be of significant benefit as an educational guide for devel-
oping ITS scientists, a roadmap for ITS research opportunities, and a roadmap to the development and
application of GIFT.
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Defining Instructional Challenges, Strategies, and Tactics for
Adaptive Intelligent Tutoring Systems

Background

Instructional strategies play a critical role in intelligent tutoring systems (ITSs), human one-to-one
tutoring, and traditional classroom instruction. They are the mechanisms within an ITS that determine the
optimal course of action to improve student learning. However, the definition and purpose of instructional
strategies lacks clear consensus. Despite this ontological roadblock, the concept of an “instructional
strategy” has strong theoretical and practical implications for ITS designs and is especially relevant to
generalized tutoring architectures. This prologue provides four arguments in support of the goal of a
standard purpose and definitions for instructional strategies and tactics. First, we review the purpose of
instructional strategies and tactics by reviewing their theoretical underpinnings in the literature and the
importance of these concepts for ITSs. Second, we put forth a set of standard definitions for adaptive
instructional strategy concepts, which include categories of strategies and tactics. Finally, we examine
how these standard concepts might be represented and implemented in GIFT, a tutoring architecture that
is attempting to capture standards for authoring, automated instruction, and evaluation of the effects of
ITS technologies. Finally, the future of instructional strategies and tactics for adaptive ITSs are consid-
ered from the perspective of ITS researchers, developers, authors, and end-users.

Figure 1 shows an archetypal breakdown of ITS components plus interaction with the student or learner.
This diagram has been expanded on at length by texts such as Building Intelligent Tutoring Systems
(Woolf, 2009), but dates back to at least the 1980s (e.g., Foundations of Intelligent Tutoring Systems;
Polson & Richardson, 1988). Often, these diagrams only note the existence of the four components and
imply that the student interacts through the communication interface. The arrows in Figure 1 indicate
typical pathways that information moves between modules, but do not specify information types or
formats. In general, an ITS has four primary functions at runtime: a communication interface, a domain
model, pedagogical model, and a student or learner model. The communication interface receives student
input, and presents feedback to the student. The domain model contains information that is specific to the
content that the ITS teaches. The student model classifies states of the learner (e.g., cognitive, affective,
performance) to determine the student’s progress toward the mastery of presented concepts). The relation-
ships between these models vary between ITSs, but these roles are quite common.

Communication
Interface

Student
Model

Pedagogical
Model

Domain Model

Figure 1. Archetypal Four-Component Tutoring System Design (plus Student).
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The pedagogical model handles the actual “tutoring” aspects of the tutoring system. A pedagogical
module determines what information to present to the student and what information is needed from the
student to determine the student’s knowledge and skill, as compared to the expected knowledge and skill
at any point in the tutoring process. In many ITSs, expected knowledge and skills are used as standards
that are part of the domain model and are called the expert model or ideal student model.

In a typical system, the domain and student models provide information on progress and student state,
respectively, to the pedagogical model. This information is used to make decisions on which actions to
take next. After the pedagogical module has decided on an action (e.g., ask a question), the communica-
tion module determines how to present this information or modify the environment to reflect recommend-
ed changes. The effectiveness of the ITS can only be as good as the strategies within the pedagogical
model. Some research has indicated that using machine learning techniques to fine-tune these strategies
might increase the learning gains realized by an ITS significantly (Chi, VanLehn & Litman, 2010).
However, the definition and nature of these instructional strategies is not easy to pin down, due to
significant differences in how systems and scholars conceptualize and implement instructional strategies.

An “instructional strategy” could refer to a whole learning theory (e.g., direct instruction vs. a construc-
tivist approach), a specific heuristic (rule of thumb) used by a teacher, a learning principle extracted from
studies of cognition, or a set of rules within an ITS. The concept of an instructional strategy predates ITSs
and has been progressively extended to accommodate not only different representations, but entirely
different levels of analysis when considering how to select pedagogically useful behaviors. Strategies may
also exist at multiple levels, such as the macro-adaptive level (e.g., selecting course units or assigning
instructional tasks) or the micro-adaptive level (e.g., helping with assigned tasks or optimizing presenta-
tion and communication). Other terms sometimes used interchangeably with the term instructional
strategy are pedagogic strategy, pedagogical strategy, teaching strategy, instructional tactic, instruction-
al technique, or instructional principle.

Whatever we choose to call them, instructional strategies are important because they form the foundation
for critical decisions by the ITS to provide content or feedback, change the challenge level of a scenario,
or decide when to move forward to the next concept in a lesson. An ITS uses strategies during instruction
to adapt based on the student’s learning needs, as identified by the student’s performance, states, and
traits. We envision this will also be the case for teams as ITS technologies are extended to collaborative
learning environments.

Expert Viewpoints on Instructional Strategies

A meeting of ITS experts was convened in July 2013 at the University of Memphis to discuss instruction-
al strategies and make recommendations for the design of GIFT’s pedagogical module. This advisory
board consisted of leading academic and government scientists in the field. Many of these experts have
authored chapters within this book. Despite the challenge of unambiguously defining instructional
strategies, the group had a clear consensus that instructional strategies were both useful and important.
The group noted that instructional strategies add value to the design, evaluation, and improvement of ITSs
in at least three ways: 1) by representing an expert model of pedagogy; 2) by separating pedagogical
behavior from domain knowledge; and 3) by grouping ITSs into different categories, which helps us to
study and compare their effectiveness in a variety of tutoring domains.

First, expert models may be developed by an expert teacher who has deep understanding of the domain
(Mitrovic, Martin & Suraweera, 2007) or by learning these strategies from data sets collected from human
tutoring sessions (Graesser, D’Mello et al., 2012). Second, the separation of pedagogical behavior from
domain knowledge presents distinct advantages in generalized tutoring systems where the goal is to reuse
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instructional strategies for new domains (Sottilare, Goldberg, Brawner & Holden, 2012). Finally, given
cognitive processes vary across different learning tasks and that the human mind is constrained by limited
working memory, certain instructional approaches may be more effective than others for different
problems and people (Koedinger & Corbett, 2006). Categorizing ITSs by their instructional strategies can
be used to help evaluate learning effects across different systems, domains, and student populations.

Experts in the field also noted differences in the goal of instructional strategies, their implementation, and
scope. The next section discusses these viewpoints and attempts to identify categories of instructional
strategies that are based on these differences.

Instructional Goals for Strategies

The experts had a strong consensus that instructional strategies were intended to guide the learner toward
a set of instructional goals, though they did not necessarily agree on the nature of those goals. While some
experts focused on domain learning outcomes as goals, others believed that instructional strategies
implied a focus on longer-term goals such as real-life applications, transfer learning, or self-regulated
learning. Still other experts saw instructional strategies as a methodology for customizing goals for each
user or curriculum.

These offer three different perspectives on the goals for an instructional strategy. In the first perspective,
an instructional strategy makes decisions that are intended to improve the learner’s knowledge of the
domain trained by the ITS. This is probably the most common view of an instructional strategy. ITSs
often focus on helping a student learn a particular topic or set of domain skills that align with curriculum
goals. In the second perspective, an instructional strategy focuses primarily on longer-term learning
outcomes. These could include retention, transfer of learning to other operational contexts, learning-to-
learn, or metacognition where a student builds skills that helps make learning more efficient (Azevedo &
Cromley, 2004; Chi & VanLehn, 2007). In the final case, the ITS acts as a framework for curriculum
designers but does not inherently assume learning goals. This allows a learner, group of learners, or
teacher to actively construct personalized goals, such as through self-regulated learning. For example,
Betty’s Brain focuses on causal systems such as ecology and allows the students to select and explore
different causal relationships (Biswas, Segedy & Kinnebrew, 2013).

These different views of goals demonstrate that ITSs have been built with a range of goals in mind,
ranging from a sharp focus on specific domain concepts to allowing ad-hoc learner-defined goals that the
strategies work to support. Despite different views of the best goals for strategies, experts appear to have
a consensus that strategies select ITS behavior that guides a learner toward one or more instructional
goals. However, these goals might not need to be the same for different systems or even for different
users of the same system.

Discrete vs. Continuous Representations for Strategies

Another viewpoint on instructional strategies contrasts discrete and continuous representations of instruc-
tional strategies. If instructional strategies drive a decision-making process that guides learners toward
particular outcomes, then strategies must somehow be represented as functions or processes. A “condi-
tional” system implies a set of rules or boundaries, which are used to determine tutoring behavior.
Considering instructional strategies as a “policy” implies that they might be framed in terms of a Markov
Decision Process (MDP) that maximizes learning over a given time horizon (Puterman, 2009). Finally,
considering instructional strategies as “planning” to reach a particular goal could imply that the purpose
of an ITS is to perform “path planning” that guides the learner toward a particular learning state, while
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minimizing certain costs, such as study time. Fundamentally, these are just different representations of the
problem, which should yield similar tutoring behavior if implemented optimally.

However, from the standpoint of implementing an ITS, they can imply significantly different designs.
One difference between these perspectives is the difference between considering instructional strategies
from a discrete versus a continuous perspective. Discrete, state-based systems are represented strongly
among ITSs, with both constraint-based and production rule systems relying on discrete conditions to
select actions. GIFT currently uses a rule-based decision process that is driven by transitions between
discrete states (Sottilare et al., 2012). However, continuous representations of strategies are equally valid.
Rather than breaking the tutor’s knowledge into discrete states or conditions (e.g., right answer vs. wrong
answer), a tutoring system can instead calculate the expected utility of actions based on continuous
features (i.e., a multi-attribute utility).

In a discrete space, such as one based on conditional rules, knowledge from the student model and
domain are used to determine discrete states that map to a particular optimal action set. For example, an
ITS might employ a simple strategy that selects between three possible actions: a Concept Map Task
(e.g., drawing semantic links between concepts), a Tutorial Dialog (e.g., natural language dialog with a
tutoring avatar), and No Action. Two rules are evaluated, one to determine if the learner has low
knowledge (Low Knowledge) and one to determine if the learner learns best from verbal explanations
(Verbal Learner). By evaluating the combinations of these rules, the appropriate intervention can be
selected. By comparison, a hypothetical utility function can calculate continuous equivalents to the rules
in the discrete version: Knowledge Level and Verbal Learning. By calculating the utility of each action,
the strategy can select the best action or no action, if no action has a positive utility. For this small
example, the continuous representation can be easily reduced to the discrete version by stating threshold
rules for the continuous inputs. Even for more complicated strategies, discrete equivalents can produce
the same decisions, so long as the actions are discrete. So then, this difference does not fundamentally
define the behavior or quality of a tutoring system. However, these choices may significantly affect the
effort to represent certain strategies.

Some of our experts noted that optimal instructional behavior often balances multiple interacting or
competing facets. Representing instructional strategies as a continuous field of action utilities captures
this intuition more naturally than a conditional system. A rule-based system must segment the state space
to define the action(s) that should occur in each case. By comparison, a continuous system can weigh
which actions are better for a given state and pick the best one(s). This does not mean that continuous
representations (e.g., utility-based agents, certain MDPs) are better than discrete ones. For example,
conditional systems allow a high degree of control and interpretability over strategy decision making. By
comparison, determining the higher utility value for two possible actions is seldom easy for a human to
interpret. These differences probably indicate that continuous or discrete representations for strategies are
different enough to offer advantages for different domains or scopes of learning goals. Mixed representa-
tions (i.e., hybrid systems) are a third option that may allow the greatest flexibility, though at the cost of
increased complexity for creating a system.

Scope of Strategies: Domain-Independence and Domain-Dependence

A related debate muddies the distinction between domain-independent strategies versus domain-
dependent strategies. The definition of a “domain independent” instructional strategy is ambiguous. If we
take instructional strategies as an approach to move a learner toward some learning goals, it is not entirely
clear which strategies could move every learner toward any arbitrary learning goal. Moreover, even for
strategies that could apply to any learning goal in any domain, it would defy reason to expect that the
same strategy would work equally well for all domains and learning goals. Should a strategy be consid-
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ered domain-independent if it works twice as well in one domain compared to another? Unfortunately,
without clear cut-and-dry standards for what makes a strategy domain-independent, this question does not
have a direct answer.

To get a better handle on this distinction, it is important to pin down what domain-independence means
for a strategy. There are two facets to domain-independence: domain neutrality and effectiveness. By
domain neutrality, we mean that a domain-independent strategy must not reference or rely upon any
domain-specific information. It may be able to receive domain-specific information and process it using
its domain-independent mechanisms, but it cannot contain any assumptions specific to a domain. Without
this requirement, a strategy could explicitly rely on domain-specific features. This must be considered a
minimum requirement for a domain-independent strategy. However, depending on how a domain is
defined, the space of strategies with no domain assumptions may be quite small. This implies that instead
of a two-category system (independent vs. dependent), strategies might instead be considered in terms of
the set of domains where they apply. This perspective is considered in more detail later in this section.

The effectiveness of a strategy for a domain might also be considered. Effectiveness means that the
strategy must bring the learner closer to instructional goals. Obviously, a domain-independent instruction-
al strategy should be useful for instructional purposes across different domains. However, there are no
clear-cut standards for establishing overall effectiveness of different instructional strategies. Attempts to
classify strategies to improve evaluation, such as the Framework for Instructional Technology (FIT)
model, have been proposed, but more empirical evaluations are needed to understand the interaction of
strategies and different domains (Durlach, 2012). Despite this, there could still be long-term value in
considering domain-dependence in terms of the relative effectiveness of strategies for different domains.

These perspectives on domain-dependence and independence can be stated more formally. Assume that D
is the set of all domains taught by ITSs, where each specific domain d (where d is a member of D) has a
set of G4 possible instructional goals. Second, assume that s is an instructional strategy and D; is the set of
domains where that strategy can be implemented, regardless of effectiveness. Next, assume that E(S, gq)
represents some evaluation function for the effectiveness of a strategy s for the learning goal g4, where
E(s, gg) > 0 indicates that the strategy brings a student closer to that goal, E(s, g4) = 0 indicates that it is
ineffective and E(s, gq4) < 0 indicates that it actually hinders learning (e.g., introduces misconceptions).

Table 1 shows the implications of different perspectives on domain independence versus domain depend-
ence. In the first case, strategies must be categorized as either domain-independent or domain-specific. A
domain-independent strategy can be used for all the domains of interest (D). A domain-specific strategy is
effective for only one domain, so the set (|Ds|) has exactly one member. This has the clear limitation that
the majority of strategies might be applicable to multiple domains, but not all domains. This category
scheme does not give a way to represent that scenario. The “Set of Domains™ case accommodates these
cases that fall through the cracks. While it has the same definition of domain-independence, a domain-
dependent strategy is classified as one that cannot be applied to one or more domains. Under this repre-
sentation, domain-independence is merely a special case of a strategy being applicable to multiple
domains. This approach is also compatible with different ways to classify domains, because it relies on
listing out the domains where each strategy can be used.
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Table 1. Different Types of Domain Dependence and Independence.

Viewpoint Domain-Independent Domain-Dependent
Domain-Independent vs. D:=D D=1
Domain-Specific Categories
Set of Domains for Ds=D D\Dsl=&
Each Strategy s
Relative Effectiveness of E(s, ga) = 0 VdeD E(s, ga) =0 ideD
Strategy s for Domains Jgic Gd Vgie Ga

In the final viewpoint, a domain-independent instructional strategy must be at least marginally effective in
all domains. This would require E(s, gq) > 0 for at least one meaningful learning goal g4 in order to be
considered an effective strategy for the domain d. A domain-dependent strategy would be the converse of
this: for at least one domain, it is ineffective or hinders all instructional goals. This standard is obviously a
very low bar to cross: the strategy would only need to be better than nothing for a single learning goal.
Obviously, more stringent conditions might be applied, such as being more effective than some threshold
(i.e., E(s, gq) > c) or being effective for a larger number of learning goals within a domain. A domain-
independent strategy might be defined as one that satisfies this sort of condition for all or most domains
of pedagogical interest.

However, this raises the question: what have we gained by converting our hypothetical continuous
measure of effectiveness into a Boolean “domain-independent” categorization? There is no theoretical
benefit for representing it along these lines. However, from the standpoint of ITS authors, a simple
classification is far easier to evaluate than a large set of estimates of effectiveness. With that said, similar
or better authoring intuitions might arise from specific measures of the effectiveness of a strategy for a
particular domain or from the average effectiveness of a strategy across many domains. Unfortunately,
evaluation of the relative effectiveness of strategies across different domains is sparse. This probably
makes a graded or continuous approach to considering effectiveness infeasible in the near term.

So far, we have identified the range of terms, definitions, and contexts for the use of instructional strate-
gies within the literature and we have solicited the opinions of experts in the ITS field. In the following
section begin to define and support a set of terms and definitions for instructional strategies within
adaptive ITSs.

Defining a Hierarchical Concept of Instructional Strategies

As we have examined the dimensions of instructional strategies, it is now time to define a relationship
between these dimensions and boundaries of the term instructional strategies. Throughout this book, the
reader is likely to see wide array terms to imply instructional strategy: pedagogic strategy, pedagogical
strategy, teaching strategy, instructional tactic, instructional technique, or instructional principle. Since
we are attempting to establish standards for GIFT and its user community, we pose the following hierar-
chical concept of instructional strategies.

For our purposes, instructional strategies are “plans, recommendations, and processes provided by the ITS
to bring the student closer to the instructional goals, which are generally initiated by instructional chal-
lenges.” Instructional goals include, but may not be limited to, enhanced learning (knowledge and skill
acquisition), accelerated learning, enhanced performance (application of knowledge and skill), enhanced
retention, enhanced engagement (increased opportunity for learning), and enhanced motivation (increased

XXi



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

potential to overcome difficulties and persist in learning). Effective ITSs are effective because they
influence student progress toward these goals.

The adaptive tutoring learning effect chain, a model for learner-ITS interaction, is shown in Figure 2.
Instructional strategies are considered to be largely domain-independent and may be either macro-
adaptive (pre-instructional) or micro-adaptive (during instruction). Recommendations of courses or
lessons based on the student’s previous training are an example of a macro-adaptive strategy, while a
recommendation to ask the student a question to assess learning is a micro-adaptive strategy based on
current performance. A hierarchical relationship exists between instructional strategies and instructional
tactics. Instructional tactics are “actions taken by the ITS in response to strategies (plans or recommenda-
tions).” Tactics are domain-specific actions. For example, the selection and presentation of a context-
relevant question by the tutor is an instructional tactic.

inform  jnstructional

strategy =
informs selection informs instructional influences
learner learner e tactic —_— learning
+ : .
data states selection gains
instructional e

confext

Figure 2. Adaptive Tutoring Learning Effect Chain (Sottilare, Ragusa, Hoffman & Goldberg, 2013).

Within the context of instruction, the ITS adapts instruction in response to either an observation of change
in the learner’s' state (e.g., performance, cognitive, affective) or the learning environment (e.g., game,
webpage, tutor-user interface), which is sufficiently significant to trigger a decision by the ITS. For our
purposes, sufficiently significant implies that an instructional challenge has been identified by the tutor.
For example, the learner makes an error in attempting to solve a problem. The decision is for the ITS to
intervene now or wait until another mistake is made. If the ITS assesses the error is significant enough to
warrant an intervention now, the next decision is which instructional strategy to implement: feedback,
review of content, or content modification. Once a strategy is selected, the specific action to select and
present/modify information is a tactic.

It is also important to note what instructional strategies are not. Instructional strategies are not learning
strategies. Unlike an instructional strategy, which is initiated by the tutor, a learning strategy is owned by
the student and is the student’s approach to understanding information, building/rebuilding mental
models, and using these models to solve problems. Good instructional strategies should reinforce effec-
tive learning outcomes and may do so by reinforcing proven learning strategies. So, instructional strate-
gies and learning strategies are related, but they are different.

Instructional strategies are also not educational philosophies or theories. Constructivism is an educational
philosophy in which learners are encouraged to “work together and support each other as they use a
variety of tools and information sources in their guided pursuit of learning goals and problem-solving
activities” (Perkins, 1991). This is relevant to instruction since learners construct knowledge from
information generated from previous experiences. While educational philosophies like constructivism can
and should drive the design of ITSs, they illustrate generalized goals and are not instructional strategies.

YThe terms learner, student, and user are used interchangeably within this book. However, users may in some instances be more
expansive and include researchers, developers, and designers in addition to learners/students.
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In the following section, the approach used by the GIFT architecture for separating domain-specific and
domain-independent instructional decision-making is discussed. GIFT, which distinguishes between
instructional strategies (domain-independent) and tactics (domain-specific) offers a useful case study for
considering this topic.

Implementation of Strategies and Tactics in GIFT

In early versions of GIFT, the pedagogical model relied on rules that used observed changes in learner
state to trigger abstract instructional strategies such as instructional interventions or scenario adaptations
(e.g., feedback or changes in difficulty, respectively). The abstract pedagogical requests were then sent to
the domain module where they were translated into concrete strategy implementations (tactics), relevant
to the current learning context. Message flow between the GIFT modules is illustrated in Figure 3.
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Figure 3. Real-Time Micro-Adaptive Strategies in GIFT.
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In recent development by the GIFT team, this same basic framework has been extended to support the
engine for Managing Adaptive Pedagogy (eMAP). The first iteration of eMAP (Sottilare et al., 2013)
allowed inclusion of dynamic branching through Merrill’s (1983) Component Display theory presentation
guadrants based on metadata tags for content. At each Merrill’s branch point the eMAP used the current
guadrant (i.e., rules, examples, recall, and practice) together with the current learner state(s) to identify
the preferred metadata attributes of the next quadrant. These attributes were then compared to the metada-
ta attributes of the next-quadrant choices and the best match selected, resulting in presentation of the
associated content to the learner.

In the current development cycle, the eMAP is being further extended to support more advanced flow
through course content, including support for mastery learning, as illustrated in Figure 4. In this imple-
mentation, GIFT will maintain a hierarchical representation of the course concepts (created for each
course by the course author) and will include one or more (preferably more) units of content covering
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each node in the concept tree. Coverage of non-leaf nodes may be explicit or inferred by roll up of child
nodes. Metadata tags on content will be extended to include concept names, thus providing linkage back
to the concepts in the concept hierarchy. Finally, survey (quiz) questions will be authored and tagged to
be used as checks on learning, again linking questions back to one or more concepts in the hierarchy.

Within a lesson, learners will proceed through Merrill’s quadrants as before, but now checks on learning
will serve as gates. For example, in the recall quadrant, GIFT will use tagged questions to create an ad-
hoc concept survey. User responses to the survey will be scored and used to assess learning. Demonstrat-
ing mastery of concepts will allow the learner to advance either to guided practice and reflection, or to the
next lesson. Failure to demonstrate mastery will route the user through a remedial path. Similarly, success
in the guided practice is required for advancement, where as failure results in remediation, as shown in
Figure 4.
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Figure 4. Macro-Adaptive Strategies in GIFT using eMAP.

Future Capabilities of Instructional Strategies

Instructional strategies currently support tutoring system macro-adaption (e.g., task selection) and micro-
adaption (e.g., step-based support for learning). In the future, as ITSs integrate with persistent learning
systems, we should expect instructional strategies to play a significant role at the curriculum-planning
level: personal learning assistants to help students find courses that support their lifelong learning needs.
We should also expect the growth of ITSs that contain a large variety of instructional strategies, switched
dynamically to target different types of learners. These might dispatch tutoring to other tutoring systems
or even to other humans, creating a cybernetic tutoring experience (hybrids of ITS and human tutoring).
For example, “teacher in the loop” tutoring systems would offer a powerful hybrid that maximizes the
effective traits of both humans and computers. Collaborative use of ITSs is a particular area that may
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require new strategies, such as team-based learning. ITSs have typically focused on one-on-one strategies,
so this could be a genuine paradigm shift. GIFT, in particular, is trying to play a significant role to
integrate different tutoring systems and collaborative uses into a unified platform.

Authoring is another major area for tutoring systems. A serious challenge for authoring tool design is
managing the tradeoff between flexibility and simplicity. Some authoring tools provide advanced capabil-
ities, to the point of supporting Turing-complete computing. For example, AutoTutor Authoring Tools
(ASAT) allows authors to write production rules to power tutoring dialog (Graesser et al., 2004). Others
provide highly constrained authoring capabilities, such as the Example Tracing authoring in the Cognitive
Tutor Authoring Tools (CTAT; Aleven, McLaren, Sewall & Koedinger, 2009). Neither approach is
perfect. A highly flexible tool leads to authoring complexity and often a longer learning curve. On the flip
side, a highly constrained authoring tool forces the author to use a limited set of instructional strategies.

Instructional strategies may someday be used as templates for authoring a tutoring system to help balance
these tradeoffs. Each instructional strategy requires certain authoring input (e.g., hint statements) and
supporting information (e.g., an affect-sensitive strategy needs an affect classifier). Templates or other
authoring scaffolds for strategy-specific authoring could be designed and maybe someday generated
automatically. These templates could constrain authors to the content that is most important to that
strategy. A general authoring system that uses strategy-specific templates for authoring would offer an
effective balance of power and simplicity. With that said, work on categorizing instructional strategies
and identifying templates is needed before this is possible. The next major focus for GIFT will be to
explore authoring tools for ITS.

Finally, instructional strategies can help to evaluate tutoring systems. As learning technologies become
ubiquitous, the community must increasingly focus on which strategies work best for different contexts,
populations, and cultures (Blanchard, 2012). Instructional strategies have a long track record for classify-
ing instructional behavior. This paradigm can also be used to classify the behavior of tutoring systems. By
classifying systems based on the strategies they use, these evaluations can be aggregated into larger meta-
analyses to determine their value for different learners and domains. Strategy classifications could also
play an important role in rating and recommender systems that support lifelong learning. They could aid
institutions and learners in selecting the right learning technologies for their needs. In this way, instruc-
tional strategies can benefit developers, authors, and end-users working with ITSs.
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cHapTER 1 — Thoughts on the Instructional Management of
Affect, Engagement, and Grit

Robert A. Sottilare
U.S. Army Research Laboratory

Introduction

This first section of this book examines research, emerging concepts, and future directions for the
instructional management of learner states by computer-based ITSs. Specifically, this section discusses
techniques, strategies, and tactics used by ITSs to enhance positive affect, moderate the effects of nega-
tive affect, promote engagement, and develop grit as a desirable trait. All are discussed in terms of their
effect on learning (knowledge and skill development), performance, and the ability to solve problems. For
purposes of our discussion, affect states range in persistence from long to short as personality, mood, and
emotions. Engagement is discussed as a necessary precursor to learning and grit is used interchangeably
with perseverance or the ability of the learner to persist over long periods of time to progress toward goals
in the face of significant challenges.

Enhancing the Intelligence of Intelligent Tutoring Systems

The ability to adapt is signpost of intelligence. As we strive to develop more adaptive ITSs, a key chal-
lenge is to enhance and optimize the decision making of tutoring systems. A goal for the design of ITSs is
to fully automate the management of instruction so computers can guide one-to-one (individual) and one-
to-many (team) tutoring efficiently and effectively. As discussed in Design Recommendations for Intelli-
gent Tutoring Systems: Volume 1 - Learner Modeling, efficient tutoring will be largely dependent upon
what the tutor “knows” about the learner so this knowledge can be used by the ITS to inform instructional
decisions. Effective tutoring will be determined by optimizing instructional decisions to keep the learner
in a positive affective state, engaged in the learning process and motivated to persist in the face of
difficult and challenging learning concepts and conditions to get the best learning outcomes possible.

The chapters in this section focus on techniques, strategies, and tactics to enhance learning and perfor-
mance. While not all concur with this approach, we have adopted the following instructional management
taxonomy for the development of GIFT, a tutoring architecture to support automated authoring, automat-
ed instruction, and effect analysis. Instructional techniques are considered to be best practices for learning
broadly applied in instructional systems (including, but not limited to, ITSs). Instructional techniques
evolve over time based on lessons-learned and observed effect, and are applied largely without respect to
who the learner is, what the domain being instructed is, and the specific instructional context. In other
words techniques are learner- and domain-independent. Techniques only require information about
learner performance (e.g., errors) and treat each learner the same. Strategies, on the other hand, are
learner-dependent, but domain-independent. They can be considered plans for future actions. Actions
taken by the ITS are tactics. Tactics are both learner-dependent and domain-dependent.

Managing Learner States and Guiding Instruction

The seven succeeding chapters in this section highlight ongoing areas of research related to techniques,
strategies, and tactics used by ITSs to manage affect, engagement, and grit.
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Chapter 2, by Sottilare, DeFalco, and Connor, provides a review of the literature related to generalizable
instructional techniques and specific strategies for moderating affect, enhancing engagement, and as-
sessing/developing grit or perseverance as a desirable trait. This chapter forms the basis of a literature
review of affect, engagement, and grit management strategies. The literature review on affect primarily
focuses in three areas: developing the emotional intelligence of ITSs to improve their capability to assess
and optimally manage learner affect; modeling the response of expert human tutors to learner affect in
order to transfer desirable behaviors, trait, and principles to computer-based tutors to improve learner-
tutor interaction and the development of trust between learner and ITS; and finally, assessing one of the
few implementations of Vygotsky’s Zone of Proximal Development (ZPD) with ITSs. The primary
contribution of this chapter is the analysis of the effect of ITS cognitive design principles on affect.

In chapter 3, D’Mello, Blanchard, Baker, Ocumpaugh, and Brawne discuss affect-sensitive strategies.
Learner affect ranges in duration from momentary expressions (e.g., aha and eureka moments) to more
enduring attitudes that can moderate learner decisions, levels of engagement, and motivation. D’Mello et
al. note that affect indirectly influences learning outcomes (e.g., knowledge acquisition) by modulating
cognitive processes during instruction. The primary contribution of this chapter is an exposition of six
case studies, each featuring a unique, tried and tested, affect-sensitive instructional strategy.

Chapter 4, by DeFalco, Baker, and D’Mello, discusses several types of interventions mentioned in the
literature to combat disengaged behaviors in online learners and examines the potential of adaptive
interventions in other contexts to reduce or eliminate behavioral disengagement. It is generally accepted
that GIFT and other tutoring delivery systems will provide on-demand tutoring at the point-of-need of the
learner via service-oriented architectures (online learning resources). The major contribution of this
chapter is evaluation of interventions that potentially can be incorporated into the GIFT framework for
broad use by the tutoring community. These interventions are intended to promote engaged behaviors
conducive to focused, deep learning, through reducing disengaged behaviors that are not conducive to
focused, deep learning. Desirable engaged behaviors include, but are not limited to, following the rules,
adhering to norms, putting forth necessary effort, persisting in the pursuit of appropriate goals, asking
questions, and contributing to discussion.

In chapter 5, Riedl and Young argue the importance of narrative as an effective affective instructional
strategy. Narrative is one of the fundamental modes used to understand the world around us. They
compare the increasingly complex and difficult progression of skill-based activities in training/tutoring
systems and games leading to skill mastery. They argue that it is not always enough to have a progression
of skill-based activities. Games also use narratives to reinforce immersion within the game and motivate
skill-based activities. As ITSs develop the ability to reason about and adapt storylines in response to
learner needs, they will become more powerful instructional tools. However, developing narrative story-
lines is currently a labor-intensive process. Today, automated story generation systems do not understand
how the narratives they generate produce affective responses in learners. The major contribution of this
chapter is that it identifies capability gaps and research challenges leading to automated, affect-sensitive
narrative generation. More adaptive systems require more narrative content to support learner needs.
Producing additional content is certainly more costly so automated narrative generation is significant not
just to making ITSs more adaptable, but also in making authoring 1TSs more cost effective.

Chapter 6, by Ritter, Sinatra, and Fancsali, notes a recent trend toward improving learning outcomes
through a focus on “non-cognitive factors” such as learner motivation, beliefs about learning, learner
interests, and metacognitive skills. They argue that personalization influences learner affect resulting in
higher interest in the tutoring content and higher motivation to engage with that content. This leads to
tighter focus and attention while feeling the enjoyment associated with achieving their goals. The authors
recommend that GIFT could benefit from a wide variety of options in collecting personalization infor-
mation from the learner rather than the traditional survey. The major contribution of this chapter is that it
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identifies a variety of personalization techniques that enhance performance by engaging and motivating
the learner.

In chapter 7, Arroyo, Muldner, Burleson, and Woolf examine adaptive interventions to address learner
negative activating and deactivating emotions during instruction. The ability of the ITS to classify a
learner’s emotional state is a critical step toward adaptive instruction tailored to each learner’s affective
needs. This statement has been the focus of much research and aligns with the model portrayed by
Sottilare’s adaptive tutoring learning effect chain. However, little research exists on systematically
examining the influence of affective interventions on learning outcomes (e.g., performance, knowledge
and skill acquisition or retention), affect, and attitudes. In other words, how ITSs should to respond to
learner emotions to provide optimal learning experiences in both the short and long term. The authors
argue for three interventions to aid in managing learner emotions, which are the major contributions of
this chapter: (1) target the learner’s beliefs about the self and the task (value-oriented interventions),
(2) target learner’s self-regulation strategies to help them self-regulate their emotions and their learning
process in effective ways (control-oriented interventions), and/or (3) manipulate the learning context
(context-oriented interventions) to keep learners within VVygotsky’s ZPD.

Finally, Chapter 8, by Ventura, Shute, and Small, describes the importance of assessing persistence in
educational games to enhance learning. Their targeted educational game is Newton’s Playground (NP), a
two-dimensional, computer-based game aimed at helping learners understand qualitative physics. As part
of the authors’ validation process, they administered a performance-based measure of persistence consist-
ing of impossible anagrams (jumbled letters that do not make a word) and impossible picture comparison
tasks (two adjacent pictures where participants are told to detect difference between pictures when in fact
no differences exist). The major contribution of this chapter is that it provides empirical research to define
the positive relationship between persistence and learning in educational games where none existed
before. An advantage of the methods described within this chapter is the simplicity of the data needed to
detect learner persistence and the ability to apply these methods to a variety of educational settings. This
bodes well for integration of persistence detection into generalized tutoring architectures like GIFT.

The Future of GIFT as an Instructional Manager

The contributors to this section of the book offer recommendations for developing instructional tech-
niques, strategies, and tactics within GIFT. These recommendations address substantial challenges and
opportunities that are envisioned to evolve over an extended period of time due to their complexity. The
following enumerates recommended actions for consideration in the long-term view of GIFT as an
instructional manager. Some of these recommended actions are already defined with known value
(technology pull) and some are more speculative (technology push) in that their impact is difficult to
predict at this time without additional empirical research.

1. Improve Methods for Selecting Optimal Strategies for Learners: Significant effort has been ex-
pended to develop affect detectors for both individual learners and teams of learners. A systemat-
ic analysis based on empirical studies should be conducted to evolve methods for selecting opti-
mal instructional techniques, strategies, and tactics to manage affect, enhance engagement, and
develop grit (perseverance, persistence, and resilience). Optimal instructional selection methods
should be integrated within GIFT to enhance the performance of its existing engine for eMAP for
strategy selection and enhance methods within the domain module for selecting tactics based on
strategy selection.

2. Reexamine and Integrate ITS Principles into GIFT: The ITS design principles delineated by An-
derson, Boyle, Farrell & Reiser (1987) and later elaborated by Corbett, Koedinger and Anderson
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(1997) have been primarily focused on reacting to the cognitive states of the learner. We recom-
mend effort be put forth to research and expand the methods for implementing these ITS design
principles from both a cognitive and affective perspective, as noted in Chapter 2 of this text.

Improve the Emotional Intelligence of ITSs: Instructional strategy selection begins with accurate
assessment of the learner’s state. In the case of affective states (e.g., emotions), we recommend
effort be put forth to conduct research and expand the emotional intelligence of ITSs to improve
their capability to assess and optimally manage learner affect.

Model Expert Human Tutors in ITSs: Extensive studies have been conducted to identify and mod-
el expert human tutors. We recommend that similar effort be put forth to capture the desirable be-
haviors and traits of human tutors for use in computer-based ITSs, thereby enhancing ITS credi-
bility and improving the trust between learners and ITSs.

Balance Learner Capabilities and Tutoring Content: Few ITSs have captured the principles of
Vygotsky’s ZPD where the tutor seeks to match the capabilities of the learner with the complexi-
ty and challenge level of the learning experience. We recommend research be conducted to ex-
pand the methods for implementing principles of ZPD within ITSs.

Automate Narrative Generation: As expectations for ITSs to be more adaptive grow, more and
more narrative content to support learner needs will be required. We recommend research be
conducted to accelerate the automation of narrative generation. We suggest this is not just signifi-
cant to making ITSs more adaptable, but also to making authoring of ITSs more cost effective. It
should be a goal to integrate narrative automation and narrative retrieval capabilities into GIFT.

Use Non-Cognitive Factors to Enhance Engagement and Motivation: Learner affect has been
shown to be a moderator during the learning process. Likewise learner interests have been shown
to influence engagement and motivation. Efforts should be continued to evaluate the relationship
of non-cognitive factors and optimal instructional strategy selection within ITSs. Methods to easi-
ly integrate affect detectors, store and retrieve long-term traits and trends from learning record
stores, and develop the ability to adapt narrative to include learner interests are all desirable capa-
bilities for GIFT.
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Introduction

This chapter reviews instructional methods (techniques, strategies, and tactics) in the literature used to
promote positive affective states resulting in the acquisition of “robust” knowledge and skill develop-
ment; mitigate negative affective states, which inhibit learning; enhance and maintain learner engagement
to maximize opportunities for learning; and support the development of learner perseverance or grit. For
purposes of our discussion, an instructional technique is a domain-independent and largely learner-
independent method used in either human- or computer-based tutoring. In other words, the technique is
implemented within an ITS as a method that has been shown to have positive effect on learning across
training and educational domains, and across a variety of learners and learner states and traits. Instruc-
tional techniques are best practices developed over time and include, but are not limited to error-sensitive
feedback, mastery learning, adaptive spacing and repetition, metacognitive prompting, and faded worked
examples. Generalized instructional techniques are discussed later in this chapter.

An instructional strategy is a domain-independent plan or recommendation used by the tutor to guide the
learner or adapt the level of challenge during tutoring. Instructional strategy selection may be informed by
specific learner states (e.g., affect, performance) and/or learner traits (e.g., goal orientation). Instructional
strategies may be developed a priori (based on learner information acquired prior to, or at the initiation
of, instruction) or in situ (based on learner information acquired in real time during instruction).

Macro-adaptive strategies are a priori strategies that account for historical information about the learner
including previous domains under training, achievements, and experience that aid in identifying the
learner’s competence in the current domain under training. Learner data to support macro-adaptive
tutoring decisions may be acquired from Learning Record Stores (LRSs) or other online repositories.
Micro-adaptive strategies are in situ strategies, which rely primarily upon real-time data streams, but may
also use historical data in planning and instructional decision making.

An instructional tactic is a domain- and learner-dependent action taken by the ITS and may include the
presentation of hints, prompts, questions, assertions, questions, and other tutor-initiated behavior and
responses. Instructional tactics within GIFT are actions to be taken by the ITS (e.g., provide information;
offer specific feedback; prompt for learner reflection on a specific concept). Instructional strategies
narrow the available options for instructional tactics. For example, an instructional strategy may be a plan
to ask the learner a question to test their knowledge about the domain under training. If the current
instructional context is that the learner is being tutored about marksmanship principles, then the ITS
would implement a tactic by retrieving a specific question about marksmanship from the available
libraries and then present that question to the learner via text or voice.

As previously noted in the prologue of this volume (Nye, Sottilare, Ragusa & Hoffman, 2014), an
instructional strategy develops plans and makes decisions that are intended to improve the learner’s
knowledge and skill within the domain tutored by the ITS. Instructional strategies are intended to imple-
mented in near real time, but their data, upon which the ITS makes instructional decisions, may also be
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historical. Instructional strategies may be tied to a near-term objective (e.g., acquire knowledge) or a
long-term objective (e.g., promote deep learning to enhance retention). The effectiveness of instructional
decisions in promoting truly adaptive tutoring is tied directly to the ITS’s knowledge and perception of
the learner’s traits, behaviors (actions, demonstration of progress), and physiology (response the learning
environment).

Generalized Instructional Techniques

Instructional technigques have been derived over time as best practices due to their successful application.
The instructional techniques presented below are for reference and provide a sampling of effective
techniques based on the literature. They are not intended to be a complete set of all available techniques
implemented, but do include the most used techniques.

Durlach and Ray (2011) conducted an extensive review of over 200 studies that explored the effective-
ness of adaptive versus non-adaptive instructional techniques in computer-based tutoring systems. They
identified the most adaptive form of instruction as “model-based adaptation” in which the computer
adapts to both the local input from the student but also from other information about the learner such as
physiological data, prior experience, and preferences. Their review of stringent criteria resulted in 17
studies that show that adaptive versus non-adaptive instruction is superior for learning (Durlach, 2011).
Other studies have shown adaptive computer-based systems, such as the Lisp Tutor (Anderson, Corbett,
Koedinger & Pelletier, 1995), AutoTutor (Graesser et al., 2004), and the Andes Physics Tutor (VanLehn
et al., 2005) increase learning with effect sizes ranging from 0.80 to 1.05 .

Error-Sensitive Feedback

Error sensitive feedback is a technique where an intervention is triggered when the learner commits errors
that are either individually or cumulatively significantly divergent from the ideal as defined in the expert
model of the domain within the ITS. Implementation of error-sensitive feedback with ITSs poses the
significant challenge of providing timely feedback while maintaining flow/engagement. High frequency
feedback resulting from several errors may result in negative learner affect (e.g., frustration).

Error-sensitive feedback may be given when a learner incorrectly answers a question or seems unsure of a
correct answer, as determined by amount of time to answer question (latency) or repeated requests for
help. Feedback is specific to the answer selected, discusses common misconceptions that may have led to
the incorrect answer, and steers the student to absorb the information and self-reflect on their answer and
their reason for selecting it. Although feedback has been shown to be effective for learning, the difficulty
in computer-based tutoring is determining at what frequency to deliver the feedback and also determining
why the learner might have erred.

According to Durlach and Ray (2011), error-sensitive feedback might be helpful if the student erred
because they simply forgot the material; it might not be helpful if the learner does not comprehend the
material — no reminder or review will ultimately help lost learners find their way and will ultimately lead
to frustration (p. 24).

Shute (2007) discussed differences in philosophy in immediate versus delayed feedback. There are two
schools of thought — one says to provide feedback on the error as soon as it occurs so the error does not
become retained; proponents of delayed feedback advocate waiting and reinforcing corrective behavior —
the original error will be quickly forgotten once understanding of mistake takes place. Both approaches
have been shown to be effective (Shute, 2007). Immediate feedback may be more helpful on difficult
tasks; delayed on easier tasks where easy and difficult are defined by the learner’s domain competency.
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Overall, however, results on delayed versus immediate feedback are situational. In addition, long,
extensive feedback may lead to learner frustration resulting in negative effects on learning and decreased
recall (Shute, 2007).

Mastery Learning

Mastery learning is a technique where the tutor insures the learner has “mastered” (can recall and apply)
prerequisite knowledge before allowing the learner to move on to the next lesson/concept: “Mastery does
not imply perfection, but satisfactory performance” (Murray & Arroyo, 2002). In this context, satisfactory
performance is generally defined as the minimum standard to pass. In this way, mastery learning may
contribute to higher self-esteem based on achievement or may contribute to frustration if the learner is
unable to grasp requisite concepts and does not move forward in the curriculum.

Adaptive Spacing and Repetition

Adaptive spacing and repetition is a technique where the learner more easily recalls knowledge
items/objects when these knowledge artifacts are exposed to the learner repeatedly over a long time span
rather than repeatedly studied during a short time span (Dempster, 1988). This prolonged exposure
promotes deeper learning and extends the spacing between instances of refresher training.

Metacognitive Prompting

Metacognitive prompting is a technique where the tutor encourages the learner to self-reflect and evalu-
ate, self-explain, and self-correct rather than provide the answer directly. The Cognitive Transformation
Theory (CTT; Klein & Baxter, 2006) asserts that problem solving on the part of learner involves the
recognition of flaws in their existing mental models and restructuring of those models by shedding flawed
elements of those mental models for less-flawed models through reflection and discovery. Sottilare &
Goldberg (2012) note the need for the tutor to support processes, which allow the learner to construct and
restructure their own mental model in order to promote transfer and, in some cases, accelerate learning.

Fading Worked Examples

Fading worked examples is technique where the tutor provides “a step-by-step demonstration of how to
perform a task or how to solve a problem” (Clark, Nguyen & Sweller, 2006, p. 190), from which parts
have been deliberately removed or faded (Atkinson, Renkl & Merrill, 2003). This technique challenges
learners to recall and reconstruct their mental model of the task or concept in much the same way as
metacognitive prompting, but provides additional context needed for novices to recall the missing
elements. This technique is especially applicable to tutoring where problems are presented to the learner
to solve.

Subsequent sections of this chapter address the three primary themes within the literature (affect, en-
gagement, and grit) and their relationship to instructional management principles and learning outcomes,
but first we identify and discuss the criteria by which we will evaluate the effectiveness of reviewed
instructional strategies and tactics.

Assessment Criteria for Adaptive Instructional Techniques, Strategies, and Tactics

In assessing the value of adaptive instructional strategies, we examined their impact in terms of their
influence on the desirable outcomes noted below. First and foremost is learning. The next three (modera-
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tion of affect; influence on motivation and engagement; and development of desirable traits) all influence
learning. The last criterion (ease of authoring and reusability) addresses practical considerations and
influences the cost and time to produce/maintain ITSs.

Learning Effect

Since the goal of ITSs is to promote learning in one-to-one and one-to-many instructional situations, we
considered the degree to which instructional strategies and tactics affect learning outcomes as the most
important assessment criterion. For purposes of this discussion, we consider learning as a relatively
permanent change in, or acquisition of, knowledge, skills, understanding, or behavior.

Effect size was chosen as a method to compare disparate instructional strategies in terms of their impact
on the following learning outcomes: knowledge and skill acquisition, acceleration of learning, perfor-
mance, and retention. Performance accounts for the transfer of learning from one context to another. Per
Byrnes (1996), instructional practices considered critical to learning and performance include providing
multiple contexts for the original learning; representing problems at higher levels of abstraction; overlap-
ping the original domain of learning and the new one to a high degree; and implementing dynamic
processes that require learners to actively choose and evaluate strategies, consider resources, and receive
feedback.

Moderation of Affect

A second criterion considered in our review accounts for the influence of instructional strategies and
tactics is managing affect (personality, mood, and emotions). According to Gebhard (2005), personality,
mood, and emotions vary in duration, influence, and cause. The influence of affect on learning may be
positive or negative. The relationship between affect and learning is well documented in terms of affect’s
influence on accepting new knowledge (Linnenbrink & Pintrich, 2002), creativity in problem solving
(Isen, Daubman & Nowicki, 1987; Isen, 2000; Isen, 2003; Isen, 2004; Isen & Erez, 2006), enhancing
interaction (Norman, 2002), and recall (Gold & van Buskirk, 1975; Bower, 1981; Bower & Forgas,
2000).

Influence on Motivation and Engagement

The third criterion in our review addresses the design of ITSs to influence motivation and engagement.
The relationship between motivation, engagement, and learning are well documented, (Corno &
Mandinach, 1983; Kearsley & Shniederman, 1998; Blumenfeld, Kempler & Krajcik, 2006; Pugh,
Linnebrink-Garcia, Koskey, Stewart & Manzey, 2010). Moderation of affect may be used to enhance
motivation, (Erez & Isen, 2002), and artificially intelligent agents have been used within ITSs to influence
learner interest and motivation (Rosenberg-Kima, Plant, Baylor & Doerr, 2007).

Development of Desirable Traits

As a consequence of effective ITS design, desirable traits may result in enhancement of non-traditional
learning outcomes such as learner creativity, adaptability, and perseverance (also known as grit). Devel-
opment of these traits may aid the learner in transferring knowledge and applying skills in other domains
(Byrnes, 1996).

10
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Ease of Authoring and Reusability

Instructional strategies and tactics may be effective, but the ability to easily author or implement strate-
gies in new ITSs directly determines their practicality and ubiquitousness. Ease of authoring may also be
directly tied to their reusability, generalizability, or domain-independence of strategies across different
educational and training domains. The authoring process may be complicated by the level of definition
(well-defined or ill-defined) of the domain to be tutored. Modular approaches to the development and
application of instructional strategies within ITSs that promote standards and best practices are desirable.

To better understand the effectiveness of strategies and tactics on affect, engagement, and grit, the next
section of this chapter reviews various ITSs strategies and tactics selection methods. The goal of this
review is to compare/contrast selection criteria and consider the strengths and weaknesses of each
selection method to help researchers and instructional system designers identify best practices for incor-
poration in ITS designs and architectures like GIFT.

Literature Review Themes

This section is dedicated to a review of the literature in three areas: instructional strategies/tactics to
manage learner affect and enhance learning; instructional strategies/tactics to enhance engagement, and
thereby, learning; and instructional strategies/tactics to enhance the desirable trait of grit or perseverance.
Since subsequent chapters will address specific strategies in these areas, our intention is to provide an
overview of the literature relative to selected constructs or models. This is not intended to be a compre-
hensive assessment of the literature, but the examples chosen should provide general knowledge of
effective instructional strategies and tactics to a point sufficient for the reader to construct an initial
mental model.

Exploring Methods to Manage Learner Affect

What follows is a review of approaches to moderating learner affect to optimize engagement and motiva-
tion, and thereby, learning per our stated criteria. However, before we delve into methods used to manage
or influence affect, it is necessary to define “affect” and its associated states. According to the American
Psychological Association (2007), affect is the subjective experience of feeling. As mentioned previously,
Gebhard (2005) generalized three affective states within his model A Layered Model of Affect (ALMA):
personality preferences, mood, and emotions, which differ in their duration, influence, and cause. The
level of affect is defined in terms of its valance and arousal. Valence is a subjective positive-negative
evaluation of experience, and arousal is activation to action or physiological readiness to take action.
Arousal ranges from “excited” indicated by high physical activity and mental alertness to “calmness”
indicated by low physical activity and mental sluggishness (Klesen, 2002).

When we discuss instructional strategies for ITSs, it is essential that we identify desirable salient charac-
teristics and capabilities of ITSs to manage the learning process of the user. A critical capability of a tutor
is its ability to manage affect to motivate the learner and improve the learning process (Hernandez,
Noguez, Sucar & Arroyo-Figueroa, 2006). Picard (2006) identified essential capabilities for a tutoring
system to manage affect: 1) accurately recognize the student’s affective state; 2) respond appropriately to
the student’s affective state; and 3) understand when and how to appropriately express emotion to build
trust and motivate the student. Additional desirable capabilities for ITSs relative to managing affect (e.g.,
avoiding frustration) include modifying the presentation of information so that learning proceeds effi-
ciently (Johnson & Taatgen, 2005); identifying and responding to the learner’s affective cues in a timely
fashion (Alexander, Sarrafzadeh & Fan, 2003); and delivering content in a way that adapts to each
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learner’s particular preferences (Rodrigues, Novais & Santos, 2005) and their domain competency level
(Sessink, Beeftink, Tramper & Hartog, 2007).

Since subsequent chapters within this section of our book review specific strategies about responding to
affect (Chapter 3; D’Mello, Blanchard & Baker), addressing disengaged behaviors and affect (Chapter 4;
DeFalco, Baker & D’Mello), and using narrative as an affective instructional strategy (Chapter 5; Riedl
& Young), this literature review theme is focused on very specific areas to promote complementary
information and discussion: developing emotional intelligence in adaptive tutoring systems; modeling the
response of expert human tutors to moderate (promote positive results and reduce negative consequences)
learner affect; and using the zone of proximal development (Vygotsky, 1978) as a model to manage affect.

Review: Developing Emotional Intelligence in Adaptive Tutoring Systems

“The extent to which emotional upsets can interfere with mental life is no news to teachers. Students who
are anxious, angry, or depressed don’t learn; people who are caught in these states do not take in infor-
mation efficiently or deal with it well” (Goleman, 1995). Understanding and managing emotions (our own
and others) is critical to our academic success and, like their human counterparts, it is important for ITSs
to be able to detect, identify, and manage each learner’s emotions to optimize learning. To a large extent,
this includes maintaining the positive affect of the learner, portraying positive affect, and avoiding long-
term negative affect (e.g., confusion, frustration, anger), which detracts from learning. D’Mello and
Graesser (2012) note confusion as a key indicator of cognitive disequilibrium, which occurs when a
learner reaches an impasse. Learners must then exert significant effort to solve the problem in order to
resolve the impasse and restore equilibrium (flow/engagement) within the learning process. This tempo-
rary impasse caused by confusion can, in fact, be good for learning, but may have the opposite effect if
confusion is allowed to persist, since equilibrium is not restored.

Picard (2006) notes the inadequate adaptability of ITSs to the needs of learners. This is due in large part
to the inability of ITSs to accurately and unobtrusively classify emotions during one-to-one tutoring.
While significant progress has been made since 2006, more accurate (>95%) real-time predictive models
of affect are needed to support the adaptive tutoring learning effect chain first described by Sottilare
(2012). Managing emotions starts with recognizing emotions. Even highly accurate learner emotional
state classifiers (e.g., 98%) may introduce significant error (~27%) if the dependent strategy and tactics
selection classifiers in the chain are only 80% accurate (Sottilare, Ragusa, Hoffman & Goldberg, 2013).
Due to interdependencies between learner state classification, instructional strategy recommendations,
and instructional tactics selection, each of the classifiers in the chain must be highly accurate and in real
time to manage learner emotions and support truly adaptive tutoring tailored for each individual learner’s
needs. The following publications note instructional strategies and tactics to enhance the emotional
intelligence of tutors or the perceptions of the learner while interacting with computer-based systems
(e.g., tutors, dialogue-based webpages).

Andre, Rehm, Minker, and Buhler (2004) investigated methods to improve the user’s perception of the
interaction with a dialogue-based system by integrating social models of politeness and cognitive models
of emotions. The resulting model influenced the subjective perception of the interaction between the user
and the system to a large extent based on the duration of the relationship between the user and the system.
Four primary strategies were used based largely on the assessment of the user’s affective state (valence
and arousal): direct, approval-oriented, autonomy-oriented, or off the record. The idea of using conversa-
tional agents (also known as virtual characters or chatbots) to promote bonding between machine and user
is now widely used in e-marketing to gain the confidence of the potential buyers.

In interactions with robots, Hoffmann and Kramer (2011) also noted learner affect and engagement may
have been related to attributes of the robot including, but not limited to robot size, realism, shared
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physical space, physical presence, and perceived social presence. Dialogue-based tutors (e.g., AutoTutor)
also seek to enhance the relationship between the learner and the tutor (Lane & Johnson, 2008) in an
effort to enhance engagement, and thereby, increase opportunities for learning. Finally, Embodied-
Perceptive Tutors for Empathy-Based Learning (EMOTE) is a collaborative project that aims to develop
artificial tutors capable of emotionally engaging with learners (Corrigan, Peters & Castellano, 2013).
Implementing emotional intelligence may be considered moderate to difficult depending on system goals.

Review: Modeling the Response of Expert Human Tutors to Learner Affect

Lepper, Drake, and O’Donnell-Johnson (1997) identified the characteristics of an ideal human tutor in
their intelligent, nurturant, Socratic, progressive, indirect, reflective, and encouraging (INSPIRE) model.
The characteristics in this model were further explored in Lepper and Woolverton’s (2002) study of
highly effective tutors with the goal to differentiate best tutoring practices. It was found that highly skilled
tutors manage two primary processes: engagement and motivation. Some of the findings regarding the
tutor’s response to learner affect relate primarily to the following tutor characteristics: nurturant, indirect,
and encouraging.

Nurturant tutors established rapport with the learner early, demonstrated empathy when the learner
experienced significant difficulties, and vocalized confidence in the learner’s ability to succeed. These
behaviors may be difficult to replicate in computer-based tutors without significant knowledge of the
learners: their interests, their past achievements, their capabilities, and real-time assessment of their
performance and emotional states. While the type of feedback/scaffolding is important to success, the
frequency of interaction may also be important. The learner may perceive too frequent praising by the
tutor as insincere or annoying (Person, Kreuz, Zwaan & Graesser, 1995). Indirect tutors avoid overt
criticism and explicit praise. They may imply the existence/location of an error and then prompt the
learner to review their own mental model, reflect, and find their own mistakes. Finally, encouraging tutors
manage the confidence and curiosity of the learner along with the challenge level of the learning experi-
ence to maintain motivation, and thereby, influence positive affect and perseverance.

Additional insight in how human tutoring principles might be implemented in computer-based tutors
might best begin with Anderson, Boyle, Farrell, and Reiser’s (1987) principles for ITS design as later
elaborated by Corbett, Koedinger, and Anderson (1997). While these principles have a cognitive focus,
we discuss how implementation (or lack of implementation) of each principle might influence learner
affect (including motivation):

Principle 0: An intelligent tutor system should enable the student to work to the successful conclusion of
problem solving. While Corbett et al. (1997) demonstrated the importance of enabling the student to work
to a successful conclusion from a cognitive point of view, there are affective and motivational reasons to
insure that learners have the opportunity to reach a successful conclusion. If the problems presented are
too difficult to finish, the lack of achievement may cause learners to withdraw due to frustration. It is
important for the tutor to engage the learner and keep them engaged. By keeping the learner engaged, the
greatest opportunity for learning exists. If the tutor fails to keep the learner engaged, there is virtually no
opportunity for learning. This idea of matching problem difficulty to learner competence is discussed in
more detail in the next subsection on Vygotsky’s ZPD.

Principle 1: Represent student competence as a production set. By representing the learner’s procedural
knowledge in a structured way, it is possible to match learner competence to appropriately challenging
problem sets to keep the learner engaged and reduce affective byproducts such as boredom or frustration.
Understanding and modeling learner competence may be easier in very well-defined domains where goals
are very specific and there are generally just a few or maybe only one path to achievement. It may prove
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to be more difficult in ill-defined domains where information needed to assess competency is not easily
agreed upon or where there are multiple paths to success.

Principle 2: Communicate the goal structure underlying the problem solving. By dividing the problem
into smaller subgoals and tying domain knowledge to these sub-goals, the tutor can guide learning rather
than directly provide answers. When learners ask for help, the first level of help for each problem is a
reminder of the current state of the problem and the desired sub-goal state. Subsequent help messages
provide advice about how to accomplish the goal/sub-goal. This encourages the learner to apply their
newly acquired domain knowledge toward the goal while maintaining interaction with the tutor. This
communication may be critical in developing rapport with the tutor as the learner attains these goals.
While the implementation of this principle should be considered easy for well-defined domains (e.g.,
mathematics, physics), it may prove to be much more difficult to implement for ill-defined domains
where there are multiple paths to successful outcomes.

Principle 3: Provide instruction in the problem-solving context. This principle coincides with Merrill’s
Component Display Theory (CDT; Merrill, Reiser, Ranney & Trafton, 1992), which examines methods
for effective tutoring techniques. Merrill’s CDT discusses a process for presenting rules, providing
examples, testing for recall of knowledge, and applying knowledge in guided practice. CDT’s phase of
guided practice aligns with this principle’s problem-solving context in that learners are presented with a
situation in which they must use their knowledge to reach a successful outcome (e.g., complete the
problem). Problem-solving contexts are a vehicle for deeper learning rather than rote memorization of
facts in that they allow the learner to apply knowledge, and build and rebuild mental models in an effort
to generalize their learning. This may be important in maintaining engagement and motivation since it
demonstrates real-world application of knowledge while avoiding the learner’s question “why did | learn
this?”” This principle should be considered easy to implement and domain-independent, making it reusable
across multiple training domains.

Principle 4: Promote an abstract understanding of the problem-solving knowledge. The goal is to
“encode problem-solving states, actions, and consequences in the most general form consistent with the
problem-solving goal in order to foster transfer across contexts,” (Corbett et al., 1997). This mental model
allows learners to apply knowledge learned in one context to another context while it expands the poten-
tial usefulness of learning, and thereby, the motivation of the learner (Pea, 1988). This principle should be
considered the most abstract and hardest to implement within a tutoring system depending upon the
states/traits tracked in the learner model. Differences in how each individual constructs/
deconstructs/reconstructs a mental model may contribute to the difficulty in implementing this principle
in more complex and ill-defined training domains.

Principle 5: Minimize working memory load. To manage working memory load, “human tutors do not
interrupt students (and their current working memory state) to point out relatively minor errors that have
little consequence for the student’s overall goal structure” (Corbett et al. 1997). Interruptions of any kind
can impact the learning process negatively by increasing working memory load. This principle can also be
applied to the acquisition of learner data noted in the adaptive tutoring learning effect chain, (Sottilare,
Ragusa, Hoffman & Goldberg, 2013), when considering sensors for behavioral and physiological data
collection. To keep working memory load focused on germane data, the sensors employed to acquire
learner data should be unobtrusive. Sensors that are uncomfortable to wear or restrict movement should
be avoided as they may add to working memory load and learner frustration due to an inability to focus
attention on the problem at hand. At the very least, this is a diversion of the learner’s attentional focus.
This principle should be considered easy to implement and domain-independent, making it reusable
across multiple training domains.
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Principle 6: Provide immediate feedback on errors. Corbett et al. (1997) admit that this principle is
controversial due to its potential impact on working memory load. So in order to bring it back into
balance, we recommend changing it to read: “provide immediate feedback on critical errors.” We define
critical errors to be errors leading to catastrophic outcomes (e.g., large-scale loss of time or significantly
reduced learning). By only providing feedback on critical errors, this principle remains in balance with
principle 5 by minimizing the effect on working memory load and reducing potential for learner frustra-
tion. Additional research is needed to identify thresholds for defining critical errors. This principle should
be considered moderately difficult to implement and may not be domain-independent. Incorrect imple-
mentation (too little or too much feedback) might be especially frustrating for novice domain learners.
The “too little feedback” implementation scenario could indirectly contribute to identification of learner
grit or perseverance.

Principle 7: Adjust the grain size of instruction with learning. Based on principle 5, minimizing working
memory load, this principle recommends adjusting goal decompositions differently based on the compe-
tency/experience of the learner. This principle suggests that more granular (smaller) decompositions are
needed for beginners, but more experienced learners should be able to focus on higher level goals and
decompose them on their own, thereby reducing working memory load. This principle parallels
Vygotsky’s ZPD (1978), which advocates alignment of problem challenge levels with the learner’s
competency/experience, and is likely to produce a tutor that induces less learner frustration. This principle
should be considered easy to implement and domain-independent, making it reusable across multiple
training domains.

Principle 8: Facilitate successive approximations to the target skill. This principle calls for a reduction in
the amount of scaffolding or support as the learner becomes more proficient over time. In other words,
more direction and feedback are required to keep the novice on track, and less is needed for more experi-
enced domain learners. This does two things for the learner: 1) reduces the frequency of interruptions
during the learning process; and 2) signals that the tutor has growing confidence in the learner’s problem-
solve ability. These tutor behaviors and learner perceptions coalesce to form trusting relationships
between learners and tutoring systems over time. Inversely, the failure to reduce scaffolding over time
might diminish trust and willingness of the learner to take risks, thereby stunting the development of
creativity as it relates to problem solving. This principle should be considered easy to implement and
domain-independent, making it reusable/transferrable across multiple training domains.

Review: Using the Zone of Proximal Development to Manage Affect

The ZPD (Vygotsky, 1978) purposefully matches learner competence and the challenge level of the
problem or tutoring experience. As in the adaptive tutoring learning effect chain (Sottilare, 2012; Fletcher
& Sottilare, 2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013), the key to applying optimal strategies
is the ability to accurately classify the learner’s affective state. In Vygotsky’s model, affect as a temporary
disequilibrium (e.g., confusion) is an indicator of a mismatch between the competency of the learner and
the problem or challenge presented by the tutor. The job of the ITS is to adapt the instruction by respond-
ing to the learner’s state. Murray and Arroyo (2002) observed that ITSs can adapt at three levels: sequenc-
ing content, providing opportunities for practice, and giving feedback. Perhaps there may be other levels
of adaptation (e.g., provide opportunities for reflection), but Murray and Arroyo captured the essence of
tutor options in response to classification of affective states as specific ZPD (SZPD). SZPD is composed
of three factors: H — the goal number of hints allowed in each problem set; DH — the allowed variation in
H to consider the current state to be within the ZPD; and P — the minimum number of problems the
learner is guaranteed to attempt. The SZPD factors, then, are properties of the instructional strategy and
can be used for post-hoc analysis or dynamic adaptation of strategies based upon the relative effectiveness
of different hinting styles.
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Summation for Managing Learner Affect

In this section, we have specifically segregated the managing learner affect problem space into two
distinct processes: detecting affect and selecting appropriate strategies based on the learner’s affective
state. With respect to detecting affect, we highly recommend reading Calvo and D’Mello’s (2010)
interdisciplinary review of affect detection.

For the task of selecting optimal strategies based on the learner’s affective state, we examined three
approaches: developing emotional intelligence in adaptive tutoring systems; modeling the response of
expert human tutors to learner affect; and finally, using the ZPD to manage affect.

Developing the emotional intelligence of ITSs is largely dependent upon recognizing emotions and,
perhaps more importantly, any disequilibrium over extended periods of time that might prove detrimental
to learning. The use of dialogue-based systems seems to be one way to foster human confidence and trust
in computer-based tutors. Additional research is needed to fully understand and model the attributes of the
dialogue-based tutors, which have the most influence in promoting and maintaining positive affect.

Modeling the response of expert human tutors to affect for use in computer-based tutors is a complex and
multi-dimensional task. We reviewed Lepper’s INSPIRE model and reexamined Anderson’s principles
for ITS design from the perspective of how each principle might influence or manage affect.

Finally, we investigated methods for modeling the ZPD within ITSs and found Murray and Arroyo (2002)
had operationalized definitions and assessments for implementing the ZPD within ITS. Specific measures
of hint requests were used to assess flow.

Adaptive Instructional Strategies to Enhance Learner Engagement

The digital revolution is changing the face of education, and yet the fundamental constructs of how
people learn remain the same. Further, some would argue that the purpose of education itself is changing
from teaching facts and figures to developing the mind of the learner. Indeed, educational researchers
such as Sternberg note that instruction should not be geared solely toward imparting a knowledge base,
but developing practical, creative, reflective, and analytical skills (Sternberg, 1998). The education of the
learner, then, necessitates pedagogical designs that are both an art and a science, as Dewey noted almost
100 years ago. It is the interplay between choice (art) and methodology (science) of instruction that
ultimately promotes the phenomenon known as engagement necessary to facilitate learning.

As such, before reviewing best instructional practices in the classroom as a model for technology-based
learning platforms, addressing the why (philosophy), the how (science), and the meeting place of the two
are necessary first steps in this review. Following that analysis, this theme reviews current instructional
practices that support the engagement of students, as well as provides some specific strategies that can be
parlayed into an online learning platform.

The Why: Philosophy of Education

Developing the mind of the learner has been the battle call of progressive educators for over a century
now, most notably as seen in the voluminous works of John Dewey. For Dewey, teaching and learning
were not only an obvious necessity for living but education was the instrument through which to promote
a democratic society (Dewey, 1944).
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Democracy can only be sustained, asserts Dewey, in a society where the shared interests of the group are
maintained through an education that promotes both the personal interests of its members as well as
develops the habits of mind that secure social change without disorder (Dewey, 1944). Developing the
habits of the mind for intelligent living where all people are problem solvers, then, was the chief aim of
education for Dewey (Eldridge, 1998). This aim seeks to make education a mode of practice and not just
theory (Dewey, 1929).

The concept of the practice of education connotes an effort and engagement of the learner, and is funda-
mental to the idea of Dewey’s notion of experiential learning. Dewey’s views, in combination with the
theories of psychologists such as Piaget and Vygotsky, have contributed to the constructivist movement in
education that is widely accepted as the dominant school of thought shaping curriculum design of the
classrooms today (Hickman, Neubert & Reich, 2009).

Constructivist Perspective

Constructivism is more than a theory of learning. It is a philosophical approach to investigating the
structure, scope, and nature of knowledge (Pritchard & Woollard, 2010). Social constructivist theory
emphasizes that human learning and behavior occur in social environments. This theory is based on the
central notion that as learners we construct our own knowledge about the world around us based on our
experiences and the interaction of others (Schunk & Mullen, 2012; Pritchard & Woollard, 2010). The
construction of this knowledge begins when we connect our past knowledge with new and current
knowledge, transforming that experience into new, personal knowledge and understanding (Pritchard &
Woollard, 2010).

The implications of constructivism on education praxis, then, includes scaffolding and guided learning,
identification of learner’s strengths and or intelligences, individual learning plans, problem-based learn-
ing, diagnosis of individual learning styles, and incorporating learners’ views (Jordan, Orison & Stack,
2008). The instructional implications also includes using raw data and primary sources, providing
physical, interactive, and manipulative materials, creating opportunities for exploratory classroom
discussion, and engaging pupils in experiences that might challenge previously held beliefs or understand-
ing of phenomenon (Jordan et al., 2008).

Peer learning and the use of different teaching styles to aid the learner in interpreting the world are also
core to the constructivist approach (Jordan et al., 2008). For the purposes of verifying best instructional
practices, however, the constructivist pedagogy benefits from an examination through the lens of current
cognitive science research that begins with how the brain encodes information, creates internal represen-
tations, and retrieves this information from memory (Strack & Forster, 2009).

The How: Cognitive Science and Education

From the fields of neurology and cognitive psychology, the cognitivist approach to instructional design is
rooted in research that has identified five basic processes involved in cognition: sensation, perception,
attention, encoding, and memory (Jensen, 2005). Sensation includes visual, audio, and haptic; perception
includes pattern recognition and object recognition; attention includes how we focus limited mental
resources at a given time while ignoring others; encoding refers to organizing information into mental
representations or schemas; and memory, both working and long-term, factor into our ability to retain and
recall information (Jensen, 2005).

In contrast to the constructivist perspective where learning is driven by the social experience of the

learner, cognitivists maintain that learning involves developing effective ways of building schemata and
processing information. This constitutes a process whereby the teacher is in control of learning and
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meaning, it is up to the teacher to design materials that stimulate the learner’s cognitive processes through
which the learner is encouraged to make mental connections (Howard-Jones, 2010; Jensen, 2005).

Neuroscience has informed educational research that learners have a limited amount of working memory
or capacity to hold information in attention when they we are processing it (Howard-Jones, 2010).
External representations can help offload some initial working memory demands when engaged with new
problems, a notion well articulated by the Cognitive Load Theory (Chandler & Sweller, 1991), which has
formed an important basis for much instructional design.

Brain imaging explains that when observing others carrying out actions, some of the same cortical regions
activate as if we were carrying out the actions ourselves (Rizzolatti & Craighero, 2004). This so-called
mirror neuron system also activates when we hear of human actions being performed, which suggests
how the narrative constructs and visualization can support learning (Howard-Jones, 2010). Neurobiologi-
cal evidence also has illuminated how learning, attention, decision making, and social functioning are
subsumed within, and affected by, emotional processes (Immordino-Yang & Damasio, 2007). For
example, research on stress hormones reveal how stress facilitates memory when stress hormones are
present at the time of learning, but have opposite effects when they are present before, or for an extended
time after, the learning event (de Quervain et al., 2000).

Another interesting discovery in cognitive science research is the notion that creativity requires switching
between two very different types of mental processes: generative and analytical thinking, each requiring a
different attentional state. Analytical thinking is used to assess a problem or evaluate a potential solution
and requires focused attention. Generative thinking, on the other hand, is needed to produce ideas and
potential solutions, but needs more diffuse attention (Kounios et al., 2008). However, creative ability is
not merely rooted in individual differences, but can be influenced in and by the instructional strategies of
teachers in the classroom (Howard-Jones, Blakemore, Samuel, Summers & Claxton, 2005).

In terms of content retention and recall, research in cognitive psychology illuminates how emotion, sense,
and meaning factor into enhancing memory. Barkley (2010) notes how information is more likely to be
stored permanently if a learner makes an emotional connection to that information. Further, how well
information makes sense to a learner will affect retention. The principle here being if there is a reason for
the brain to remember information beyond just passing a test, a learner’s ability to store and recall
information will be enhanced (Barkley, 2010). Understanding how the brain receives, stores, and retrieves
information, then, is a key element that must be considered when evaluating instructional designs of the
classroom.

The Meeting Place: Engagement, Orientation, and Attention

The liminal space between constructivist epistemology and brain research is the phenomenon of engage-
ment. Engagement in the classroom has become almost an unwieldy topic of research in education. To
date, the examination of what constitutes engagement has been broken down into a number of elements
that all seem to contribute to deep learning and transfer of knowledge. One of the seminal reviews of
academic engagement is that of Fredricks, Blumenfeld, and Paris (2004) that define a three-part construct
of school engagement that includes behavioral, emotional, and cognitive properties. Behavior engagement
includes the participation in activities, effort, persistence, and positive conduct. Emotional engagement
constitutes the positive and negative affective reactions such as frustration, boredom, and interest.
Cognitive engagement covers the willingness of the learner to put forth the mental effort necessary to
comprehend content and complete tasks across different learning domains.

Interestingly, Fredricks, Blumenfeld, and Paris (2004) summarize their review of engagement by suggest-
ing that these three separate properties have not been studied in combination to each other nor have the
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patterns or relationships between them. The authors pointedly suggest that engagement may in fact be a
multi-dimensional construct influenced by social contexts and individual factors, a complex system of
systems, both internal to the learner and in the environment (Fredricks, Blumenfeld & Paris., 2004).
Indeed, this notion of engagement in education as a multi-dimensional construct calls to mind Bandura’s
social cognitive theory (1977, 1986, 1997, 2001) that speaks of the triadic reciprocity between personal
factors, behaviors, and social factors, or what could be termed a phenomenology of engagement.

Over the last 30 years, researchers have focused on examining teacher-student interactions, the social
conditions of a classroom, and the cognitive development of the learner (Reyes, Brackett, Rivers White &
Salovey, 2012). The science of determining the how to promote engagement and learning helps direct our
attention in both observation of and reflection on conditions and relationships that might otherwise go
unnoticed. However, as Dewey pointed out, the end game of educational science lays in the minds of
those engaged in directing educational activities through whom educational functions should become
more intelligent (Dewey, 1929). It is to this end, then, that the examination of best practices in education-
al design has its great importance. For engagement does not rest merely in the preexisting conditions of a
learner, or in content in isolation, or in the best of intentions of a teacher. Rather, engagement occurs
when the learner interacts with content as structured by the instructor or teacher. One could argue that it is
the way in which the learning experience is structured, or designed that is not only core to the learning
process but it is through this structured experience that the triadic reciprocity, or phenomenon, of en-
gagement occurs.

Constructivists argue that instructional design depends on the “creative genius of the teacher (the art and
science of teaching); complex tools for instructional excellence (instructional methods); and expansive
systems of interconnectivity to frame these learning experiences (curricular frameworks)” (Fogarty, 1999,
p. 76). Cognitive scientists have known for some time that presenting material in both symbolic or
pictorial form and literary text form enhances memory, and more recent evidence shows that multimodal
stimulus produces additional brain activity beyond that experienced by each mode in isolation (Howard-
Jones, 2010). Both epistemological views seem to support the notion that how material is presented not
only stimulates additional brain activity, but it also serves to orient the attention of observer/student to
best promote engagement in the learning process.

Instructional designs can be thought of, then, as an orienting process by the instructor for the learner.
Orienting is the process of moving attention to a location, spatially or temporally orienting, and orienting
attention possibly to particular stimulus, which co-occur in the same spatial location at the same time
(Yiend, 2010). Orienting implies that stimuli or signals at a location and time become amplified, trigger-
ing the detection of the observer/learner toward a possibly significant event (Yiend, 2010). Ainley (2012)
notes that a newly triggered situational interest involves arousal of affect and focused attention toward the
object triggering interest, which in a novel situation begins a new mental schema. Further, Friedman,
Fishback, Forster & Worth (2003) note “broad or narrow perceptual attention primes broad or narrow
conceptual attention” (pp. 278-279).

As such, through a greater understanding of the importance of orientation and focus in instructional
delivery, the superiority of the temporal tutoring model of teaching becomes more self-evident. As
Noonan (2013) notes: “The most successful form of teaching involves the tutorial because of the obvious
advantages, including selecting appropriate content and goals for the predicted stage of learner develop-
ment and then modifying methods ‘on the fly’ based on the learner’s response” (Noonan, 2013, p. 3).
Being able to direct and focus a learner’s attention on the gaps they experience in content or conceptual
mastery is a key element in temporal tutoring. The process of directing the learner’s focus to bridge these
gaps and omissions further includes the selection and adaption of content and delivery as necessary
corollaries of this tutoring model. As such, it stands to reason that a closer examination of instructional
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best practices in temporal instructional contexts is central to the analysis of developing technology based
learning platforms that promote engagement and learning.

Review: Best Practices of Instructional Designs

In reviewing the literature for best instructional practices in the classroom, there are generally three
categories of sources. Firstly, there are individual papers in journals that examine a singular instructional
design, i.e., activating haptic channels to promote learning (e.g., Chan & Black, 2006); self-explanations
that promote cognitive change (e.g., Siegler & Chen, 2008); dialogic argumentation that develop adoles-
cent thinking (e.g., Kuhn & Crowell, 2011); mental models that improve learning (e.g., Bucciarelli,
2004); and the process of inventing using contrasting cases (e.g., Schwartz, Chase, Oppezzo & Chin,
2011). Secondarily, there are reviews of instructional designs from a constructivist perspective (e.g.,
Dean, Hubbell, Pitler & Stone, 2012; Frey, 2010; Noonan, 2013). Lastly, there are reviews of instruction-
al practices from a cognitive science perspective (e.g., Mayer, 2010; Howard-Jones, 2010; Jensen, 2005;
Wolfe, 2010). As a review of individual papers that explore a singular instructional practice exceeds the
scope of this chapter, what follows are a sampling of reviews of best instructional practices from the
constructivist perspective and then from a cognitive science-based perspective.

Constructivist Instructional Design

In spring 1991, the Association for Supervision and Curriculum Development assembled an advisory
panel on improving student achievement. The panel concluded that teachers needed a wide range of
effective instructional tools to promote teaching that was relevant, multicultural, engaging, and appealing
to learners with diverse learning styles. Derived from an extensive review of research, these instructional
tools served as the basis for the iteration of 16 strategies that were found to be effective in promoting
learning and engagement. These strategies were organized under a more broad framework as follows:
strategies that capitalize on students’ strengths; strategies that match instructional methods to student
instructional needs; strategies that increase motivation, interest, and engagement; strategies that create a
variety of learning configurations; and strategies that make connections for understanding (Cole, 2008).

Another example of constructivist-based instructional techniques can be drawn from good practice
literature, including books, training manuals, web sites, workshops, and journals, as reviewed by Barkley
(2010). Barkley’s Student Engagement Techniques (SETSs) are 50 “field tested” learning activities found
effective in engaging undergraduate students that can be organized into two main categories: techniques
to engage students in the content of a course; and techniques for developing attitudes, values, and self-
awareness of students (Barkley, 2010). Examples of these techniques include employing constructs of
split-room debates, small group tutorials, role-play, Think-Aloud-Pair-Problem Solving, case studies,
dyadic interviews, learning logs, student generated rubrics, and triad listening (Barkley, 2010).

Cognitive Science Instructional Design

In terms of the cognitive science-based perspective, Teaching with the Brain in Mind (Jensen, 2005) and
the Handbook of Research on Learning and Instruction (Mayer & Alexander, 2010) provide a thorough
examination and review of instructional designs based in the research of cognitive psychology and brain
research.

Jensen (2005) identifies five necessary steps to effective instruction: engagement, framing, acquisition,
elaboration, and memory strengthening. Engagement includes creating a positive social climate and using
journaling, humor, art, group rituals, activities, affirmations, and stretching as the setup to actual instruc-
tion. Framing, which activates neuronal assemblies, is a tool that creates an intentional bias toward what
follows. This can include a picture, background activity, or any other construct that would ‘hook’ the
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learner mentally. Acquisition is the step that includes cooperative or collaborative learning, an activity, or
experiences that focus on the input of the learner. Elaboration is determining whether learners have
developed a deep understanding of material, something that can be evaluated through peer editing,
feedback, competitions, and partner quizzes. Lastly, memory strengthening draws on the principle that
learners will recall learned material more in the first hour following a learning experience than in the days
that follow. As such, Jensen suggests having learners share their understanding of content with partners,
using drama, creating acronyms, visual representations, rhymes, quizzes, or mental models as a way to
reinforce and encapsulate learning in a format that facilitates ease of recall.

Finally, the Handbook of Research on Learning and Instruction (2010) is a collection of papers that focus
on the following strategies that influence student achievement: feedback; well-crafted, well-positioned
examples; self-explanations; peer interaction; inquiry-based instruction; discussion; computer-based
media; tutoring; and visual-spatial representations and visualizations. Although specific strategies are
mentioned in this text, the emphasis in this handbook is oriented toward a broad explanation of instruc-
tional design clusters — the specific iterances in the classroom still dependent on a teacher’s assessment of
what strategies ultimately to deploy to promote engagement and learning.

Summation for Enhancing Learner Engagement

In the review of best instructional designs in the classroom, the constructivist and cognitive science
perspectives essentially both advocate for two guiding principles to promote engagement and learning.
The first principle recognizes that superior instruction promotes an interactive learning experience in a
dialogic paradigm that features a combination of learner and teacher, learner with learner(s), or learner
with content. The second principle is that the choice of strategies to support content retention, transfer,
and recall is largely dependent on the nature of the content, the educational aims of the teacher, and the
needs of the individual learner. These two principles echo Dewey’s (1929) engineering metaphor of the
art and science of education and instructional design:

There is a science of bridge building in the sense that there is a certain body of independent scientific mate-
rial, say mathematics and mechanics, from which selections may be made and the selections organized to
bring about more effective solution in practice of the difficulties and obstructions that present themselves in
actual building of bridges. It is the way the material is handled and organized with reference to a purpose
that gives us a right to speak of a science of bridge  building, although the building itself is an art, not a
science. The sciences of mechanics and mathematics are, in themselves, the science, which they are, not
sciences of bridge building. They become the latter when selected portions of them are focused upon the
problems presented in the art of bridge building. (pp. 34-35).

Thus, best instructional practices are made manifest when the science of the material, or the science of
how a learner learns, informs the selection, or art, of instructional designs that best construct the learning
experiences in the classroom.

Essentially, this informed process of selection facilitates the engagement of the learner by directing their
focus to the salient issues of the content under consideration. In this way, the reciprocity of science and
art give rise to superior instructional practices in the classroom — the employment of which defies formu-
laic application but requires a dynamic approach that embraces the phenomenology of engagement: the
strengths and needs of individual learner, the nature and scope of the content, and the delivery of that
content that promotes the attentional focus of, and meaning making by, the learner.
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Adaptive Instructional Strategies to Enhance Learner Grit

Research has increasingly focused on the study of non-cognitive factors that contribute to overall success
in academic environments. Studies showing the positive correlation between intelligence and achievement
are vast and well documented; however, the effect that non-cognitive skills have on achievement is
gaining interest as a valid predictor of accomplishment. The following section of this chapter explores the
specific non-cognitive factor of grit and the related terms perseverance and tenacity and their relationship
to learning success and overall academic progress. We then relate these factors to instructional strategies
that may be useful in intelligent tutoring systems, specifically as they apply to design and capabilities of
GIFT.

Grit

Grit is a relatively new term but not a new concept in the study of factors that contribute to achievement
and success. Duckworth, Peterson, Matthews, and Kelly (2007) first introduced the term grit in their
studies of predicting achievement and success among high-achieving individuals and specifically identify
grit as the perseverance and passion for long-term goals. They describe gritty individuals as those who
deliberately set high goals and pursue them over long periods of time despite occasional setbacks and lack
of positive feedback (Duckworth et al., 2007). Their research pursued the study of grit through six distinct
experimental environments using a self-report questionnaire they developed called The Grit Scale.

Initially in 2004, registered users of the University of Pennsylvania’s Department of Psychology’s web
site www.authentichappiness.org were invited to validate a 27-point survey developed to measure grit that
was posted on the web site. Questions were designed to be valid for both adult and adolescent users, not
relate specifically to work or school, and address one’s overall experience with maintaining long-term
projects despite adversity or lack of immediate reward. By October 2005, they had collected data on 1545
adults age older than 25 years — mean age 45 years (73% female; 27% male). After analysis, 15 items
were removed resulting in a 12-item questionnaire, which was validated as a consistent measure of grit —
6 items pertaining to the consistency of interests and 6 items related to persistence of effort.

The first cross-sectional study was designed to validate the grit scale. Participants were asked to answer
the grit questionnaire and provide their age and highest level of education. Results revealed persons with
more education also had more grit than persons with less education of the same age. In addition, when
controlled for age, post college graduates had the most grit and persons with Associate’s degrees had
more grit than persons with less education. When controlled for education, it was suggested that grit tends
to increase with age but the study was unable to reach a reliable conclusion. Although all answers in
Study 1 were self-reported and may be subject to social desirability bias, it seems conclusive that attain-
ment of higher educational levels is associated with increased levels of grit.

The five additional studies using the 12-point scale developed by Duckworth et al. (2007) were also
successful in associating increased levels of accomplishment with increased levels of grit. Study 2
investigated the effect of conscientiousness and other Big Five traits to determine if grit had better
predictive validity than the Big Five traits. In addition to the 12-point grit scale, the study also included
the Big Five Inventory Questionnaire and specifically asked how often those surveyed changed careers to
determine if grittier individuals had fewer career changes. Results from 690 participants — mean age 45
years (80% women; 20% men) — who answered the study on the same web site as in Study 1 revealed that
grit was a better predictor than conscientiousness when studied for education and age. Persons with less
education had less grit — highest scorers of grit were persons with advanced degrees and persons with
Associates degrees followed by persons with Bachelor’s degrees. Persons with some college had the least
amount of grit. In addition, Study 2 also correlated long-term career stability with increased grit.
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Study 3 explored the relationship between grit and the GPA scores of undergraduate students majoring in
psychology at the highly selective University of Pennsylvania. Participants were recruited via email sent
to 390 students and resulted in 139 participants — 69% female; 31% male whose combined average SAT
score was 1415. In addition to the 12-item grit scale, they were also asked to report their gender, SAT
scores, current GPAs, and expected year of graduation. Results showed grittier persons had higher GPAs
especially when SAT scores were held constant. It also revealed that those with lower SAT scores had
higher grit than those who scored higher on the SAT, suggesting that grittier persons make up for lack of
intelligence by working harder (Duckworth et al., 2007).

Study 4 examined the effect of grit on summer retention and the following year’s GPAs in 1218 freshman
cadets at the rigorous United States Military Academy at West Point in 2004. Incoming students complet-
ed the 12-item grit scale and the Brief Self Control Scale (BSCS) (Tangney, Baumeister & Boone, 2004)
within 2 to 3 days of arrival at West Point. The study also compared the Whole Candidate Score, an
internal scoring device used by West Point that contains analysis of SAT scores, high school class rank,
participation in extracurricular activities, and a physical endurance score. Results were compared follow-
ing the grueling summer training program called Beast Barracks and showed grit did not affect the Whole
Candidate Score but did compare with self-control as determined by answers on the BSCS. Retention
following the summer training was most predicted by grit. The Whole Candidate Score, however, best
predicted GPAs. GPAs were also more strongly predicted by measure of self-control than by grit. Duck-
worth et al. (2007) also measured self control separately from grit due to different levels of perseverance
necessary to achieve short-term versus long-term goals.

Study 5 was a replication of Study 4 to determine the predictive validity of grit over Big Five Conscien-
tiousness. The 12-item grit scale and 9-item Conscientiousness subscale of the Big Five Inventory were
administered to 1308 incoming freshman one day after arriving at the United States Military Academy at
West Point in 2006. Results showed summer retention was better predicted by grit than by either consci-
entiousness or Whole Candidate Score.

Study 6 was a longitudinal study conducted on 175 finalists of the Scripps National Spelling Bee in 2006
to test the hypotheses that grit better predicted time of study and multiple final round appearances. The
group consisted of 48% female; 52% male with a mean age of 13.20 years. The 12-item grit scale, the
BCBS and the Verbal 1Q test, a Similarities subtest of the Weschler Intelligence Scale for Children — 11l
(Weschler, 1991) were administered to all participants prior to or after the competition. Students were
also asked to report how many hours per day they studied for the finals during the week and how many
hours per day they studied over the weekend. Grit predicted advancement to higher rounds and showed
that grittier individuals studied longer. The study also revealed grit to have a strong relationship to self-
control. Duckworth et al. (2007) have shown that IQ is not the sole predictor of success through their
series of six studies.

Academic Tenacity

Many others have also questioned what traits make some more successful than peers of equal intelligence.
Weschler was a great advocate of including non-intellective factors in intelligence testing and, in 1943,
agreed with the earlier work by Alexander (1935) that drive, persistence, and interest were considerably
underaccounted for in measures of intelligence testing (Weschler, 1943). More recently, Dweck, Walton,
and Cohen (2011) identify the term “academic tenacity” as a mindset to focus on longer-term goals and
persevere through short-term challenges to achieve those goals. An academic tenacious student, according
to this research, typically sees success in education as a means to a longer-term goal, is able to self-
regulate time and attention, and readily accepts challenge as an opportunity to learn new things (Dweck et
al., 2011).
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According to Dweck et al. (2011), improving a student’s mindset toward learning will help motivate the
student and encourage habits that lead to success in educational pursuits. Studies of lower income,
racially diverse student populations over two years revealed two distinct mindsets contributed to success
or failure in academic environments (Blackwell, Trzesniewski & Dweck, 2007, Study 1). Students with a
“fixed” mindset believe intelligence is static and little can be done to improve it. These types of students
are overly concerned with their ability academically and shy away from tasks at which they do not excel.
They interpret failure as humiliating due to what they perceive as their intellectual inadequacies and are
more prone to give up. They are more concerned with their performance than learning.

In contrast, students with a “growth” mindset believe intelligence is expandable and can increase with
study and dedication toward learning. They believe failure is an opportunity to learn and is not due to
intellectual limits. They seek the opportunity to learn in all endeavors and relish challenge (Dweck &
Leggett, 1988). Blackwell et al. (2007) showed that although all students entered the 7" grade with
similar performance scores, math grades in those with a fixed mindset decreased while math grades in
those with a growth mindset increased over a two-year span. The students with a growth mindset “earned
higher grades because they valued learning over looking smart” (Blackwell et al., 2007). Academic
tenacity they concluded requires a growth mindset.

Academic Perseverance

Farrington, Roderick, Allensworth, Nagaoka, Keyes, Johnson, and Beechum, (2012) have studied non-
cognitive factors that include strategies, attitudes, and behaviors in addition to non-cognitive skills that
that affect academic achievement. They posit that student academic behaviors have the greatest effect on
learning success and grades (Farrington et al., 2012). In their review, Farrington et al. (2012) developed
five categories of non-cognitive factors that are related to academic success: academic behaviors; aca-
demic perseverance; academic mindsets; learning strategies; and social skills. The term “academic
perseverance” describes students who “behave in an engaged, focused, and persistent manner in pursuit of
academic goals, despite obstacles, setbacks, and distractions” (Farrington et al., 2012, p. 20). Students
who have academic perseverance achieve academically by continuing to try to get a good grade in a
challenging class despite failing performances on tests and would continue to try to understand difficult
material without giving up (Farrington et al., 2012, p. 20). The review focuses on grit and self-control,
which is the ability to forego immediate temptations for the sake of a less tangible goal.

The role of grit on academic performance as seen through Duckworth’s grit study of SAT scores of 139
University of Pennsylvania students (Duckworth et al., 2007) is discussed. Although Farrington et al.
(2012) agree that students with more grit may indeed achieve more, they argue that in Duckworth et al.
(2007) specific studies, the participants were so uniquely homogeneous due to their high SAT scores, the
findings that those with lower SAT scores are more gritty to overcome academic short fallings may not
necessarily be valid in studies involving more heterogeneous populations. Additionally, Duckworth et al.
(2007) studies consider grit to be an inherent personality trait. Farrington et al. (2012) consider academic
perseverance a malleable behavior that can be changed to increase academic achievement. Although
overall, Farrington et al. (2012) agree that the studies of Duckworth et al. (2007) show a relationship
between grit and academic perseverance, they encourage more research to determine a more causal-
related relationship.

Dweck et al.’s (2011) academic tenacity is also discussed. Although Farrington et al. (2012) believe that
the factors of mindset, academic skills, learning strategies, and personality included in academic tenacity
may contribute in total to academic perseverance, for the purpose of their analysis, they chose to leave
those factors out and focus solely on the measure of academic performance without the variables that may
influence it (p. 20).
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Academic perseverance also includes what the researchers term “effortful control,” meaning the inclusion
of self-control and delayed gratification. Farrington et al. (2012) conclude the role of perseverance on
academic success is vague and it is more effective to focus on teaching positive academic mindsets and
learning strategies that have been shown to improve academic performance over time (pp. 26, 27).

Grit, Tenacity, and Perseverance

In 2013, the U.S. Office of Educational Technology released a draft report entitled, “Promoting Grit,
Tenacity, and Perseverance: Critical Factors for Success in the 21* Century” (Shechtman, DeBarger,
Dornsife, Rosier & Yarnall, 2013). For the purpose of the report, they define grit as the “perseverance to
accomplish long-term or higher-order goals in the face of challenges and setbacks, engaging the student’s
psychological resources, such as their academic mindsets, effortful control, and strategies and tactics”
(Shechtman et al., 2013, p. 15). The authors believe non-cognitive factors are malleable and can be taught
effectively to students to increase academic performance. The report agrees with Dweck et al. (2007) that
growth mindsets are essential to facilitate perseverance and academic achievement. Csikszentmihalyi’s
(1990) “Flow” is also supported to develop a sense of perseverance in which students are best challenged
and motivated to learn by material that is within or only moderately beyond their skill level — material that
is too easy induces boredom; material that is too difficult creates frustration.

Presenting learning material in a way that is relevant or correlates with students’ personal goals and
interests has also been shown to be effective in promoting perseverance. Basic methods such as choosing
material and independently defining timelines and approaches to getting work accomplished has also
resulted in increased engagement from students (Shechtman et al., 2013).

Relevant to the review, associated methods proposed to increase student grit, tenacity, and perseverance
include instructional emphasis on mindsets, learning strategies, and resilience through the use of “re-
search-based best practices” that include the use of technology. They stress that technological approaches
should be developed by interdisciplinary teams that are experts in the learning sciences, software design,
and domain-specific content (Shechtman et al., 2013, p. xiii). In addition, new technology-based digital
learning environments that support educational data mining and affective computing should be integrated
to detect potential academic vulnerabilities in students and potentially steer them back before academic
failure. More research is required to determine the costs and benefits of promoting grit in different
learning environments and identifying potential situations where grit may be detrimental.

Learning Strategies to Enhance Learner Grit, Tenacity, and Perseverance

Review of the literature shows gritty, academically tenacious, perseverant learners have strong desire and
motivation to learn. They tend to have a growth mindset about learning and are not likely to give up or be
dissuaded due to failure. They are also independent and would be more likely to embrace the opportunity
to have some choice over their instruction. Several instructional strategies that support these character
traits are in the literature. No studies that specifically address learner grit in relation to instruction and
learning have been found. However, the following adaptive instructional research supports traits con-
sistent with gritty, tenacious, and perseverant learners.

Goal-Directed Feedback

Goal-directed feedback may be effective for gritty learners since it does not specifically supply the
answer, but addresses whether the step contributes to achievement of the goal or not (Shute, 2007, p. 12):
“One way to influence learners’ goal orientations (e.g., to shift from a focus on performing to an emphasis
on learning) is via formative feedback. Hoska (1993) showed how goal-orientation feedback can modify a
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learner’s view of intelligence, by helping a learner see that (a) ability and skill can be developed through
practice, (b) effort is critical to increasing this skill, and (c) mistakes are part of the skill-acquisition
process” (Shute, 2007, p.13).

Self-Explanation and Self-Examination

Self-explanation (Chi et al., 1994) and self-examination are also valid strategies that produce greater
learning with computer-based tutoring systems. It has been shown that learners benefit from reviewing
their answer choices based on why they selected that answer and if they have enough information to reach
a specific conclusion to correctly select an answer (Chi et al., 1994; Durlach et al., 2011). Self-
explanation has been used in AutoTutor as a natural language dialog with the computer and the student
(VanLehn, Graesser, Jackson, Jordan, Olney & Rosé, 2007). Self-examination forces the student to
review their work and determine at what point an error was made in a problem and attempt to correct the
wrong step. The prompt may not occur immediately when the error was committed and help is provided
only after the student has difficulty finding or fixing an error. This strategy of feedback is also called self-
correction.

Summation for Enhancing Learner Grit

Tailoring of instruction depends on what is being taught or learned and the individual learner characteris-
tics, such as motivation, interest, and ability level for that subject matter. Students should be assessed to
determine their current levels of ability, motivation, and interest, and should be re-administered through-
out the learning activity to continuously assess their levels and adapt instruction. GIFT effectively
assesses the learner through its ability to author surveys and interpret physiologic data or assess historical
data.

For students who are perceived as more academically proficient, motivated, and determined, several
instructional strategies can be more effective than others. Through the pedagogical module in GIFT,
instruction can be adapted based on a learner’s historic and real-time data.

Much of the research on non-cognitive factors focuses on correlation rather than causal relationships (e.g.,
presence of grit and high educational achievement and not if increasing grit will increase educational
achievement [Farrington, 2012, p. 13]). It is difficult to translate study results into direct classroom or
computer-based methods that produce reliable results.

The conclusion on adaptive instructional strategies for gritty learners is largely that it depends. It is
situational. Although many adaptive instructional strategies have been used and studied, no single
adaptive instructional strategy has proven to be more reliable across all domain environments than
another. Some studies used only one adaptive technique; some used as many as three. However, no one
stands out as the across-the-board superior adaptive strategy in all cases for all students.

Adaptive instruction via a computer-based tutor is in its infancy in many ways — many studies have been
conducted and results obtained; however, similar to human learning via any method, it is difficult to
determine precisely which adaptive strategy consistently outperforms another in all situations. Review of
the current literature regarding adaptive instructional strategies for enhancing learner grit shows that it
continues to depend on individual learner traits (e.g., values, motivation, goals) and can vary even within
a single individual over time and is situational. Error-based feedback; repetitive, spaced strategy; mastery
learning; faded-worked examples; and metacognitive prompting all are effective for gritty persons, and all
persons for that matter, and should continue to be studied and for now, included in adaptive, computer-
based tutoring.
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Although significant advances have occurred in adaptive instruction via a computer-based tutor, the
results of any given instruction still depend on the specific learner, how and when the adaptation is
presented; and the learning environment itself. Knowing if a learner has traits associated with grit,
tenacity, and perseverance will help determine useful instructional strategies. For the present, the experts
will continue to study the learners and the learners will continue to be studied. Any improvement in
learning of any sort should be considered successful.

Conclusions and Recommendations

We provided a review of instructional techniques, strategies, and tactics that influence learning, affect,
engagement, and grit. We distinguished instructional techniques as domain-independent and, while
largely learner-independent in their application, they may be tailored to support adaptive tutoring. We
noted instructional strategies as domain-independent but learner-dependent, and instructional tactics as
domain- and learner-dependent. Techniques were generally easier to implement.

A set of instructional techniques were reviewed prior to evaluating instructional strategies and tactics in
the literature, which influence affect, engagement, and grit. In addition to their effect on learning, affect,
engagement, and grit, we also examined their influence in developing other desirable traits and their ease
of implementation (e.g., authoring and reusability).

In the area of affect, we reviewed three areas: developing emotional intelligence in adaptive tutoring
systems; modeling the response of expert human tutors to mange affect; and using the ZPD to manage
affect. Developing emotional intelligence in ITSs is considered moderate to difficult depending on the
goals set for the system. The influence of some behaviors represented in the INSPIRE model may not be
mutually exclusive (e.g., nurturant and indirect), and the implementation may be subject to wide variabil-
ity due to how frequently each behavior/feedback is triggered during tutoring. Any strategy that might be
overused is undesirable.

As part of our review of the response of expert human tutors, we also evaluated Anderson et al.’s (1987)
principles later elaborated by Corbett et al. (1997) with respect to their ease of implementation and many
of them were found to be relatively easy to implement in an architecture like GIFT. While ZPD is
mentioned often in the tutoring literature, relatively few models have been implemented and only one,
Murray and Arroyo (2002) was operationalized for use across tutoring domains.

Next we evaluated engagement methods and specifically focused on the nexus of engagement, orienta-
tion, and attention in instructional design. Several strategies/tactics/techniques were noted and we chose
to focus on instructional design from a constructivist and cognitive science perspective. Omitted from this
analysis were the instructional designs influenced from a behavioralist epistemological framework and
instructional designs based on the information-processing framework, as this latter school of thought has
largely been incorporated under the current epistemological framework of cognitive science more
generally. Instructional design principles of note included promoting interactive learning; selecting
strategies based upon scaffolding instruction to consider cognitive load; supporting long-term memory
transfer through personal meaning making; selecting strategies based upon how the learner prefers to
learn; constructing knowledge by linking the learner’s prior knowledge to new content; and selecting
content and delivery methods that promote attentional focus.

Lastly, we examined instructional strategies to enhance learner grit or perseverance. The results of six
studies were discussed along with a comparison of grit with academic tenacity and academic persever-
ance. We concluded by examining three methods that may be effective for gritty learners: goal-directed
feedback, self-explanation, and self-examination.
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The strengths of the instructional strategy methods reviewed here are based on the notion that they stem
either from empirically validated educational research or field reports of successful temporal classroom
instruction, including the one-to-one tutoring paradigm. Although the information regarding successful
instructional paradigms is vast and is certainly not exhaustively reported here, this review provides the
reader with sources from which to model and apply what we consider as best instructional temporal
practices that can inform instructional design in a simulated platform.

Specific to GIFT, these sources of instructional strategies can be used to help shape GIFT’s Domain
Module, most importantly in examining how content is shaped and delivered to optimize the learning
experiences of trainees. This optimization includes targeting mastery learning of domain-specific skills as
well as broader analogical and problem-solving thinking skills across a variety of content-specific
domains. Further, it is the hope that this review will help inform instructional designs in the Pedagogical
Module, particularly in evaluating how to most effectively construct feedback features that will speak to
promoting trainee grit and perseverance, with the additional consideration of the emotional, cognitive, and
behavioral elements that may shape trainee engagement.

References

Ainley, M. (2012). Students’ interest and engagement in classroom activities. In S. Christenson, A., Reschly &
C.Wylie, (Eds.), Handbook of research on student engagement, (283-302). New York, NY: Springer.

Alexander, S., Sarrafzadeh, A. & Fan, C. (2003). Pay Attention! The Computer is Watching: Affective Tutoring
Systems. In G. Richards (Ed.), Proceedings of World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education 2003 (pp. 1463-1466). Chesapeake, VA: AACE.

Alexander, W. P. (1935). Intelligence, concrete and abstract. British Journal of Psychology. Monograph Supplement
No. 19.

American Psychological Association (2007). VandenBos, Gary R., ed. APA Dictionary of Psychology Washington,
DC: American Psychological Association, page 26.

Anderson, J., Boyle, C., Farrell, R. & Reiser, B. (1987). Cognitive principles in the design of computer tutors. In P.
Morris (Ed.), Modeling cognition. NY: John Wiley.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences, 4(2), 167-207.

Andre, E., Rehm, M., Minker, W. & Biihler, D. (2004). Endowing spoken language dialogue systems with emotion-
al intelligence. In Affective Dialogue Systems (pp. 178-187). Springer Berlin Heidelberg.

Atkinson, R. K., Renkl, A. and Merrill, M.M. (2003). “Transitioning From Studying Examples to Solving Problems:
Effects of Self-Explanation Prompts and Fading Worked-Out Steps.” Journal of Educational Psychology
95(4)

Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice Hall.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ:
Prentice Hall.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Freeman.
Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52 , 1-26.
Barkley, E. (2010). Student engagement techniques: A handbook for college faculty. Hoboken, NJ: Jossey-Bass.

Blackwell, L., Trzesniewski, K.H. & Dweck, C.S. (2007). Implicit Theories of Intelligence Predict Achievement
Across an Adolescent Transition: A Longitudinal Study and an Intervention. Child Development, 78(1),
246 — 263.

28



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

Blumenfeld, P. C., Kempler, T. M. & Krajcik, J. S. (2006). Motivation and Cognitive Engagement in Learning
Environments.

Bower, G.H. (1981). Mood and memory. American Psychologist. 1981 Feb Vol 36(2) 129-148.

Bower, G. H. & Forgas, J. P. (2000). Affect, memory, and social cognition. In E. Eich, J. F. Kihlstrom, G. H. Bower,
J. P. Forgas & P. M. Niedenthal (Eds.), Cognition and emotion (pp. 87-168). New York: Oxford University
Press.

Bucciarelli, M. (2004). How the construction of mental models improve learning. Mind & Society 6, 67-89. DOI
10.1007/s11299-006-0026-y

Byrnes, J.P. (1996). Cognitive Development and Learning in Instructional Contexts. Boston: Allyn and Bacon.

Calvo, R. A. & D’Mello, S. K. (2010). Affect detection: An interdisciplinary review of models, methods, and their
applications. IEEE Transactions on Affective Computing, 1, 18-37.

Chan, M.S. and Black, J.B. (2006) Direct-manipulation animation: Incorporating the haptic channel in the learning
process to support middle school students in science learning and mental model acquisition. Proceedings
of International Conference of the Learning Sciences. Mahwah, NJ: LEA.

Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction,
8(4), 293-332.

Chi, M. T., H., de Leeuw, N., Chui, M. H. & Lavancher, C. (1994). Eliciting self-explanations improves understand-
ing. Cognitive Science, 18, 439-477.

Clark, R.C., Nguyen, F., and Sweller, J. (2006). Efficiency in learning: evidence-based guidelines to manage
cognitive load. Wiley & Sons. ISBN 0-7879-7728-4.

Cole, R. (Ed.) (2008). Educating everybody ’s children: Diverse teaching strategies for diverse learners. Alexandria,
VA: Association for Supervision & Curriculum Development (ASCD).

Corbett A. T., Koedinger, K. R. & Anderson, J. R. (1997). Intelligent tutoring systems. In M. G. Helander, T. K.
Landauer & P. V. Prabhu (Eds.), Handbook of human-computer interaction (pp. 849-874). Amsterdam:
Elsevier.

Corno, L. & Mandinach, E. B. (1983). The role of cognitive engagement in classroom learning and motivation.
Educational psychologist, 18(2), 88-108.

Corrigan, L., Peters, C. and Castellano, G. (2013). Identifying Task Engagement: Toward Personalised Interactions
with Educational Robots. 2013 Humaine Association Conference on Affective Computing and Intelligent
Interaction (ACII) IEEE, 2013, ISSN: 2156-8103.

Csikszentmihalyi, M. (1990). Flow: the psychology of optimal experience. Harper Perennial, New York, NY.

D’Mello, S. & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction,
22(2), 145-157.

Dean, C., Hubbell, E., Pitler, H. & Stone, B. (2012). Classroom Instruction that Works Alexandria, VA: Association
for Supervision and Curriculum.

Dempster, F.N. (1988). The spacing effect. American Psychologist, 43, 627-634.

de Quervain, D., Roozendaal, B., Nitsch, R., McGaugh, J. & Hock, C. (200). Acute cortisone administration impairs
retrieval of long-term declarative memory in humans, Nature Neuroscience, 3, 313-314.

Dewey, J. (1929). The sources of a science of education. New York, NY: Liveright.
Dewey, J. (1944). Democracy and Education. New York, NY: The Free Press.

Duckworth, A.L., Peterson, C., Matthews, M.D. & Kelly, D.R. (2007). Grit: Perseverance and Passion for Long-
term Goals. Journal of Personality and Social Psychology, 92(6), 1087-1101.

29



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

Durlach, P. & Ray, J. (2011). Designing Adaptive Instructional Environments: Insights from Empirical Evidence.
Technical Report 1297. Arlington, VA: United States Army Research Institute For the Behavioral and So-
cial Sciences.

Dweck, C. S. & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological
Review, 95, 256-273.

Dweck, C.S., Walton, G.M. & Cohen, G.L. (2011). Academic Tenacity: Mindsets and Skills that Promote Long-
term Learning. Paper prepared for the Gates Foundation. Seattle, WA: Bill & Melinda Gates Foundation.

Eldridge, M. (1998). Transforming experience: John Dewey ’s cultural instrumentalism. Nashville: Vanderbilt
University Press.

Farrington, C.A., Roderick, M., Allensworth, E., Nagaoka, J., Keyes, T.S., Johnson, D.W. & Beechum, N.O. (2012).
Teaching Adolescents to Become Learners: The Role of Noncognitive Factors in Shaping School Perfor-
mance: A Critical Literature Review. Chicago, IL: The University of Chicago Consortium on Chicago
School Research.

Fletcher, J.D. and Sottilare, R. (2013). Shared Mental Models and Intelligent Tutoring for Teams. In R. Sottilare, A.
Graesser, X. Hu, and H. Holden (Eds.) Design Recommendations for Intelligent Tutoring Systems: Volume
| - Learner Modeling. Army Research Laboratory.

Fogarty, R. (1999). Architects of the intellect. Educational Leadership. 57 (3), 76-78.

Fredricks, J., Blumenfeld, P. & Paris, A. (2004). School engagement: Potential of the concept, state of the evidence.
Review of Educational Research, 74, 59-109.

Frey, N. (2010). Teaching Practices that Work, Effective Teacher ’s Guide: 50 Ways toEngage Students and Promote
Interactive Learning. New York, NY: Guildford Press.

Friedman, R., Fishback, A., Forster, J. & Werth, L. (2003). Attentional priming effects on creativity. Creativity
Research Journal, 15 (2), 277-286.

Gebhard, P., (2005). ALMA - A Layered Model of Affect. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents & Multi Agent Systems (AAMAS), Utrecht, Netherlands, July 25 to 29,
2005.

Gold, P. and van Buskirk R. (1975). Facilitation of time-dependent memory processes with posttrial epinephrine
injections. Behavioral Biology, 13, 145-153.

Goleman, D., (1995). Emotional Intelligence, New York, NY, England: Bantam Books, Inc.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A. & Louwerse, M. M. (2004).
AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments & Com-
puters, 36(2), 180-192.

Hernandez, Y., Noguez, J., Sucar, E. and Arroyo-Figueroa G. (2006). Incorporating an Affective Model to an
Intelligent Tutor for Mobile Robotics. In Proceedings of the 36th Annual Frontiers in Education Confer-
ence, San Diego, California, USA.

Hickman, L., Neubert, S. & Reich, K. (Eds.) (2009). John Dewey between pragmatism and constructivism. New
York, NY: Fordham University Press.

Howard-Jones, P., Blakemore, S., Samuel, E., Summers, I. & Claxton, G. (2005). Semantic divergence and creative
story generation: An fMRI investigation. Cognitive Brain Research, 25, 240-250.

Howard-Jones, P. (2010). Introducing neuroeducational research: Neuroscience, education and the brain from
contexts to practice. New York, NY: Routledge.

Hoffmann, L. and Kramer, N.C. (2011). “How Should an Artificial Entity be Embodied? Comparing the Effects of a
Physically Present Robot and its Virtual Representation,” in Proceedings of Workshop on Social Robotic
Telepresence, Human-Robotic Interaction 2011, Lausanne, Switzerland, 2011

30



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

Hoska, D. M. (1993). Motivating learners through CBI feedback: Developing a positive learner perspective. In V.
Dempsey & G. C. Sales (Eds.), Interactive Instruction and Feedback (pp. 105-132). Englewood Cliffs,
N.J.: Educational Technology Publications.

Immordino-Yang, M. & Damasio, A. (2007). We feel, therefore we learn: The relevance of affective and social
neuroscience to education. Mind, Brain and Education, 1, 3-10.

Isen, A.M. (2000). Positive Affect and Decision Making, in M.Lewis & J.M. Haviland-Jones (eds.), Handbook of
Emotions, second edition, The Guildford Press, 417- 435, 2000.

Isen, A. M. (2003). Positive Affect as a Source of Human Strength. In L. Aspinwall & U. Staudinger (Eds.), A
Psychology of Human Strengths (pp. 179-195). The American Psychological Association, 2003, Washing-
ton, D.C.

Isen, A. (2004). Some Perspectives on Positive Feelings and Emotions: Positive Affect Facilitates Thinking and
Problem Solving. In N. F. a. A. F. Antony Manstead (Ed.), The Amsterdam Symposium. New York: Cam-
bridge.

Isen, A. M., Daubman, K. A. & Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. Journal
of Personality and Social Psychology, 52(6), 1122-1131.

Isen, A. M., and Erez, A. (2006). Some measurement issues in the study of affect. In A. Ong & M. vanDulman
(eds.), Oxford Handbook of Methods in Positive Psychology. Oxford University Press, New York, USA.

Jensen, E. (2005). Teaching with the Brain in Mind. Alexandria, VA: Association for Supervision & Curriculum
Development (ASCD).

Johnson, A. and Taatgen, N. (2005). In R. Proctor & K. Vu (Eds.) Handbook of Human Factors in Web Design,
Chapter 25 - User Modeling. New Jersey: Lawrence Erlbaum Associates, Inc.

Jordan, A., Orison, C. & Stack, A. (2008). Approaches to Learning: A Guide for Teachers. Berkshire, England:
Open University Press.

Kearsley, G. & Shneiderman, B. (1998). Engagement Theory: A Framework for Technology-Based Teaching and
Learning. Educational technology, 38(5), 20-23.

Klein, G. & Baxter, H. (2006). Cognitive Transformation Theory: Contrasting Cognitive and Behavioral Learning.
Presented at the Interservice/Industry Training Systems and Education Conference, Orlando, Florida, De-
cember 2006.

Klesen, M. (2002). Report on affective reasoning and cultural diversity. NECA: A Net Environment for Embodied
Emotional Conversational Agents.

Kounis, J., Fleck, J., Geen, D., Payne, L., Stevenson, J., Bowden, E. & Jung-Beeman, M. (2008). The origins of
insight in resting-state brain activity. Neuropsychologia, 46, 281-291.

Kuhn, D. & Crowell, A. (2011). Dialogic argumentation as a vehicle for developing young adolescents’ thinking.
Psychological Science 22(4), 545-552.

Lane, H.C. & Johnson, W.L. (2008). Intelligent Tutoring and Pedagogical Experience Manipulation in Virtual
Learning Environments. In J. Cohn, D. Nicholson & D. Schmorrow (Eds.), The PSI Handbook of Virtual
Environments for Training and Education (pp. 393-406). Westport, CT: Praeger Security International.

Lepper, M. R., Drake, M. & O’Donnell-Johnson, T. M. (1997). Scaffolding techniques of expert human tutors. In K.
Hogan & M. Pressley (Eds), Scaffolding student learning: Instructional approaches and issues (pp. 108-
144). New York: Brookline Books.

Lepper, M. and Woolverton, M. (2002). The Wisdom of Practice: Lessons Learned from the Study of Highly
Effective Tutors. In J. Aronson (Ed.), Improving academic achievement: impact of psychological factors on
education (pp. 135-158). New York: Academic Press.

Linnenbrink, E. A., and Pintrich, P. R. (2002). Motivation as an enabler for academic success. School Psychology
Review, 31, 313-327.

31



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

Mayer, R. (2010). Instruction based on visualization. In R. Mayer & P. Alexander, (Eds.), Handbook of research on
learning and instruction, (427-445). Florence, KY: Routledge.

Mayer, R. & Alexander, P. (Eds.) (2010). Handbook of research on learning and instruction. Florence, KY:
Routledge.

Merrill, D. , Reiser, B, Ranney, M., and Trafton, J. (1992). Effective Tutoring Techniques: A Comparison of Human
Tutors and Intelligent Tutoring Systems. The Journal of the Learning Sciences, 2(3), 277-305.

Murray, T. & Arroyo, I. (2002). Toward Measuring and Maintaining the Zone of Proximal Development in Adap-
tive Instructional Systems. Sixth International Conference on Intelligent Tutoring Systems. Springer.

Noonan, S. (2013). How real teachers learn to engage all learners. Lanham, MD: R&L Education.
Norman, D. (2002). Emotion and Design: Attractive Things Work Better. Interactions, 9, 4, 36-42.

Nye, B., Sottilare, R., Ragusa, C. & Hoffman, M. (2014, in press). Prologue - Defining Instructional Challenges,
Strategies, and Tactics for Adaptive Intelligent Tutoring Systems. In R. Sottilare, A. Graesser, X. Hu & B.
Goldberg (Eds.) Design Recommendations for Intelligent Tutoring Systems: Volume 2 - Instructional Man-
agement. Army Research Laboratory, Orlando, Florida. ISBN: 978-0-9893923-3.

Pea, R. D. (1988). Putting knowledge to use. In Raymond S. Nickerson & Philip R. Zodhiates (Eds.), Technology in
education: Looking toward 2020. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Person, N. K., Kreuz, R. J., Zwaan, R. A. & Graesser, A. C. (1995). Pragmatics and pedagogy: Conversational rules
and politeness strategies may inhibit effective tutoring. Cognition and Instruction, 13(2), 161-188.

Picard, R. (2006). Building an Affective Learning Companion. Keynote address at the 8th International Conference
on Intelligent Tutoring Systems, Jhongli, Taiwan. Retrieved from
http://www.its2006.org/ITS_keynote/ITS2006_01.pdf

Pritchard, A. & Woolard, J. (2010). Psychology for the Classroom: Constructivism and Social Learning. Florence,
KY: Routledge.

Pugh, K. J., Linnenbrink-Garcia, L., Koskey, K. L., Stewart, V. C. & Manzey, C. (2010). Motivation, learning, and
transformative experience: A study of deep engagement in science. Science Education, 94(1), 1-28.

Reyes, M., Brackett, M., Rivers, S., White, M. & Salovey, P. (2012). Classroom emotional climate, student engage-
ment, and academic achievement. Journal of Educational Psychology 104(3), 700-712.

Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.
Retrieved on 20 December 2013 from
http://ezproxy.cul.columbia.edu/login?url=http://search.proquest.com/docview/198832146?accountid=1022
6

Rodrigues, M., Novais, P., and Santos, M.F. (2005). Future Challenges in Intelligent Tutoring Systems — A Frame-
work. In Proceedings of the Third International Conference on Multimedia and Information & Communica-
tion Technologies in Education, Caceres, Spain.

Rosenberg-Kima, R.B., Plant, E.A., Baylor, A.L. and Doerr, C.E. (2007). Changing Attitudes and Performance with
Computer-Generated Social Models. In Proceedings of the 13th International Conference on Artificial In-
telligence in Education (AIED), p. 51-58. Marina del Rey, CA.

Schunk, D. & Mullen, C. (2012). Self-efficacy as an engaged learner. In S. Christenson, A., Reschly & C.Wylie,
(Eds.), Handbook of research on student engagement, (219-235). New York, NY: Springer.

Schwartz, D., Chase, C., Oppezzo, M. & Chin, D. (2011). Practicing versus inventing with contrasting cases: The
effects of telling first on learning and transfer. Journal of Educational Psychology 103(4) 759-775.

Sessink, O., Beeftink, H., Tramper, J. & Hartog, R. (2007). Proteus: A Lecturer-Friendly Adaptive Tutoring System.
Journal of Interactive Learning Research. 18 (4), pp. 533-554. Chesapeake, VA: AACE.

Shechtman, N., DeBarger, A.H., Dornsife, C., Rosier, S. & Yarnall, L. (2013). Promoting Grit, Tenacity, and
Perseverance: Critical Factors for Success in the 21* Century. Washington, DC: U.S. Department of Educa-
tion, Department of Educational Technology.

32



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

Shute, V. J. (2007). Focus on Formative Feedback. Report RR-07-11. Princeton, NJ: Educational Testing Services,
Inc.

Siegler, R. & Chen, Z. (2008). Differentiation and integration: guiding principles for analyzing cognitive change.
Developmental Science 11(4), 433-453.

Sottilare, R. A. (2012). Considerations in the Development of an Ontology for a Generalized Intelligent Framework
for Tutoring. In Proceedings of the International Defense and Homeland Security Simulation Workshop
2012, Vienna, Austria.

Sottilare, R. & Goldberg, B. (2012). Designing Adaptive Computer-Based Tutors to Accelerate Learning and
Facilitate Retention. Journal of Cognitive Technology: Contributions of Cognitive Technology to Acceler-
ated Learning and Expertise.

Sottilare, R., Ragusa, C., Hoffman, M. & Goldberg, B. (2013). Characterizing an adaptive tutoring learning effect
chain for individual and team tutoring. In Proceedings of the Interservice/Industry Training Simulation &
Education Conference, Orlando, Florida, December 2013.

Sternberg, R. (1998). Abilities are forms of developing expertise. Educational Research, 27 (3), pp. 11-20.

Strack, F. & Forster, J. (Eds.) (2009). Social cognition: The Basis of Human Interaction. London: Psychology
Press.

Tangney, J. P., Baumeister, R. F. & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology,
better grades, and interpersonal success. Journal of Personality, 72(2), 271-322.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A. & Rosé, C. P. (2007). When are tutorial
dialogues more effective than reading? Cognitive Science, 31, 3-62.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., Treacy, D., Weinstein, A. & Wintersgill,
M. (2005). The Andes physics tutoring systems: Lessons learned. International Journal of Artificial Intel-
ligence in Education, 15, 147-204.

Vygotsky, L. S. (1978). Mind in society--The development of higher psychological processes. Cambridge: Harvard
University Press.

Weschler, D. (1943). Nonintellective Factors in General Intelligence. The Journal of Abnormal and Social Psychol-
ogy. 38(1), 101-103.

Wechsler, D. (1991). Wechsler Intelligence Scale for Children—Third Edition. San Antonio, TX: The Psychological
Corporation.

Wolfe, P. (2010). Brain Matters: Translating research into Classroom Practice (2" Edition). Alexandria, VA:
Association for Supervision & Curriculum Development (ASCD)

Yiend, J. (2010). The effects of emotion on attention: A review of attentional processing of emotional information.
Cognition and Emaotion, 24(1), 3-47.

33



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

34



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

Chapter 3 — | Feel Your Pain: A Selective Review of

Affect-Sensitive Instructional Strategies

Sidney D’Mello®, Nathan Blanchard®, Ryan Baker?, Jaclyn Ocumpaugh?, and Keith Brawner®
! University of Notre Dame; 2 Teachers College Columbia University; *U.S. Army Research Laboratory

Introduction

It is well known that students experience a range of affective states when interacting with a learning
technology, be it an ITS, an educational game, a simulation environment, or even simpler interfaces that
support foundational skills like reading comprehension and writing proficiency (see review in D’Mello,
2013). Positive affective states, such as contentment, delight, or pride may be triggered when a challeng-
ing problem is finally mastered. Negative affective states, such as frustration, disappointment, or anger,
can occur when a learner is stuck at an impasse or in reaction to feedback from the learning environment.
Learners’ affect can be momentary, as in the occasional eureka moment when a major insight is obtained,
prolonged as in the case of boredom for a particular topic, or dispositional when the learner is enthused or
disillusioned by a particular subject across a range of lessons or even a lifetime. We also know that affect
is more than a mere incidental outcome that arises during learning, but can also indirectly influence
learning outcomes by modulating cognitive processes in significant ways. For example, positive affective
states can inspire a broader attentional focus, which is essential for creative problem solving (Clore &
Huntsinger, 2007; Isen, 2008), but can also make a learner lose focus on the task at hand. On the other
hand, negative affective states can be beneficial by focusing attention (Fiedler, 2001), but can hinder
problem solving by triggering a form of tunnel vision when taken to an extreme.

Affect is still a complex mystery despite almost 150 years of scientific research. Decades of research in
clinical psychology have revealed that humans have a relatively poor understanding of their own affective
states, including how to regulate them. In a similar vein, considerable research in interpersonal communi-
cation, social dynamics, and cultural influences has indicated that people are not very apt at accurately
perceiving and responding to the affective states of others, though we overestimate our ability to do so
(Kelly & Metcalfe, 2011). So what is an ITS, with impoverished sensing capabilities, a shallow under-
standing of its environment, and a limited action repertoire to do? Should ITSs simply proclaim affect to
be an insignificant or insurmountable problem and proceed by attending to cognition as they have done in
the first 20 years or so of their existence? Or should they tackle affect head-on due to its prominence and
influence on cognition (and thereby learning), while at the same time being fully aware of the complexi-
ties involved in devising strategies to model affect? Our answer to the latter question is a resounding
“yes,” and in this chapter we discuss some affect-sensitive instructional strategies that “respond to affect.”
We do this by first discussing theoretical issues pertaining to affect and then by adopting a theoretical
framework for the affective response strategies. The main contribution of this chapter is an exposition of
six case studies, each featuring a unique affect-sensitive instructional strategy that has been developed
and tested". We follow this with a discussion of additional considerations for “ideal” affective strategies.

Theoretical Framework

The goal of this section is to clarify key constructs and identify an overarching theoretical framework in
which to situate the affect-sensitive instructional strategies (also called affective strategies). We assume

! The reader is referred to Arroyo, Muldner, Burleson, and Woolf in chapter 7 of this volume for a discussion on
additional affective strategies.
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that the reader is familiar with some basics of affect science, affective computing, and ITSs, so this
section is relatively brief. Although some of the claims made below are generally accepted, others are still
controversial and are being actively debated in the community. We sidestep all such debates by simply
asserting our working definitions and assumptions.

States, Traits, Moods, and Emotions

Let us begin by clarifying what affect is and what it is not — at least from the perspective of this chapter.
Affect is a state that arises from, influences, and is influenced by neurobiology, psychophysiology, and
consciousness (lzard, 2010); though, Ohman and Soares (1994) note that it can be unconsciously experi-
enced as well. From a psychological perspective, which is the level of analysis we adopt in this chapter,
an affective state is primarily a subjective feeling that influences cognition. Affect is related, but not
equivalent, to motivation, attitudes, preferences, physiology, arousal, and a host of other related con-
structs that are often used to refer to it.

It is important to distinguish between affective traits, background moods, and emotions (Rosenberg,
1998). Affective traits are relatively stable, mostly unconscious predispositions toward particular emo-
tional experiences. They operate by lowering the threshold for experiencing certain emotional states. As
an example, a person with a hostile affective trait has a lower threshold for experiencing anger, but not
necessarily other negative emotions. Moods also perform a threshold reduction function on emotional
elicitation, but are considered to be more transitory and have a background influence on consciousness.
Emotions are relatively brief, intense states that occupy the forefront of consciousness, have significant
physiological and behavioral manifestations, and rapidly prepare the bodily systems for action. Important-
ly, emotions are often directed at some object (a person, an event, or even a thought), while moods are
more general. These different types of affective phenomena need to be addressed differently, hence, an
instructional strategy that responds to affect should be mindful of whether it is targeting a trait, a mood, or
an emotion. Most of the strategies discussed here focus on emotions, and the term affective state is used to
refer to both bonafide emotions (e.g., disgust, anger) as well as affect-cognitive blends like confusion and
boredom. Furthermore, the chapter assumes that the management of affective traits and long-lasting
moods are currently beyond the scope of a tutoring system.

Another point worth mentioning pertains to the relationship between affect and learning outcomes. It is
unlikely that there are direct causal links between affect and learning. Instead, affect indirectly influences
learning by modulating cognition. For example, anxiety is unlikely to directly cause poorer learning, but
rather negatively influences cognition, as is the case when working memory resources are consumed by
anxiety-related thoughts (e.g., fear of failure). Therefore, it is advisable for an affect-regulation strategy to
consider the cognitive processes influenced by affect and alter these processes by directly changing the
nature of the task or indirectly changing the underlying affect. This is the essence of an effective affective
instructional strategy.

Emotion Regulation and Emotion Generation

It is useful to situate affect-sensitive instructional strategies within an overarching framework of affect.
Numerous affect representation frameworks and theories exist, such as core affect (Russell, 2003),
psychological construction (Barrett, 2009), basic emotions (Ekman, 1992), social perspectives (Parkinson,
Fischer & Manstead, 2004), and dynamical systems models (Lewis, 2005). Although each of these can
serve as viable frameworks, we choose to situate our work within the modal model of emotion (Gross,
2008). This model is appealing because it addresses affective strategies that are both preventative (before
affect arises) as well as reactive (after affect arises).
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An affective state arises when an affect-eliciting situation is experienced, attended to, and cognitively
appraised. The modal model of affect assumes five broad affective regulation strategies. Four of the
regulatory strategies are anticipatory, while the fifth strategy is applicable after the affect is experienced.
Importantly, the processes of affect generation and affect regulation are not sequential, but demonstrate
circular causality in that affect regulation can alter the affect generated, and the affect generated can
trigger particular affect regulation strategies (Gross & Barrett, 2011).

The first two strategies, situation selection and situation modification, are regulatory strategies aimed at
selecting or modifying contexts/situations that minimize or maximize the likelihood of experiencing
certain affective states. Affect can also be regulated when a situation cannot be selected or modified via
attentional deployment, which can involve either the avoidance of the affect-eliciting situation (distrac-
tion) or increased attention to the situation (rumination). Affect can be regulated even when a person’s
attention is focused on an event that has the potential to elicit a particular affective reaction. One such
strategy is cognitive change (Dandoy & Goldstein, 1990), which involves changing the perceived mean-
ing of a situation in order to alter its affective content. These four strategies are referred to as antecedent-
focused affect regulation since they target the antecedents of affect. The fifth strategy, response modula-
tion, occurs after the affective state is experienced and is referred to as response-focused affect regulation.
Perhaps the most widely studied form of response modulation is expressive suppression, which involves a
sustained effort to minimize the expression of affective behavior.

With varying levels of conscious awareness, learners continually engage in one or more of these strate-
gies. They may select certain subjects based on perceived competence in order to alleviate anxiety
(situation selection), choose topics within the selected subjects to maximize interest (situation modifica-
tion), ignore states of confusion by focusing attention elsewhere or ruminate on negative feelings of
frustration and despair (attentional deployment), alter attributes about failure (cognitive change), or
suppress negative feelings when they arise (response modulation). An affective learning technology that
operates within the processes of this framework has the following options: alter the situation (situation
selection and situation modification), alter cognitions pertaining to the current situation (attentional
deployment or cognitive change), or alter affective expression (response modification). The extent to
which each of these strategies have been implemented and tested is discussed in the next section.

Case Studies

We now turn to six case studies to discuss affect-sensitive instructional strategies with an emphasis on
systems that have been tested. It should be noted that the research on affective instructional strategies,
especially those that have been systematically tested, is in its infancy. To our best knowledge, the six case
studies that we review reflect much of the existing work in this area. There have been other implementa-
tions of the strategies in these case studies and these are briefly discussed as well.

Table 1 provides a loose mapping between the case studies, instructional strategies, and the five compo-
nents of the modal model. We consider preventative strategies that proactively alter appraisals to prevent
negative affect, as well as reactive strategies that respond to negative affect when it inevitably arises.
Strategies aimed at upregulating positive affect are also discussed, though these are more infrequent.
General strategies that do not explicitly target affect (e.g., edutainment) are considered to be out of scope.
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Table 1. Loose mapping between affective regulation strategies and components of the modal model.

Case Study Situation Situation Attentional Cognitive Response
Selection Modification Deployment Change Modulation
Affective encouraging and  empathy and
AutoTutor motivational emotional
messages displays

GazeTutor content attentional

repetition reorientation

messages

UNC-ITSpoke explanation-

based

subdialogues

ConfusionTutor contradictory
trialogues

Instructed reappraisal
Reappraisal

Affective affective support  nonverbal
Learning Compan- messages mirroring
ion

Other Systems false
biofeedback

Affective AutoTutor: Empathetic, Encouraging, and Motivational Messages with
Emotional Displays to Address Boredom, Confusion, and Frustration

Affective AutoTutor is a modified version of a conversational ITS that helps students develop mastery of
difficult topics in Newtonian physics, computer literacy, and scientific reasoning by holding a mixed-
initiative dialog in natural language (Graesser, Chipman, Haynes & Olney, 2005). The original AutoTutor
system has a set of fuzzy production rules that are sensitive to the cognitive states of the learner. The
Affective AutoTutor augments these rules to be sensitive to dynamic assessments of learners’ affective
states by addressing the presence of boredom, confusion, and frustration. The affective states are sensed
by monitoring conversational cues and other discourse features, gross body movements, and facial
features (D’Mello & Graesser, 2012a).

The Affective AutoTutor attempts to alter these negative states by incorporating perspectives from a
number of psychological theories, including attribution theory (Weiner, 1986), cognitive disequilibrium
during learning (Piaget, 1952), politeness (Brown & Levinson, 1987), and empathy (Lepper & Chabay,
1988), along with recommendations made by expert human tutors (see D’Mello et al., 2008 for details).
The tutor responds with empathetic, encouraging, and motivational dialog-moves along with emo-
tional displays. For example, the tutor might respond to mild boredom with, “This stuff can be kind of
dull sometimes, so I’m gonna try and help you get through it. Let’s go”. A response to confusion would
include attributing the source of confusion to the material: “Some of this material can be confusing. Just
keep going and | am sure you will get it”. These affective responses are accompanied by an appropriate
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emotional facial expression and emotionally modulated speech (e.g., synthesized empathy or encourage-
ment). These displays are considered to be a form of response modulation due to the well-established
emotion contagion effect (Adolphs, 2002).

The effectiveness of the Affective AutoTutor over the original non-affective AutoTutor was tested in a
between-subjects experiment where 84 learners were randomly assigned to two 30-minute learning
sessions with either tutor (D’Mello et al., 2010). The results indicated that the Affective tutor helped
learning for low-domain knowledge learners during the second 30-minute learning session. The Affective
tutor was less effective at promoting learning for high-domain knowledge learners during the first 30-
minute session. Importantly, learning gains increased from Session 1 to Session 2 with the Affective tutor
whereas they plateaued with the non-affective tutor. Learners who interacted with the Affective tutor also
demonstrated higher performance on subsequent transfer tests. A follow-up analysis into learners’
perceptions of both tutors indicated that their perceptions of how closely the computer tutors resembled
human tutors increased across learning sessions, was related to the quality of tutor feedback, and was a
powerful predictor of learning (D’Mello & Graesser, 2012b). The positive change in perceptions was
greater for the Affective tutor. In conclusion, this study indicated that the two affective strategies used by
Affective AutoTutor, cognitive change and response modulation, improve learning, but this effect was
only found for low-knowledge students.

GazeTutor: Messages to Reorienting Attention and Repetition of Unattended Content

Attentional engagement is a necessary condition for meaningful learning, so developing strategies for
addressing attentional disengagement is likely to improve overall learning outcomes. Attentional disen-
gagement can manifest when the learner voluntarily engages in off-task behavior (Baker, 2007) or
experiences involuntary lapses in attention (mind wandering)®. Previous research has shown that
attentional disengagement is typically a precursor to boredom (Eastwood, Frischen, Fenske & Smilek,
2012), so strategies that target it are indirectly addressing boredom. The potential effects of an attentional
reengagement strategy were addressed in a study of a dialog-based learning system, called the GazeTutor.
The tutor used a commercial eye tracker to monitor learners’ gaze patterns in order to identify when they
had attentionally disengaged (D’Mello, Olney, Williams & Hays, 2012). The tutor then attempted to re-
engage learners with gaze-reorienting messages that instructed learners to pay attention to the tutor or
important parts of the interface (i.e., an explanatory image). In addition, the tutor would repeat the content
that was ostensibly missed due to inattention. Hence, the instructional strategy used here consisted of
direct attentional reorientation messages with content repetition.

The efficacy of GazeTutor in promoting motivation, engagement, and learning was tested in a within-
subjects experiment where 48 learners were tutored on four biology topics with both gaze-reactive and
non-gaze-reactive (control condition) versions of the tutor. The results indicated that GazeTutor was
successful in dynamically reorienting learners’ attentional patterns to the important areas of the interface.
The effectiveness of gaze-orientation faded over time but did not entirely diminish. Although gaze-
reactivity did not impact self-reported motivation and engagement, post-test scores for deep reasoning
guestions were higher when learners interacted with the gaze-sensitive tutor. Interestingly, individual
differences in scholastic aptitude moderated the impact of gaze-reactivity on learning gains. Gaze-
reactivity was associated with a small improvement in overall learning for learners with average scholas-
tic aptitude, but learning gains were substantially higher for learners with high aptitude and somewhat
lower for their counterparts. As such, this study demonstrates that the strategies of altering the situation
through content repetition and altering cognition through attentional reorientation positively affected
learning, more so for learners with high scholastic aptitude.

? DeFalco, Baker, and D’Mello in chapter 4 in this volume discuss additional strategies to address disengaged
behaviors.
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UNC-ITSpoke: Responding to Uncertainty with Explanation-based Subdialogs

UNC-ITSPOKE is an ITS that was designed to examine whether automatic responses to learner uncer-
tainty could improve learning outcomes (Forbes-Riley & Litman, 2007, 2009; Forbes-Riley & Litman,
2011). Uncertainty is a state that is similar to confusion and plays an important role in the process and
products of learning. ITSPOKE is a speech-enabled ITS that teaches learners about various physics topics
with spoken dialogs; student responses are automatically recognized with the Sphinx 2 Speech Recogniz-
er (Litman et al., 2006). UNC-ITSPOKE extends the basic functionality of ITSPOKE with the capability
to automatically detect and respond to learners’ certainty/uncertainty in addition to correctness/
incorrectness of their spoken responses. Uncertainty detection is performed by extracting and analyzing
the acoustic-prosodic features in learners’ spoken responses in conjunction with lexical and dialog-based
features.

Responses to uncertainty occurred when the student was correct in their response but uncertain about the
response. This was taken to signal an impasse because the student is unsure about the state of their
knowledge despite being correct. The actual response strategy involved launching explanation-based
sub-dialogs that provided added instruction to remediate the uncertainty. This might involve additional
follow-up questions (for more difficult content) or simply asserting the correct information with elaborat-
ed explanations (for easier content).

In a recent study, Forbes-Riley and Litman (2011) compared learning outcomes between 72 learners who
were randomly assigned to receive adaptive responses to uncertainty (adaptive condition), no responses to
uncertainty (no adapt control condition), or random responses to uncertainty (random control condition).
In this later condition, the added tutorial content from the sub-dialogs was given for a random set of turns
in order to control for the additional tutoring. Results indicated that the adaptive condition achieved
slightly (but not significantly) higher learning outcomes than the random and control conditions. The
findings revealed that it was perhaps not the presence or absence of adaptive responses to uncertainty, but
the number of adaptive responses that correlated with learning performance. Unfortunately, the biggest
challenge was caused by errors in automatic uncertainty detection, which reduced the number of opportu-
nities for adaptive responses. Thus, although the findings were somewhat mixed, Forbes-Riley and
Litman (2011) conclude that there is merit in offering adaptive feedback to uncertainty and that such
feedback can improve learning outcomes. Further research, specifically in the area of automated uncer-
tainty detection, is required to improve the effectiveness of an affective strategy of explanation-based sub-
dialogs as a form of situation modification.

ConfusionTutor: Inducing Productive Confusion with Counterfactual and Contradic-
tory Information

UNC-ITSpoke views uncertainty and impasses as opportunities for learning, a view that is consistent with
theories that highlight the benefits of impasses (VanLehn, Siler, Murray, Yamauchi & Baggett, 2003),
cognitive conflict (Limdn, 2001), cognitive dissonance (Festinger, 1957), cognitive disequilibrium
(Piaget, 1952), and socio-cognitive conflict (Mugny & Doise, 1978). Confusion is considered to be the
affective signature of these states (D’Mello & Graesser, in press). Therefore, one hypothesis is that events
that confuse learners might provide valuable learning opportunities because learners need to engage in
deep cognitive activities in order to resolve their confusion. It is likely that the cognitive activities that
accompany confusion resolution promote deeper learning, rather than the confusion itself.

The hypothesis that confusion can impact learning was tested by modifying an educational game, Opera-

tion ARA (Millis et al., 2011), to systematically induce confusion (D’Mello, Lehman, Pekrun & Graesser,
2014). ARA teaches scientific research methods and critical thinking skills through a series of game

40



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

modules, including those with two or more animated pedagogical agents. In the trialogues, a 3-way
conversation transpired between the human student, a tutor-agent, and a student-agent. The tutor-agent
was an expert on scientific inquiry, whereas the student-agent was a peer of the human learner. A series of
research case studies that have a crucial experimental design flaw with respect to proper scientific
methodology was presented by one of the agents. Confusion was induced by manipulating whether or not
the tutor-agent and/or the student-agent provided counterfactual information that contradicted the other
agent during the trialogue. The human learner was asked to intervene after each point of contradiction. If
the human learner experienced uncertainty and was confused, this should be reflected in the incorrect-
ness/uncertainty of his or her answer and on self-reported confusion. In some cases, the learner was
presented with short instructional texts, which contained information to assist in confusion resolution.

Two experiments, with 63 and 76 learners, confirmed that contradictions increased learners’ confusion.
Importantly, levels of confusion moderated the impact of the contradictions on learning. Specifically, the
contradictions had no effect on learning when learners were not confused by the manipulations, whereas
performance on multiple-choice post-tests and on transfer tests was substantially higher when the contra-
dictions were successful in confusing learners. This suggests that there are some benefits to inducing
confusion if learners are productively instead of hopelessly confused. By productive confusion, we mean
that the confusion is relevant to the learning content, the learner actively attends to the confusion by
engaging in confusion-resolution activities, the learner has the capability to resolve the confusion, and the
learning environment provides appropriate scaffolds when needed. In summary, this study showed that
counterfactual and contradictory trialogues as a situation selection strategy can have significant positive
impact on learning if properly directed.

Instructed Reappraisal to Increase Engagement and Positive Affect

A more recent attempt to understand emotion regulation, as defined by Gross (2008) as the physiological,
behavioral, and cognitive processes that enables individuals to manage the experience and expression of
emotions, is provided by Strain and D’Mello (in review). This study set out to investigate cognitive
change, which involves changing the way one thinks about the situation to alter its emotional meaning.
Cognitive reappraisal is suggested to be a key emotion regulation technique, yet little research in
educational psychology has endeavored to understand whether cognitive change is effective during
learning. Thus, the goal was to examine whether providing learners with instruction on cognitive
reappraisal strategies would help them to effectively manage their emotional experiences (particularly
boredom) during learning. If emotion regulation strategies are effective, then ITSs (especially those that
are affect-sensitive) can encourage learners to adopt these strategies at appropriate moments.

The authors test a cognitive reappraisal strategy in the context of a 45-minute web-based self-paced
learning session in which 93 participants were asked to learn about the U.S Constitution and Bill of
Rights, answer simple text-based and more challenging inference questions, and report their affective
states at multiple points. Participants were randomly assigned to one of three conditions: instructed
reappraisal (IR), error searching (ES), or control. All participants were instructed that they would be
reading the Constitution and Bill of Rights and answering easy and difficult questions about the material,
to demonstrate that they are capable of learning a lot of information quickly and efficiently. Participants
in the IR condition were asked to imagine that they were applying for a job as a copy-editor at a powerful
law firm in their city. This imaginary situation involved them having to check the document for typos and
grammatical errors to demonstrate their skill as copy-editors. By asking participants to imagine that they
were applying for a job, it was expected that they would place more meaning on the task than if they were
simply completing the task for a small payment. That is, instead of their default appraisal of reading a
lengthy and boring document, they would reappraise the situation as being more relevant to the imagined
desire to get the job. In contrast, participants in the ES condition were simply asked to perform the copy-
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editing without the reappraisal component. Participants in the control condition received no special
instructions about cognitive reappraisal or error searching.

Compared to the control condition, learners in the IR condition experienced more positive-activation
affect (dimensionally assessed with self-reports of valence and arousal), higher engagement, lower
confusion and frustration on discrete affect measures, and significantly higher learning outcomes on
knowledge tests. The IR and ES conditions did not differ in arousal or engagement, but the IR condition
reported significantly more positive valence, less confusion, and less frustration. The IR condition also
significantly outperformed the ES condition on learning measures. This suggests the improved perfor-
mance of the IR condition over the control condition was attributable to the use of the IR strategy, and not
the task of error searching.

A follow-up experiment with 138 learners that compared the same IR strategy to an open-ended reap-
praisal (where learners adopt their own reappraisal strategy), a suppression strategy (where learners are
asked to suppress all behavioral indicators of emotion), and the same control condition, found positive
effects of reappraisal on positive affect, engagement, and learning (Strain & D’Mello, in review). Hence,
the main conclusion is that cognitive change, even in the form of a vastly simplified reappraisal strategy
used in these experiments, can be a successful method for regulating emotions and improving learning.

Affective Learning Companion with Nonverbal Mirroring and Affect Support

Burleson and Picard (2007) devised an affective strategy for an affective learning companion that helps
students solve the Tower of Hanoi problem. The learning companion takes the form of an embodied
conversational agent (ECA) and combines nonverbal mirroring with affective support. The nonverbal
mirroring was accomplished by sensing learners’ facial expressions, posture, electrodermal activity, and
pressure exerted on the mouse. The ECA responded to this sensed data after a 4-second delay with similar
facial expressions and postures, increased swaying in response to mouse pressure, and reddened skin tone
to convey physiological arousal. The affective support intervention consisted of the ECA speaking
messages that supported learners’ meta-cognitive assessments of their ability to solve the problem,
derived from incremental theories of intelligence (Dweck, 2006). These messages suggested that the mind
is like a muscle that can be strengthened with effort.

An experiment with 61 children (11 to 13 years of age) was conducted to evaluate the affective learning
companion. It employed a 2 x 2 between-subjects design where learners were assigned to an agent with
affective support and nonverbal mirroring, task support with nonverbal mirroring, affective support with
prerecorded nonverbal interaction, and task support with prerecorded nonverbal interaction. In the task
support condition, the ECA provided messages pertaining to the task, but these messages did not address
feelings or attempt to motivate learners. In the prerecorded nonverbal interaction condition, the ECA’s
nonverbal behaviors were driven by the behaviors of “average participants” from pilot studies.

The results did not yield any significant differences (main effects or interactions) on a range of outcome
variables encompassing perseverance, formation of social bonds with the agent, frustration, intrinsic
motivation, etc. However, exploratory follow-up-analyses did yield several interesting gender effects. For
example, girls in the combined affective support plus nonverbal mirroring condition reported lower levels
of frustration than girls who received each individual treatment (i.e., affective support with prerecorded
nonverbal interaction or task support with nonverbal mirroring). There were additional interesting gender
interactions, as discussed in Burleson and Picard (2007); however, the small sample size (roughly 7-8 per
cell) warrants replication with a larger sample. The tentative results of this study appear to indicate that
response modulation and cognitive change strategies can effectively be used to alter affective states, and
that the learning gains induced by these strategies may be particularly effective for young girls.
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Additional Implementations of Basic Strategies and Other Strategies

In addition to the six case-studies discussed in detail above, a few other studies of affective regulation
strategies bear mentioning. Some systems make an inference of the underlying affective state, but do not
directly attempt to detect affect. For example, Tsukahara and Ward (2001) varied the acknowledgement
a tutor provided the student during a simple memory game by inferring affect based on student prosody.
A small-scale user test (N = 13) indicated that users preferred this system compared to a control. Similar-
ly, Andallaza and Rodrigo (2013) made inferences of student affect based on number of steps taken to
solve a problem and solving duration, and responded with motivational messages. An experiment with
80 learners did not yield any positive effects on learning but learners indicated that they preferred the
affective system compared to controls. Recently, Kelly, Heffernan, D’Mello, Namais, and Strain (2013)
studied the effect of teacher-generated motivational videos that emphasized the value of a difficult
math exercise and the importance of exerting effort toward building competence during homework
completion with ASSISTments, an ITS for middle school math. They found small effects on positive
valence (Experiment 1 with N = 24) and improved homework completion rates (Experiment 2 with
N = 60) compared to controls, but these results warrant replication with larger samples.

There has been considerable interest in using empathy as an affective response strategy. This has been
studied by Kim, Baylor, and Shen (2007) with 56 pre-service teachers and McQuiggan, Robison, Phillips,
and Lester (2008) on 35 college students in the context of CRYSTAL ISLAND, a narrative-centered educa-
tional game. A unique feature of these studies is that the interventions were triggered from self-reports,
instead of automated affect detection. Some researchers also differentiate between different types of
empathetic responses (McQuiggan et al., 2008; Moridis & Economides, 2012). Parallel empathy simply
involves mirroring the learners affective state (e.g., displaying frustration when the learner is frustrated)
whereas reactive empathy involves performing a deeper analysis of learner affect to converge upon an
appropriate response that goes beyond simple affect mirroring (e.g., displaying sadness when a learner is
frustrated).

Researchers have also considered inducing states of physiological arousal in order to increase metacogni-
tive awareness and potentially learning. Strain, Azevedo, and D’Mello (2013) used a false biofeedback
paradigm, where learners were presented with audio stimuli of accelerated or baseline heartbeats
purportedly representing their own heart beats during a challenging learning task. They found that
learners self-reported experiencing more positive activating affect, made more confident metacognitive
judgments, and achieved better learning when they received biofeedback compared to no biofeedback.
Interestingly, these effects were only discovered for challenging questions that required inference as
opposed to simpler text-based questions, and type of biofeedback (accelerated vs. baseline) had no effect.

Future Considerations

We now turn to additional issues of relevance to affect-sensitive instructional strategies, including the
representation, dynamics, antecedents, and detection of affective states. Some of these aspects may be less
feasible as research items in the short term given the current nascent state of the field. Nevertheless, they
might serve as fruitful avenues for future research as they are likely to contribute to more “ideal” affective
instructional strategies.

Affective representations can be dimensional or discrete, a topic of intense debate that has important
implications for affect-sensitive instructional strategies. VValence (positive to negative) and arousal (sleepy
to active) are considered to be the primary affective dimensions (Russell, 2003), though researchers have
argued for additional dimensions as well (Fontaine, Scherer, Roesch & Ellsworth, 2007). Discrete
affective states are usually represented as dichotomous variables (e.g., student is confused but not
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frustrated, bored, anxious, etc) or ordinal variables (e.g., via Likert scales). Discrete (or categorical)
representations are preferred over dimensional representations when devising affect-sensitive instruction-
al strategies. For example, frustration and boredom are both negatively valenced, but the strategies needed
to regulate the activating state of frustration are quite different than those needed for the deactivating state
of boredom. However, an ITS is likely unable to differentiate between the two states using only valance
and arousal. For this reason, discrete representations are better able to inform affective instructional
strategies.

Affective dynamics, in the form of timing and intensity, are of singular importance. Some affective states
are ephemeral (e.g., surprise, eureka moments), while others are more persistent (e.g., boredom, anxiety)
(Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2011). A state can also exhibit
ephemeral properties in some situations while demonstrating persistence in others; these differences in
temporal duration can differentially impact learning. For example, experiences of confusion that are
immediately resolved are expected to have little to no effect on learning, whereas persistent confusion that
is never resolved might be negatively related to learning (D’Mello & Graesser, in press). Timing and
intensity of affect can also interact in striking ways. A long-lasting but low-intensity state of anxiety
might not be very impactful, but a single episode of intense embarrassment or anger can have long-lasting
negative consequences (e.g., dislike for an ITS based in one unpleasant interaction can engender negative
feelings toward an entire course). Hence, it is advisable for an affect-sensitive instructional strategy to be
sensitive to the timing and intensity of affect.

Affect-inducing events have a singular effect on the affective states generated and how they are ex-
pressed. Thus, successfully regulating an affective state entails understanding the affect-inducing event
and the appraisals of the event that gave rise to the state. Boredom offers a convenient example. Accord-
ing to Pekrun’s control-value theory of academic emotion, subjective appraisals of control and value of a
learning activity are critical predictors of boredom and other academic emotions (Pekrun, 2010). Subjec-
tive control pertains to the perceived influence that a learner has over the activity and its outcomes, while
subjective value represents the perceived value of the activity. Boredom is expected to be heightened
when learners perceive low value in the outcome of the activity, and both when control is too low
(challenge exceeds skill) or too high (skill exceeds challenge). An intervention that attempts to reengage
bored learners by emphasizing the value of the learning activity will miss its mark entirely when the
underlying cause of boredom is due to a lack of control. It can even have negative consequences, as noted
by Durik and Harackiewicz (2007) who found that informing low-competence students (low control)
about the relevance of math material for their lives (value manipulation) actually undermined value
because it was perceived as threatening. The important message here is that an effective affect-sensitive
instructional strategy should be sensitive to the antecedents of the affective state in addition to the
affective state itself.

Affect detection is usually a first step for affect-sensitive instructional strategies. Affect detection is
perhaps the most actively explored subfield of affective computing (see reviews by Calvo & D’Mello,
2010; D’Mello & Kory, 2012; Zeng, Pantic, Roisman & Huang, 2009), but like much of the affective
sciences is inherently imperfect and is unlikely to ever reach perfection. How can we tailor instructional
strategies in anticipation of imperfect affect detection? In addition, we outlined additional considerations
for affective instructional strategies in this section. We advocated a focus on discrete affect representa-
tions, an emphasis on the timing and intensity of affective states, and on considering the antecedents of
affect while tailoring instructional strategies. These pose additional challenges for affect detectors that are
now faced with the task of detecting intensity, duration, and antecedents, in addition to the already
challenging task of basic affect detection. Therefore, progress in affect detection is essential before some
of these “ideal” affect-sensitive instructional strategies can be effective.
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Conclusions

ITSs have been devised to provide more fine-grained domain and student modeling, allowing instruction
to be tailored in a more highly individualized manner than their computer-based learning predecessors
(Psotka, Massey & Mutter, 1988). Their effectiveness compared to other forms of instruction is impres-
sive as documented in recent reviews and meta-analyses (Steenbergen-Hu & Cooper, in press; VanLehn,
2011), but this positive news has been tempered by the suggestion that improvements in the effectiveness
of ITSs have somewhat leveled off, reaching what VanLehn (2008) refers to as the interaction plateau.
Might this plateau be partially attributed to the fact that ITSs have traditionally focused on modeling
cognition while largely ignored affect and motivation? If so, there might be the added benefits to improv-
ing ITS effectiveness by devising strategies to respond to these non-cognitive aspects of learning. Here,
we considered the possibility of increasing the bandwidth of ITS adaptivity by modeling student affect.

This chapter described case studies of six systems that implemented 12 affect-sensitive instructional
strategies: encouragement, motivational messages, empathy, emotional displays, attentional reorientation
messages, content repetition, explanation-based subdialogs, contradictory trialogues, instructed reapprais-
al, affective support messages, nonverbal mirroring, and false biofeedback. These strategies are impres-
sive in breadth as they cover cognitive, affective, motivational, nonverbal, and metacognitive aspects of
learning. Systems that have implemented these strategies have had some success in terms of promoting
positive outcomes like engagement, persistence, and learning. Although there was considerable variability
in effectiveness of the affective strategies, one consistent finding is that effectiveness almost always
varied as a function of differences in individual attributes (e.g., gender, prior knowledge, scholastic
aptitude) and/or aspects of the learning session (e.g., content difficulty, outcome measure). This suggests
that there are limits to the current one-size-fits-all approach, where variants of the same strategy are
indiscriminately used for all learners and in all situations. The strategies need to be more focused by
configuring them to be sensitive to learner attributes, nuances of the learning session (affect-eliciting
events), and different manifestations of the same affective state (e.g., different types of boredom). This
level of adaptivity will require continual improvements in automated affect sensing and context modeling,
coupled with a deeper understanding of affect during learning. We consider this to be the next grand
challenge for the field of affect-sensitive learning environments.
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Disengaged Behavior — A Problem in Online Learning

In recent years, there has been increasing awareness that behavioral disengagement plays an important
role in online learning. Not only are some forms of behavioral disengagement associated with lower
learning gains in the short term (in the case of online learning, see Gobel, 2008; Cocea et al., 2009),
behavioral disengagement is also associated with lower long-term academic performance (Finn &
Owings, 2006; Wang & Eccles, 2012; Pardos et al., 2013) and even whether learners advance in their
academic career years later (Ensminger & Slusarcick, 1992; San Pedro et al., 2013).

Correspondingly, there has been increasing interest in developing interventions that address learners’
behavioral disengagement, reducing it and/or mitigating its effects on learning and long-term academic
achievement. In this chapter, we discuss several types of interventions, and potentially fruitful directions
for the next generation of adaptive interventions, to reduce behavioral disengagement, discussing how
these interventions can be incorporated into the GIFT framework for broad dissemination.

Within this chapter, we conceptualize behavioral engagement (and disengagement) within the framework
provided by Fredericks, Blumenfeld, and Paris (2004). They define school engagement in terms of three
components: behavioral engagement, emotional/affective engagement, and cognitive engagement. Within
this chapter, we focus on behavioral engagement (the other types of engagement are discussed in separate
chapters in this volume). Behavioral engagement is defined by Fredericks and colleagues (2004) as
participation, effort, persistence, and positive conduct while directly involved in a set of activities:
“Behavioral engagement is most commonly defined in three ways. The first definition entails positive
conduct, such as following the rules and adhering to classroom norms, as well as the absence of disruptive
behaviors such as skipping school and getting in trouble [...] The second definition concerns involvement
in learning and academic tasks and includes behaviors such as effort, persistence, concentration, attention,
asking questions, and contributing to class discussion [...]. A third definition involves participation in
school-related activities such as athletics or school governance” (Fredricks, Blumenfeld & Paris, 2004, p.
62).

We define behavioral disengagement in terms of the first definition, where students fail to follow the rules
or expectations for the activity, engaging instead in behaviors outside of the norms or expectations, such
as ceasing to participate in the activity or participating in it in an undesired and inappropriate fashion.

One of the core types of disengaged behavior, seen across a wide range of interactive learning environ-
ments, is gaming the system (Baker, Corbett, Koedinger & Wagner, 2004). Gaming the system is defined
as systemically taking advantage of a software’s help and feedback feature to advance through the
tutoring curriculum while bypassing actively thinking about the learning material (Baker et al., 2004).
Examples include systematic guessing and clicking through hints to obtain answers, but different gaming
behaviors such as intentionally making spam posts and making spam responses to those spam posts are
seen in other learning environments (Cheng & Vassileva, 2005). Among disengaged behaviors, gaming
the system has been found to be particularly strongly associated with learner outcomes, including short-
term learning (Cocea et al., 2009), longer-term learning outcomes (Pardos et al., 2013), and college
attendance (San Pedro et al., 2013).
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In addition to gaming the system, a range of other disengaged behaviors are seen in online learning
environments. For example, learners can go completely off-task (Karweit & Slavin, 1982), ceasing to
participate in the learning task. Off-task behavior’s relationship to learning is typically negative, but not
strongly so (Goodman et al., 1990) — and it may serve as a way of disrupting boredom, which is more
strongly associated with negative learning outcomes (Baker, Moore et al., 2011). Indeed, research has
shown that off-task behavior during expert tutoring sessions can improve motivation, build rapport
between the tutor and learner, and allow for periodic rest (Lehman, Cade & Olney, 2010). In online
learning, there have been multiple studies finding no relationship between off-task behavior and learning
or other outcomes (Cocea et al., 2009; Pardos et al., 2013; San Pedro et al., 2013); the reasons for this are
not yet known.

Some learners exhibit behaviors within the learning environment that are unrelated to the learning task —
this behavior, sometimes called off-task behavior (Rowe et al., 2009) and sometimes called WTF behav-
ior (“without thinking fastidiously” — Wixon et al., 2012), can manifest in many ways. For example, in a
multi-user virtual environment, learners may obtain virtual cacti and place them in on a virtual patient, or
climb virtual buildings (Sabourin, Rowe, Mott & and Lester, 2013). In a simulation microworld, learners
may engage variables in rapid succession or pause and un-pause a simulation very quickly and repeatedly
(Wixon et al., 2012). In one report, no relationship was found between this behavior and learning (Rowe
et al., 2009), but its relationship to learning has not been studied in other learning environments.

Learners can also make careless errors, an error that a student makes when answering a question that they
know how to do with no obvious reason why they erred (Clements, 1982). Careless errors are seen both in
offline learning and assessment (e.g., Clements, 1982), and in online learning (San Pedro, Baker &
Rodrigo, 2011). Careless errors are typically a behavior characteristic of generally more successful
learners (Clements, 1982), but are still associated with negative outcomes after learner knowledge is
controlled for (Baker et al., 2010; San Pedro et al., 2013).

Though these are the most studied disengaged behaviors in the context of online learning, other behaviors

have also been seen, such as killing your teammates in military simulations for no apparent reason
(Sottilare, 2013).

Addressing Gaming the System in Online Learning

Given the relatively strong evidence that gaming the system is associated with worse outcomes for
learners, it is perhaps unsurprising that it has been a particular focus of research to address disengaged
behaviors in online learning. There have been many approaches to addressing gaming in online learning,
including attempting to make gaming more difficult, detecting gaming and employing embodied agents
that look unhappy when students game, changing the incentive structure to de-incentivize gaming, giving
meta-cognitive messages about how to learn effectively, and using visualizations of the student’s behavior
to show them how much they have been gaming.

There are several ways to make gaming more difficult. The most popular strategy employed to accom-
plish this goal is introducing delays to each level of on-demand hints (clicking rapidly through on-demand
hints is one of the most popular ways for learners to game the system). With delayed hints, each time a
learner receives a hint, there is a pre-determined amount of time they must wait before they can request
another hint (Murray & VanLehn, 2005; Beck, 2005). However, this approach has thus far been ineffec-
tive because learners find alternative ways to game the system. In addition, it has the drawback that it
discourages some appropriate types of hint use.
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Both emotional expressions (on the part of an embodied agent) and changing the incentive structure to de-
incentivize gaming were incorporated into Scooter the Tutor (Baker et al., 2006). Scooter the Tutor was
an embodied agent that responded when a learner’s behavior indicated that they were gaming the system
(according to an automated detector of gaming — cf. Baker et al., 2008). Scooter responded by looking
unhappy when the learner gamed (and telling the student not to game), and if the gaming behavior
persisted, Scooter gave supplementary exercises that slowed the learner down (while also giving the
learner an alternate way to learn material bypassed by gaming). In studies in the United States, Scooter
reduced gaming and improved learning (Baker et al., 2006; Belmontes et al., 2011), with the supplemen-
tary exercises having more effect than the emotional expressions. However, learners disliked Scooter
(Rodrigo et al., 2012). In the Philippines, Scooter actually increased the amount of apparent gaming, as
learners appreciated Scooter’s supplementary exercises and intentionally clicked through hints in order to
obtain them (Rodrigo et al., 2012).

A third approach, providing meta-cognitive messages on how to learn more effectively, was adopted by
Roll and colleagues (2007). The Help Tutor system responds to gaming the system behavior by giving
meta-cognitive feedback, suggesting students should request a hint or slow down and read hints more
carefully — for example, “It may not seem like a big deal, but hurrying through these steps may lead to
later errors. Try to slow down.” (Roll et al., 2007, p. 205). Although this system reduced gaming behav-
iors, it did not have a positive impact on learning (Roll et al., 2007).

Another approach, visualizing gaming behavior, was combined with text messages (Walonoski &
Heffernan, 2006). In this work, a knowledge-engineered gaming detection model was used to select when
students would receive interventions. When a learner was assessed to be gaming, the learner received text
messages that asked (for example) whether the learner was guessing or actually needed the hint requested.
In addition, the screen continually displayed a graphical visualization of learner actions and progress,
which displayed gaming behavior as well as other student actions, in a way that was visible to both the
student and the teacher. This combined intervention of dynamic active (text messages) and dynamic
passive interventions (the visualization) resulted in reduced gaming during the intervention, (Walonoski
& Heffernan, 2006). This intervention’s effects on domain learning outcomes have not yet been studied.

Another category of gaming intervention is visualizations between problems. In Arroyo et al. (2007), how
much the student had gamed the system was visualized between problems, in combination with detailed
messages about appropriate meta-cognitive behavior encouraging students to slow down and attentively
read problems and hints , e.g., “Dear lvon, We think this will make you improve even more: Read the
problem thoroughly. If the problem is just too hard, then ask for a hint. Read the hints CAREFULLY.
When a hint introduces something that you didn’t know, write it down on paper for the next time you
need it” (Arroyo et al., 2007, p. 2). The system also included messages that encouraged students to think
about the problem and guess at the solution, and ask for hints if the guess was wrong, e.g., “Dear lvon,
Think through the problem thoroughly and make a guess. If your guess is wrong, no problem, just ask for
a hint. If you need more hints, keep clicking on help* (Arroyo et al., 2007, pg. 2).

Arroyo and colleagues (2007) argued that giving feedback on gaming between problems could improve
behavior and learning without disrupting problem-solving activity, in addition to increasing the chances
of immediate reengagement after seeing an intervention. When evaluated, this intervention led to a lower
degree of gaming the system (Arroyo et al., 2007). The between-problem visualizations of how much the
student gamed also led learners to spend more time on the subsequent problem. The combined interven-
tion was associated with improved learning of domain content, as well as improving learner attitudes
toward the system — a strong contrast to the negative attitudes of students toward Scooter the Tutor.

In a follow-up study, between-problem visualizations were not given, but three types of intervention
messages were used: attribution interventions, effort-affirmation interventions, and strategic interventions
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(Arroyo et al., 2010). Attribution interventions messages were given when a student faced a new problem,
e.g., “I found out that people have myths about math, think that only some people are good in math. Truth
is we can all be good in math if we try,” (Arroyo et al., 2010, p. 5). Effort-affirmation intervention
messages were generated when a learner achieves a correct answer; different messages were given
depending on whether a correct answer was generated with effort or no effort; for effort: “Keep in mind
that when we are struggling with a new skill we are learning and becoming smarter!”; for no effort: “We
will learn new skills only if we are persistent. If we are very stuck, let’s call the teacher or ask for a hint
from Wayang!” (Arroyo et al., 2010, p. 5). Finally, strategic interventions focused on meta-cognitive
strategies that could be used when a student was correct or incorrect; for correct: “We are making
progress. Can you think of what we have learned in the last 5 problems?”; for incorrect: “Are we using a
correct strategy to solve this? What are the different steps we have to carry out to solve this one?”
(Arroyo et al., 2010, p. 5). This system resulted in less gaming the system, less frustration, and more
interest as compared to a control condition. However, there was no impact on learning.

A similar result was found by Verginis et al (2011), who incorporated indicators of recent student gaming
and other behaviors in a screen separate from the problem (cf. Arroyo et al., 2007), as well as providing
comparisons of how much the student engaged in these behaviors compared to other students. Their
article found that 39 of 73 students who were initially engaging in gaming behaviors ceased to engage in
those behaviors over the course of using their system, a proportion that is not significantly different than
chance according to a sign test. They did find that students who reduced their disengaged behavior
achieved significantly better learning than students who did not reduce their disengaged behavior.

Across these papers, it is clear that there are several methods that can effectively reduce gaming the
system. However, the only two methods that have been shown to both reduce gaming and improve
learning are the types of supplementary exercises given in Scooter the Tutor, and the combination of
between-problem visualizations and meta-cognitive messages. Further work may better elucidate the
benefits of these approaches, and of other approaches.

Addressing Other Disengaged Behaviors In Online Learning

Thus far, there has been considerably less work addressing disengaged behaviors beyond gaming the
system in online learning systems. One of the few examples of this work is seen in Hughes (2010), which
proposed using Scooter the Tutor for off-task interventions as well as for gaming interventions. Specifi-
cally, if a student was off-task according to the off-task detector (Baker, 2007), then the screen would go
black and a pop-up would appear with Scooter asking if the student is still at their workstation. The idea
behind this intervention is that it would both encourage the student to return to work and would also
attract the attention of a teacher to pay attention to the absent learner (Hughes, 2010). However, these
designs were not implemented or tested in a running system.

Interventions for disengaged behaviors other than gaming the system are much more common outside the

context of interactive and online learning. Some of these interventions, and the communities producing
them, are discussed in the following section on future directions.

Future Directions

In this chapter, we have discussed methods that designers of interactive learning environments have used
to remediate or otherwise address disengaged behaviors, particularly gaming the system. Some of these
efforts have been quite successful, such as providing visualizations of disengaged behaviors between
problems (Arroyo et al., 2007). However, this area of research has not scaled as of the time of this
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writing. Part of the reason for this is that these interventions are time-consuming to implement, and
existing ITS infrastructures are typically not designed with these types of interventions in mind. This is an
excellent opportunity for a framework such as GIFT. By explicitly incorporating infrastructure-level
support for developers to create these types of interventions (messages, visualizations, and embodied
agents), and link them to automated detectors, it will become much easier to develop and test these types
of interventions.

An additional important future direction comes from the areas of expertise brought to bear on the design
of these interventions. The methods of the positive behavior support (PBS) and behavior modification
(Weiss et al., 2009) used in communities of research and practice are particularly relevant to this type of
intervention. These communities have been working to develop classroom practices that reduce and
remediate off-task and other disengaged behaviors (termed problem behaviors in these communities) for
decades (Weiss et al., 2009). And yet, there has been almost no cross-fertilization between these commu-
nities; with the exception of the participation of one behavior modification researcher in the design of
Scooter the Tutor, none of the approaches discussed above involved participation from researchers or
practitioners in these communities.

PBS includes integrating academics, instruction, and achievement with strategies to reinforce discipline,
student self-management, and behavior management to promote cooperative and academically engaged
learners (Weiss et al., 2009; Knoff, 2012). PBS entails specifying expected behaviors, teaching these
expectations to learners, recognizing behavior that meet these expectations, remediating behavior that
does not meet expectations through imposed consequences, and monitoring and analyzing the implemen-
tation of PBS to adjust future PBS strategies (McKevitt et al., 2012).

Many approaches and findings from these communities have relevance to the problem of reducing
disengaged behaviors. For example, Kraemer and colleagues (2012) review two classroom-wide PBS
interventions entitled “The Mystery Motivator” and “Get ‘Em On Task,” (Kraemer et al., 2012, p. 163).
In The Mystery Motivator, students are rewarded for engaging in positive behaviors selected by a teacher
or other adult, such as staying in one’s seat or working quietly, and receive a reward from a box corre-
sponding to the day the target behavior is achieved. If the box has a Mystery Motivator symbol, a learner
can chose a reward from a special reward menu.

In the Get ‘Em On Task intervention, a computer program generates randomly timed sounds for monitor-
ing student behavior (Kraemer et al., 2012). A teacher can use a classroom computer to generate random
signals from 0 to 100 to sound on the hour as well as program additional random signals throughout the
day (Kraemer et al., 2012). When these sounds occur, the teacher assigns points to learners who are on
task, students who are off-task receive no points, (Kraemer et al., 2012), and points can subsequently be
exchanged for rewards. The effects of the interventions indicated that while both the Mystery Motivator
and the Get ‘Em On Task interventions were effective in decreasing off-task behavior in comparison to no
intervention, Get ‘Em On Task had a difference in decrease of overall off-task behavior of 16.75% as
compared to Mystery Motivator, (Kraemer et al., 2012).

Another approach, the response to intervention model (National Center on Response to Instruction,
2010), integrates PBSs into learning experiences. In this approach, the first line of intervention includes
surface management techniques for behavior management (Sayesk & Brown, 2011). Surface management
techniques include the following: (1) ignoring attention-seeking behavior; (2) signal interference, nonver-
bal signals such as a sound or flicker of lights, to remind learners about rules; (3) proximity and touch
control, presence of a teacher nearby; (4) directly addressing a learner by name when their attention is
wandering; (5) deliberate, sincere attention by instructor demonstrating concern for learner; (6) tension
decontamination through humor; (7) hurdle help, providing instructional support in place of a reprimand,;
(8) interpretation as interference, helping students understand a confusing or frustrating experience;
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(9) regrouping, physically reconfiguring a space in the classroom; (10) restructuring, changing an activity
to stem off disruptive behavior; (11) direct appeal, reminder of rules; (12) limitation of space and tools,
limiting learners access to materials that might tempt problem or disengaged behaviors; (13) removing a
learner from the classroom to complete a neutral task without the negative connotation of being thrown
out of a class; (14) permission and authoritative verboten (“No!™), clearly and succinctly communicating
a particular behavior is not tolerated; and (15) promises and rewards, delivered randomly and at unex-
pected times, (Sayesk & Brown, 2011). While some of these approaches may not be immediately feasible
in online learning, many could be realized by a pedagogical or non-player character (NPC) agent in some
form.

By bringing in the ideas and successful approaches from other communities, we may be able to find better
ways to address disengaged behaviors, guiding learners to engage in appropriate behaviors and helping
them to learn more effectively as a result. By embedding support for creating effective interventions into
architectures like GIFT, we may be able to realize these interventions at scale, creating significant
positive impact on learners.
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Introduction

Virtual simulations, computer games, and other game-like virtual worlds are progressively being adopted
for “serious” purposes, such as training and education. Computer-based training systems and games share
many similarities: both involve a progression of skill-based activities of increasing complexity and
difficulty. The learner is expected, over the duration of the game, to master a set of skills. Skill mastery is
one of the fundamental principles behind the success of computer games; indeed, this mastery of the
game is a fundamental aspect of having fun in computer games (Koster, 2005). It is easy to see the appeal
of games and game-like virtual environments for the purposes of training and education. The skill-based
progression typically used in computer games and the desire for players to achieve mastery of particular
game-relevant skills can be mapped to educational outcomes and pedagogy.

In computer games, it is not always enough to have a progression of skill-based activities. Many game
genres use fictional context to reinforce the immersion within the game world and motivate the skill-
based activities. These fictional contexts answer the question “why am |, as the player, engaging in a
particular activity?” The fictional context may further induce an affective response from the player:
dramatic tension over how events are unfolding, strong positive or negative feelings toward virtual
characters, or suspense over what might happen next. In many games, skill-based activities are often
structured through narrative, mission, quest, or scenario. These narratives, missions, quests, and scenarios
can manifest as backstory or non-skill-based interactive game play such as moving through a virtual
environment and interacting with virtual, non-player characters. Without narrative context, educational
and training games may be perceived as a progression of drills without a purpose other than mastery
itself. The use of fictional context is one possible way to more fully engage learners and motivate them to
partake in skill-based progressions. In this chapter, we use the term narrative to mean a predetermined,
temporally ordered set of actions or events. To that end, missions, quests, and scenarios are forms of
narrative because they involve a temporally ordered sequence of events.

Unfortunately, the similarities between computer games and game-like learning environments are
sometimes only skin-deep when it comes to the use of narrative contexts to motivate and engage. In
particular, it is often sufficient for entertainment-based computer games to rely on linear narrative
sequences and linear skill-progressions. Typically, an important design consideration in entertainment-
based games that all players have the same experience. However, intelligent educational and training
technologies require the ability to adapt to deliver the right educational content to the right learner at the
right time. That is, variability in skill ability and rate of mastery must be accounted for because a skill-
progression that is too slow or too fast may result in the learner abandonment. Research in ITSs has made
significant gains in understanding how to model learner abilities and deliver the right problem to individ-
ual learners in the right sequence. ITSs can be broadly described as implementing two nested processes
(VanLehn, 2006). The inner process is one of recognizing learner difficulties when solving a problem and
selecting the most effective means of feedback and remediation. The outer process is one of selecting the
best problem for the learner to work on next. The next problem the learner works on may come from a
library of problems or may be automatically generated based on the learner’s immediate needs and
abilities. If an educational or training game must dynamically select skill-based events in order to maxim-
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ize player learning potential, then a single, linear narrative may no longer be sufficient and artificial
intelligence—in the form of automated story generation—can be brought to bear to construct new
narratives that motivate and contextualize the learner-customized skill progression.

In this chapter, we describe two systems that use computational models of narrative generation to create
game play experiences that directly support the learning process. One system, Annie, uses a model of a
game’s task domain to track players’ knowledge and alter a player’s challenges as they demonstrate
mastery of or misconceptions around a particular skill. Another system, Game Tailor, automatically
generates a sequence of skill challenges through which a player will progress and then creates a custom-
ized storyline in which the challenges are naturally embedded. These two systems demonstrate the
effective role that explicit narrative models can play in the generation of tailored learning experiences
within games.

Background and Related Research

A narrative is a predetermined, temporally ordered set of actions or events. Actions can be executed
immediately in the virtual environment, whereas an event is a discrete period of time in which the actions
of a number of characters are thematically or semantically related. An example of an event in a computer
game is “player fights boss opponent™ in a role-playing game or “user deletes a malicious virus program
from memory” in a game-based virtual simulation of a computer. Each event may consist of a number of
actions such as combat attacks, discourse acts, manipulation of file permissions, etc. The simplest
narrative is a single, linear sequence. However, temporal ordering can support more sophisticated narra-
tive structures, such as parallel actions and events. In this section, we provide an overview of the ways
that story is treated in computer games, discuss artificial intelligence techniques for generating and
adapting narrative structures, and compare narrative adaptation with ITSs.

Narrative in Computer Games

In computer games, narrative is used to motivate player behavior and establish the context for why the
player is to perform certain activities. The narrative acts as an explanation, or context, for the activities
the player is about to perform. The events making up a mission, quest, or scenario may be categorized as
skill-based or non-skill-based. Skill-based events are periods of game play that require the player to
attempt to perform a skill that is valued by the game designer or instructor. For entertainment-based
computer games, skills may include finding and collecting items, solving puzzles, navigating through
mazes, combat with opponents, etc. Non-skill-based events are periods of game play that do not require a
skill valued by the game designer or instructor. Additionally, the game may involve periods of non-
interactivity where the player is watching a cut-scene or in which the player’s avatar is temporarily
controlled by a script. Game designers use non-skill-based periods of play and non-interactive periods to
advance a story, to create context for the next period of skill-based play, and motivate the player to
achieve certain goals.

One aspiration of game design is to encourage players to move along an intentionally circuitous route to
incorporate experiences that positively affect the player’s enjoyment. Game designers refer to the circui-
tous route as the golden path and the most direct route as the spine (Bateman, 2007). Most games have a
linear spine, providing little or no variation in which events are involved in completing the game. In
contrast, the golden path contains additional, non-mandatory game elements that enhance other aspects of
the player’s experience. Perhaps equally important, however, the golden path enhances the player’s sense
of agency over the events that occur during game play and helps disguise the essentially static structure of
the underlying spine.
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One can visualize the structure of many computer games as a “string of pearls” where the pearls are
periods of interactive game play (often referred to as levels or maps) and the string that holds all of the
pearls together and space the pearls out is non-interactive narrative. From an implementation perspective,
pearls are often implemented as sandbox environments — bounded simulations where possible actions are
dictated by the underlying rules and physics of the game. Pearls may be skill-based or non-skill-based.
The player engaged with a pearl until he or she triggers the conditions necessary to exit the pearl. This
may involve reaching the end of a level, performing a particular action, or successfully demonstrating one
or more skills. The narrative string that follows the most recently played pearl then sets up the context for
the next successive pearl. Typically, successive pearls will require the player to demonstrate skills under
more challenging circumstances. We refer to this as skills progression.

Story Generation, Interactive Narrative, and Intelligent Tutoring

Computer games for education and training differ from entertainment-based games in that game play by
learners may be mandatory if the game is part of an educational curriculum or part of a training regimen,
or required for skill or knowledge assessment. When this is the case, a string of pearls design will be
insufficient because learners with different abilities or rates of mastery may require that learners experi-
ence different skill progressions. Variability in learner ability and rate of mastery may mean a fixed skills
progression may be too difficult or too easy to promote effective learning (Vygotsky, 1978).

Acrtificial intelligence can be used to model learner skills and mastery rate, and produce tailored skills
progressions that directly address learners’ needs and abilities. This idea is not new; ITS researchers have
sought to tailor learning environments to individuals. VanLehn characterizes an ITS as a process involv-
ing two nested loops. The outer loop performs problem generation, creating or selecting the next problem
based on information about the learner, including traits, learning goals, and needs. The inner loop closely
monitors every action the learner takes while performing the given task and uses this information to
update a model of the learner and provide directed feedback. Zook et al. (2012) note that if an intelligent
system can produce new narrative structures, then it may serve the purpose of problem generation while
simultaneously contextualizing the learner’s behaviors through narrative. Any performance-based
feedback operating during skill-based events of the narrative can be thought of as equivalent to inner-loop
remediation.

Automated story generation is the problem of automatically selecting a temporally ordered set of events
that meet a set of criteria and can be told as a story. For story generation, there are two problems that one
must address. The first is to computationally model narrative structure. The consensus among psycholo-
gists and computer scientists alike is that a narrative can be modeled as a semantic network of concepts
(Trabasso, Secco & van den Broek, 1984; Graesser, Lang & Roberts, 1991; Young, 1999). Nearly all
cognitively inspired representations of narrative rely on causal connections between story events. The
second problem is to computationally model the narrative creation process and develop algorithms that
implement the model. Approaches to automated story generation include simulation, planning, case-based
reasoning, and natural language processing (NLP). The simulation approach (Meehan, 1976; Aylett et al.,
2005; Cavazza, Charles & Mead, 2002) situates autonomous virtual agents in an environment and records
their actions. One of the critiques of simulation approach is that coherent narrative sequences may not
necessarily always emerge. To solve issues of narrative coherence, planning — the search for a sound and
complete sequence of actions that achieves a goal situation — techniques have been developed that
observe global structural patterns (Lebowitz, 1987, Porteous & Cavazza, 2009; Riedl & Young, 2010),
employing cognitive models (Riedl & Young, 2010), or specialized heuristics and constraints (Porteous &
Cavazza, 2009; Riedl, 2009). Case-based reasoning approaches to story generation reuse existing stories
in new contexts (Turner 1994; Pérez y Pérez & Sharples, 2001; Gervas et al., 2005; Riedl, 2010). The
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NLP approach to story generation is to mine word tuples or sentences from blogs (Swanson & Gordon,
2008) or text corpora (Mclntyre & Lapata, 2009).

Interactive narrative (also interactive storytelling or interactive drama) is a form of digital entertainment
in which users create or influence a dramatic storyline through actions, either by assuming the role of a
character in a fictional virtual world or by issuing commands to autonomous, virtual non-player charac-
ters. The simplest interactive narratives, such as Choose-Y our-Own-Adventure books and hypermedia, do
not require artificial intelligence. A branching story graph is a directed graph where nodes are events and
arcs are annotated with actions that the player can choose that lead to different narrative continuations.
Branching story graphs can be manually authored, or procedurally generated by a story generator. Riedl
and Bulitko (2013) provide an overview of Al approaches to interactive narrative. Mott et al. (1999)
observe that narrative can be a useful tool for framing educational problem-solving activities. Interactive
narrative has been explored as means of guiding humans through educational experiences and training
scenarios (c.f., Rowe et al., 2011; Riedl et al., 2008; Magerko, Stensrud & Holt, 2006; Johnson & Valen-
te, 2009; Marsella, Johnson & LaBore, 2000; Aylett et al., 2005; Thomas & Young, 2010).

Discussion

In the following sections, we describe two ways in which interactive narrative and story generation can
support learners through remediation of misconceptions, generation of skills progressions, and contextual-
ization of activity in the virtual world. First, we describe a system called Annie; Annie detects and
addresses misconceptions about procedural knowledge. Because many computer games provide sandbox-
style, exploratory environments for learning, players and learners typically have wide latitude to select
actions and compose plans to achieve their in-game objectives. By design, these games provide many
possible ways for a learner to navigate the task space. This presents an intelligent tutor with a challenge
that Annie is intended to address: a game-based ITS must track the learner’s plan and take action on-the-
fly to remediate any misconceptions. Second, we describe Game Tailor, a system that addresses problem
generation for serious games. Game Tailor determines the next skill in a skill progression that a learner
should practice. Unlike tutoring systems that select the next new problem from a library, Game Tailor
generates an entire skills progression at once and then generates a storyline that motivates all the prob-
lems the learner will work on in the sandboxes.

Annie: Leveraging Plan-Based Models of Narrative to Detect and Address Miscon-
ceptions

Exploratory environments provide students with freedom to choose different courses of action. This
complicates the tutor’s ability to know what the student it trying to do, which introduces uncertainty in
knowing whether or not a student has a misconception about the domain. When the tutor decides a
misconception exists, it is difficult to know when is the right time to provide support to remediate that
misconception, as the student may have changed focus to a different task. As Van Joolingen, De Jong,
and Dimitrakopoulou (2007) note, it is difficult to balance guidance with student exploration.

In our previous work on the Annie system (Thomas & Young, 2010; Thomas & Young, 2011), we have
addressed these problems by leveraging a well-understood computational model of actions and the causal
relationships between them used in automated planning. The style of action descriptions invented for the
STRIPS system (Fikes & Nilsson, 1971) has continued to form the basis of much subsequent research in
automated planning. Building on several distinct approaches to integrating automated planning with game
domains (Mott & Lester, 2006; Mateas & Stern 2005; Cavazza, Charles & Mead, 2002; Riedl, Saretto &
Young, 2003), the Annie system leverages a general plan-based knowledge representation intended both

60



Design Recommendations for Intelligent Tutoring Systems - Volume 2: Instructional Management

to characterize a game-based learning environment’s task domain as well as the knowledge of the tasks
held by a learner.

STRIPS-style plan representations characterize actions available in a task domain schematically, defining
an action in terms of its act-type, a set of preconditions, and a set of effects. Preconditions are logical
terms that indicate just those conditions in the task domain that must be true in order for the action to
execute correctly, while effects indicate all the ways that a task domain changes as a result of the success-
ful execution of an action. As an example, consider a task domain within a game world focused on
teaching users how remove malware from a PC. One action in this domain might be named deleteFile,
corresponding to the action of deleting a file from the PC’s hard drive. This action would have two
parameters: one indicating the character or player initiator of the task and one naming the file to be
deleted. Its preconditions would indicate that, before this action can be carried out, the file must exist and
must not be in use. Further, the character performing the action must be limited to the player (e.g., no
non-player character in the game can delete files). The effects for deleteFile would indicate that once the
action succeeds, the file will no longer exist.

To build the model for what the student knows about deleting files, Annie begins by automatically
deriving a set of meta-conditions from the known features of the deleteFile operator. The simplest model
of the student’s knowledge of the operators in the domain would register whether the student knows that a
term appears as a precondition or an effect of a given action. For instance, Annie can generate require-
ments that a student knows that a file being deleted must exist, that it cannot be in use at the time, and that
once the deleteFile action is performed, the file will no longer exist.

This simple approach to model construction fails to capture the uncertain nature of student knowledge in
an exploratory environment where the student’s understanding of the world evolves gradually. To
represent this uncertainty, we employ a rough-grained five-valued scale (HighlyLikely, Likely, Neutral,
Unlikely, HighlyUnlikely) to represent varying estimates of the likelihood that the student believes or
knows about a particular facet of the domain, where “Neutral” is the default initial value.

To illustrate, in a game that teaches the processes involved in aerobic cellular respiration, Annie may
observe a student behavior that implies that the student knows an effect of the Krebs cycle is the produc-
tion of CO, waste but may have no information yet on whether the student knows another effect of the
process is the production of H,O. This could be represented in the student model by marking the
hasEffect condition corresponding to CO, production of a particular action in the Krebs cycle as
HighlyLikely, while the effect that produces H,O is marked as a student belief with Neutral likelihood.

Like many ITSs, Annie’s core tutorial reasoning is situated in a loop interleaving student and system-
controlled actions. Each time an action is taken in the world, either by the student or the system, Annie
updates its student model by consulting a library of general diagnostic templates. These templates encode
domain-independent plan reasoning diagnostics such as cases where a student seems to be ignorant of a
precondition of a particular action. For example, if a student attempts an action for which some of the
preconditions are not satisfied, a rule in one of these diagnostic templates fires to update the student
model by lowering its confidence that the student is aware of those preconditions.

Annie uses the updated student model in consulting a second domain-independent library containing
remediation templates that can be used to generate scaffolding. For example, if the plan shows that a
particular task must be performed for the student to make progress toward plan goals, and Annie notes
particular gaps in the student model pertaining to that action (e.g., student has an incorrect model of its
effects), it will prompt the student about that action.
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As mentioned above, execution loops are common in ITSs that often operate with nested loops, one
iterating over problems or tasks and another, nested within it, operating over individual steps in the
problem. As described here, Annie’s loop is often focused on individual steps in a task. Unlike a concen-
tric loop architecture, however, Annie is free to switch to a completely different higher-level task or
problem as a student interleaves tasks within the game.

A potentially difficult paradox for Annie’s design is that as the student progresses, Annie gains more and
more information about the state of the student’s knowledge, but has less and less time remaining to act
on these inferences. In order to characterize how close a student is to achieving important goals or
milestones within a game world, we leverage the planning-based representation of the game world’s task
domain to compute the game world’s plan space — a directed graph that characterizes the space of all
possible plans for achieving a given set of goals in a specific game world. Planning algorithms called
plan-space planners (Kambahmpati, Knoblock & Yang, 1995) construct plan spaces as part of their search
process when solving a planning problem. Because the proper sequencing of actions within a plan relies
on valid student knowledge regarding the tasks involved, Annie can use the plan space it constructs to
prioritize and sequence its strategies for guiding the student toward acquiring the requisite knowledge.

A plan-based representation can provide a language simultaneously describing learning content and game
play. With automated planning techniques, we can ensure that the spine of the game is traversed, while
encouraging the player to explore far beyond the small set of detours built into a golden path. Through
planning, a widely varied golden landscape unfolds where individual users can explore a variety of
experiences tailored to their particular educational and entertainment aspirations.

Recapitulating Game-Based Learning Through Planning

Gee (2003) described a rich set of learning principles evident in commercial games and Quintana et al.
(2004) described a framework that identified many of the scaffolding techniques used in exploratory ITS
research, but neither of these descriptions lends itself to a generative model. Each leaves it to the artistic
spirit of game or tutorial designers to decide when, where, and how extensive the computational support
should be. Annie, however, requires a generative model for game-based learner guidance. We have built
such a model inspired by the descriptions of Gee and Quintana, providing the following capabilities:

1) Each learning principle is articulated through one or more plan-based templates to allow automat-
ic generation of game play elements that embody that principle.

2) Generation is performed at run-time, allowing the game to dynamically adapt to the behaviors
exhibited by the student.

3) Systems can measure or specify the frequency and extent to which learning principles are real-
ized. In other words, the model provides researchers with a mechanism to freely vary the preva-
lence of one principle vs. another and measure the effects.

Nine of the 36 learning principles articulated by Gee were selected as initial candidates for testing this
generative model. Three of these are described briefly here.

Overt telling is kept to a well-thought-out minimum, allowing ample opportunities for the learner to
experiment and make discoveries.

We use the term remediation to describe an action Annie inserts into the game environment to attempt to

correct what it perceives to be a misapprehension on the part of the student. We can count the number of
remediations applied for each student, the best case, worst case and average number of remediations
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required for each particular knowledge component, and the comparative frequency of stronger or weaker
hints that correspond to different type of remediations. Across a broad range of students, these measure-
ments can be used to characterize the difficulty of different parts of the game world and help pinpoint
areas where more student guidance opportunities may be required.

Remediations are organized in such a way as to allow Annie to choose between successively more
explicit modes of instruction. This builds on extensive ITS research into the optimal selection strategy
between the frequently used guidance options of ‘Prompt’, ‘Hint’, “Teach’, or ‘Do’.

There are multiple ways to make progress or move ahead. This allows learners to make choices, rely on
their own strengths and styles of learning and problem-solving, while also exploring alternative styles.

Annie can quantify the number of distinct successful plans, the number of qualitatively different plans in
the plan space, the number of actions that must be included in any successful plan, or even the ratio of the
number of these critical actions to the mean total number of actions in successful plans.

Annie allows for extensive mining of the space of potential plans to reveal bottlenecks, potential for off-
task activity, etc., in a way that could be much cheaper and more extensive than traditional game design
play testing strategies.

The learner is given explicit information both on-demand and just-in-time, when the learner needs it or
just at the point where the information can best be understood and used in practice.

The timeliness of explicit information can be measured by the duration of the interval between when the
information is provided and when it is needed. This can be compared and contrasted with the number of
opportunities for on-demand information in the environment. For some students or groups of students,
Annie may want to vary how far in advance help can be provided based on projected memory persistence
of those students. As post-hoc measurements, analysis of these properties over many students can be used
to calibrate guidance within Annie.

Advantages of Plan-Based Game Design

Our intention with the development of the Annie system was to demonstrate that a nominal plan-based
knowledge representation can lead to a computational framework that can automatically synthesize and
adapt gameplay/teaching at an atomic level. In this work, we selected a set of learning principles and
leveraged a plan-based design to realize these principles in arbitrary domains. Specifically, our
knowledge representation synthetically generates game structures that implement these principles,
requiring less time, and money, resulting in a shorter and cheaper development cycle. Because these
structures are automatically generated, their instantiation can be shifted to run-time, so they can be
tailored to the immediate and subtle learning needs of the individual rather than the statically defined and
obvious extremes of an entire population. Finally, the rules governing how and when to change course are
visible and modifiable, rather than entwined with tutorial algorithms. This enables the system to conform
to externally specified metrics for particular applications.

The use of a plan-based knowledge representation breaks the game spine into interchangeable parts,
allowing for dynamic synthesis of game progression while ensuring that the player eventually traverses
segments of the spine nominated as particularly critical. Any fixed branching structure could be imple-
mented through a plan-based representation by representing each critical action choice as a distinct
operator with unique prerequisites and effects. But planning not only replicates the expressivity of
existing game progression, it allows for a much wider variety of scaffolding techniques, partial-ordering
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of actions, and varied bindings of particular game elements and arbitrary number of repetitions or cycling
through particular types of actions.

Game Tailor: Generating and Contextualizing Skills Progressions

Problem generation assesses the question of what problem the learner should work on next. Serious
games can take a lesson from entertainment-based games by using an unfolding plotline to motivate
problems and create affective engagement with content. In computer games, the skills progression is an
important part of creating a sense of mastery and fun. Game Tailor creates a skills progression as a
sequence of skill-based events (sandboxes) that is tailored to an individual player and provides a storyline
that sets up and explains the skill-based events.

Challenge tailoring is the problem of matching the difficulty of skill-based events over the course of a
game to a specific player’s abilities. While not strictly narrative generation, we first consider the problem
of generating a skills progression tailored to individual player abilities. This is analogous to the creation
of a string of skill-based pearls, but without the narrative “string” that ties the skill-based events together.
Once we know the sequence of skill-based events that a player will encounter, the next step is to generate
the narrative string that contextualizes each skill-based event. We emphasize the selection of the right
sequence of skill-based events for the right player at the right time. Although our approach to challenge
tailoring is applicable to a number of serious games, we will illustrate our approach through a simple
combat game inspired by The Legend of Zelda. In The Legend of Zelda, the player must lead a team of
avatars into periodic combat with teams of opponent monsters. In such a game challenge tailoring may
manifest as configuring the number, health, or damage dealt by various enemies at various times through-
out the game. CT is similar to Dynamic Difficulty Adjustment (DDA), which only applies to online, real-
time changes to game mechanics to balance difficulty. In contrast, CT generalizes DDA to both online
and offline optimization of game content and is not limited to adapting game difficulty. Challenge
contextualization is the problem of constructing a chain of non-skill-based events and/or non-interactive
sequences that set up the conditions for skill-based events and motivate their occurrence to the player. For
example, the challenge of slaying a dragon may be contextualized by the dragon kidnapping a princess.

Challenge Tailoring

Realizing challenge tailoring requires both a player model and an algorithm to adapt content based on that
model. Effective player modeling for the purposes of challenge tailoring requires a data-driven approach
that is able to predict player behavior in situations that may have never been observed. Because players
are expected to master skills over time when playing a game, the player model must also account for
temporal changes in player behavior, rather than assume the player remains fixed. Modeling the temporal
dynamics of a player enables an adaptive game to more effectively forecast future player behavior,
accommodate those changes, and better direct players toward content they are expected to enjoy. Further,
forecasting enables player models to account for interrelations among sequences of experiences—
accounting for how foreshadowing may set up a better future revelation or how encountering one set of
challenges builds player abilities to overcome related challenges that build off of those. We employ tensor
factorization techniques to create temporal models of objective player game performance over time. We
demonstrate the efficacy of the approach below in a turn-based role-playing game. Further details and
evaluation can be found in Zook and Ried| (2012).

Tensor factorization techniques decompose multidimensional measurements into latent components that
capture underlying features of the high-dimensional data. Tensors generalize matrices, moving from the
two-dimensional structure of a matrix to a three or more dimensional structure. For our player modeling
approach, we extend two-dimensional matrices representing player performance against particular enemy
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types to add a third dimension representing the time of that performance measure. Tensor factorization is
an extension of matrix factorization, which offers the key advantage of leveraging information from a
group of users that has experienced a set of content to make predictions for what a new group of individu-
als that has only been partially exposed to that content will do. Specifically, if matrix factorization
represents user data as a matrix M = U X [ indicating user preference ratings on items, then tensor
factorization represents user data as a matrix Z = U X [ X T. Both approaches extract latent factors
relating to users and items (and time). The latent factors extracted from the matrix are used to predict
missing user ratings of items. The technique for extracting latent factors from the matrix is beyond the
scope of this chapter (c.f., Zook & Riedl, 2012). In our usage of tensor factorization, items are challeng-
es—combat, puzzles, or problems to be solved—and ratings are measures of player performance. While
we believe our work is the first application of tensor factorization to challenge tailoring problems, we
note that similar techniques have been used to model student performance over time on standardized tests
(Thai-Nghe, Horvath & Schmidt-Thieme, 2011).

In our turn-based combat domain, the player leads a team of hero characters against a team of opposing
monsters. Each combat is a single skill-based event in a skills progression involving a number of com-
bats. The player can cast a number of spells and different spell types work against different types of
monsters. While the role-playing game is a good demonstration of challenge tailoring, it is also a skill
learning task. We intentionally created a spell system that was difficult to completely memorize, but
contained intuitive combinations—water spells are super-effective against fire enemies—and unintuitive
combinations—undeath spells are super-effective against force enemies—ensuring that skill mastery
could only be achieved by playing the game. Players do not do well if they do not learn from experience,
the effectiveness of spells against different opponents. More complicated domains in which the learner
must correctly perform complex procedures—such as those used by Annie—are also possible.

We model performance instead of difficulty because performance is objectively measurable while
difficulty is subjective. Difficulty and performance have been shown to be significantly (inversely)
correlated in the domain of turn-based combat (Zook & Riedl, 2012). Tensor factorization tends to
outperform matrix factorization by taking into account the rate at which the player learns the skill of
effectively casting spells against opponents of different types. That is, it can predict the actual effective-
ness of a player many combats into the future after training. Accuracy of the model is dependent on
(a) the number of combats observed of a given individual and (b) the number of overall users represented
in the tensor. We find that for our simple combat game, we can achieve high accuracy with as few as 6
training examples per individual and as few as 30 different players. However, more complicated games
will require a larger database of player traces. Fortunately, matrix and tensor factorization spreads the
model training over a large number of users such that the system need only observe a small number of
ratings per user.

To generate particular skill progression of combat episodes, the system uses an author-defined perfor-
mance curve. Typically, a performance curve presents the player with a smooth increase in difficulty, i.e.,
a decrease in player performance over time. Other curves are possible. For example, a curve expressed by
p = c (a horizontal line at a fixed constant, c) indicates a game in which the difficulty appears to remain
the same, even as the player’s skills improve. A dramatic arc, in which the player progressively faces
more and more dire challenges until the toughest challenge is overcome and difficulty eases off, can be
created with a U-shaped curve. More complicated patterns, such as a series of rises and falls, can express
complex designer intentions.

Skills progression generation is an optimization process in which skill-based events are selected such that
distance between the predicted performance of the individual on the skills of each event and the perfor-
mance curve is minimized. A variety of techniques may be applied to solve this dynamic optimization
problem including constraint satisfaction, dynamic programming, and heuristic search techniques such as
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genetic algorithms (Smith and Mateas, 2011; Togelius et al., 2011; Sorenson, Pasquier, and DiPaola,
2011). In contrast to the reactive, near-term changes typically employed in DDA (Magerko, Stensrud, and
Holt, 2006; Hunicke and Chapman, 2004), temporal player models are able to also proactively restructure
long-term content to optimize a global player experience. Our technique selects sets of enemies for each
skill-based event automatically through combinatorial optimization using Answer Set Programming
(Baral, 2003). Answer Set Programming is a declarative programming language used for finite domain
constraint solving using logic programming semantics.

Challenge Contextualization

But why is the player engaging in the activities that require skills to be practiced? While the sequence of
skill-based events can be considered a narrative, the transition from skill-based event to skill-based event
creates the context necessary for the player to understand how the skill-based events fit together. Chal-
lenge contextualization addresses the issue of player motivation by embedding the skills progression into
a larger narrative that does not directly challenge the learner, but engages the learner via fictional means.
Challenge contextualization is a form of narrative generation. While challenge tailoring and challenge
contextualization can be performed in parallel, we assume a tailored sequence of skill-based events
already exists; the selection and parameterization of skill-based events takes precedence in serious games.
Thus, the narrative generation problem becomes one of selecting and spacing all skill-based events before
“filling the gaps” with non-skill-based, contextualizing events.

Planning is one of the most common approaches to story generation. Planning is the search for a sequence
of operations — in this case, events — that transform the world from an initial state into one in which a goal
situation holds. To apply story planning to challenge contextualization, the goal situation must be such
that it is achieved only if the conditions necessary to establish each skill-based event in turn are achieved
at some point in the plan and in order. Skill-based events are sandboxes, and while the actions that occur
within a sandbox simulation is dependent on the player and therefore uncertain, all sandboxes have an
initial condition (e.g., player and enemy are co-located in the virtual world; a computer has become
infected with malware) and a terminal condition (e.g., the opponent is dead; the computer is free of
malware).

There are two ways of using story planning in challenge contextualization. The first is to produce distinct
planning problems for each pair of skill-based events. In the first iteration of this technique, the initial
state is the initial state of the world as specified by a game designer, and the first goal situation is the
initial conditions of the first skill-based event. In subsequent iterations, the initial state is the world state
that results from executing the plan from the prior iteration updated with the terminal conditions of the
last skill-based event, and the goal situation will be the initial conditions of the next skill-based event. The
advantage of this approach is that the planning problems are smaller, and therefore, more tractable. The
disadvantage is that narrative decisions made in prior iterations become locked-in and cannot be changed
if it is later discovered that it is impossible or awkward to fill a later gap between two skill-based events.

The second story planning approach to challenge contextualization is to consider the entire sequence of
skill-based events as part of a single, larger planning problem. We cannot hope that a planner will
serendipitously establish the conditions necessary for each skill-based event. To generate a single narra-
tive plan, we must determine how to incorporate all skill-based events simultaneously. In planning, an
island (Hayes-Roth and Hayes-Roth 1979) is a set of states through which the solution plan must traverse.
Any sequence of operators that does not traverse through at least one state in an island at any point is
pruned. The initial condition of each skill-based event is an island and each island must be traversed in
the order determined by challenge tailoring. Riedl (2009) describes a technique for incorporating islands
into partial order planning. Islands are represented as events with preconditions and effects. The initial
plan is seeded with the islands, which are temporally ordered according to the skills progression generated
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during challenge tailoring. Thus, the preconditions of each island become sub-goals that must be achieved
by the planner by inserting non-skill-based events. The solution to the challenge contextualization
planning problem is a sequence of events that interleave skill-based and non-skill-based events.

Together challenge tailoring and challenge contextualization provide a solution to the “problem genera-
tion” portion of ITSs that focuses on motivating the learner and creating affective and engagement
through narrative. The narrative — in particular the non-skill-based events — is not strictly necessary, but
breaks up the skill-based events and provides a reason for why skills and knowledge must be brought to
bear on a sequence of increasingly difficult problems.

Recommendations and Future Research

Narrative is one of the fundamental modes for understanding the worlds around us, whether those worlds
are real or virtual. Psychological studies show that narrative is read approximately twice as fast as
informational text but remembered twice as well (Graesser, Olde & Klettke, 2002) so clearly it holds a
distinguished status in the cognitive system. Virtual environments like computer games have come to blur
the distinction between fictional worlds and everyday life as millions of people extend their daily social,
leisure and professional identities into these contexts. To a great extent, these interactive systems rely on
the explicit role that narrative plays in the design of their users’ interactions for their effectiveness.

As intelligent systems develop the capability to model narrative and players’ interactions within a
narrative space, we argue that the capability to reason about and manipulate story structure in response to
learner needs is critical. One key element to this capability is centered on a shift from current games’
design focus of linear storylines to more open-ended exploratory environments. Annie’s modular model
of a game’s task environment allows the system to track players as they explore the narrative space of a
game and dynamically adjust the story content to address misconceptions as they are identified. The
creation of tailored narrative experiences that provide individual learners with the right learning experi-
ence at the right time is generally intractable within the context of modern game design practices. For
serious games to have the optimal impact on learning and mastery, the narrative experience must address
both the pedagogical needs of the learner and encourage affective engagement with content, context to
understand why problems are being solved, and motivation to work on progressively harder problems
over a long duration of time. Game Tailor seeks to mask a progression of open-ended problem spaces as
an unfolding plotline similar to those found in modern computer games while directly addressing the need
for tailored pedagogical and narrative content.

Despite recent progress in remediation in open-ended exploratory environments, skills progression
generation, and story generation, there are a number of future steps that will make for more robust,
scalable, and affectively engaging experiences. First and foremost, automated story generation is a hard
problem. While we have shown a considerable gain in computational story generation capabilities, story
generation systems such as that used by Game Tailor still do not reliably create narrative structures that
fully engage players and learners affectively. That is, automated story generation systems do not under-
stand how the structures they generate produce affective responses in human readers, players, and
learners. Recent work suggests that it may be possible for automated story generation systems to compu-
tationally model human affective responses to suspense (Cheong, 2007; O’Neill, 2013) and intentionally
produce dramatic conflict between virtual characters (Ware et al., forthcoming). Second, the linkages
between tasks and story are not always clear, nor easy to computationally model. More sophisticated
generative models of task progressions are necessary that incorporate procedure and skill level (c.f.,
Andersen, Gulwani & Popovi¢, 2013). But even this is not enough, sandboxes are simulations that
support open-ended exploration and being able to embed a procedure, task, or skill into a virtual explora-
tory environment is still not well understood. To the extent that procedures can be represented as narra-
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tives — albeit at the level of action instead of event — Hartsook et al. (2011) present initial steps toward
dynamically creating open-ended virtual worlds that simultaneously support specific narrative elements
and open-ended exploration. As these technologies progress, ITSs that exist within the context of serious
games and interactive narratives will present learners with more immersive, more engaging learning
experiences. By offloading many of the creative and pedagogical decisions onto intelligent systems
embedded within these games, we may be able to reach larger populations of learners in informal and
non-traditional learning environments.
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CHAPTER 6 — Personalized Content in
Intelligent Tutoring Systems

Steven Ritter’, Anne M. Sinatra”®, and Stephen E. Fancsali’
! Carnegie Learning; >U.S. Army Research Laboratory; ® Oak Ridge Associated Universities

Introduction

While most efforts to improve student academic outcomes have focused on instruction, recent research
shows great potential for advancing student outcomes through a focus on “non-cognitive factors” such as
motivation, beliefs about learning, and metacognitive skills (Farrington et al., 2012). While ITSs have
successfully improved instruction by adapting to evolving learner knowledge based on cognitive factors
(Pane, Griffin, McCaffrey & Karam, 2014), research has shown potential to magnify their effectiveness
through incorporation of adaptive instruction based on better understanding of non-cognitive factors. For
example, researchers have developed data-driven strategies to “detect” affective states like boredom and
confusion from ITS log data (e.g., Baker et al. 2012). Other approaches deploy behavioral indicators like
mouse movement (e.g., Sottilare & Proctor, 2012) and biometric or physical sensors like electromyogra-
phy (EMG) (e.g., Conati, Chabbal & Maclaren, 2003; Conati & Maclaren, 2004) to infer learner mood
and/or emotion in ITS environments. Another project led by Carnegie Learning seeks to develop a
“hyper-personalized” intelligent tutoring architecture that will allow for tailoring the learner experience
based on a wide variety of non-cognitive factors, including areas of learner interest outside of the class-
room (Fancsali, Ritter, Stamper & Nixon, 2013). Still other research focuses on the integration of refer-
ences to the self into learning materials (e.g., Sinatra, 2013). In this chapter, we focus on the latter two of
these examples as non-cognitive factors upon which learning content (e.g., the text of mathematics word
problems) can be personalized in ITSs. We begin by briefly describing a widely used ITS, Carnegie
Learning’s Cognitive Tutor® (CT) (Ritter, Anderson, Koedinger & Corbett, 2007) for mathematics and
how it adapts to learners based on cognitive factors. We then introduce means by which a recent ITS
based on the CT provides for personalization based on learner interest areas as well as recent work on
solving logic puzzles including personalized content.

ITSs like the CT present students with complex multi-step problems. Cognitive task analysis and empiri-
cal methods such as Learning Factors Analysis (Koedinger, McLaughlin & Stamper, 2012) are used to
identify particular knowledge components (KCs) or skills that are required to complete each step of the
problem. The system is then capable of tracking student ability on each underlying KC step-by-step as the
student solves each problem. Mathematics curricula in the CT are divided into topical units that are then
divided into sections that treat particular sub-topics. Each section has a set of KCs with which it is
associated and that the CT tracks for each student. When the CT judges that a learner has mastered all of
the KCs associated with a section, the learner graduates to the following section (or unit, having graduat-
ed from all sections in a unit). Until a student graduates from a section, the CT adaptively selects prob-
lems for each learner, depending on the particular KCs that have yet to be mastered. Within a problem,
hints and error feedback are adapted to particular students’ problem-solving strategies and progress. Thus,
all adaptation within this variant of CT depends on student knowledge and problem-solving states:
cognitive factors.

Released in 2011, Carnegie Learning’s middle school mathematics product, MATHia®, is based on the
CT and, in addition to adaptively presenting problems based on cognitive factors, probabilistically
“honors” learner interests in areas outside of the classroom (e.g., “sports & fitness,” “arts & music”) by
presenting word problems that are tailored to such domains. MATHia also provides a facility whereby
students can provide names of their classmates for inclusion in mathematics word problems (cf. Figure 1).
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In this way, MATHia is able to personalize instruction based on non-cognitive factors (domain prefer-
ences and names of friends), in addition to the cognitive strategy usually employed in CT.

What do you think of these topics? Choose 4 of your favorite classmates.

SPORTS & FITNESS

Stephen
MONEY & BUSINESS

Michael
ARTS & MUSIC

Susan

ENVIRONMENT & NATURE

Nicole

Figure 1. MATHia preferences profile.

The majority of work on personalization and tutoring has been in well-defined domains such as math and
science. There are practical reasons for the large amount of research in these areas, as there are direct
implications for student learning, and content in these areas can be more easily scored and adjusted than
in less well-defined domains. One of the goals of GIFT is to allow for tutoring in both well-defined and
ill-defined domains, and provide a set of authoring tools to assist instructors in developing the necessary
assessments (Sottilare & Holden, 2013). Teaching skills such as deductive reasoning can have a long
lasting effect on an individual’s learning, but assessment of deductive reasoning skills is not as straight-
forward as performance on a math problem. Sinatra (2013) has recently explored the effects of personali-
zation based on references to the self in the context of logic puzzle solving tutors implemented in the
GIFT architecture.

Logic grid puzzles are complex puzzles that require individuals to use and apply deductive reasoning.
They include a vignette, which sets up a story or context for the problem, as well as individual clues that
assist the individual in narrowing down information and solving the puzzle. The inclusion of clues and
story provides an opportunity for the puzzles to be personalized to an individual’s interests or to include
names with which the individual is familiar. GIFT 4.0, which was released in November 2013, includes a
logic grid puzzle content domain, which contains a tutorial and assessments (e.g., multiple choice ques-
tions, clue questions, and an assessment puzzle). See Figure 2 for an example of a logic grid puzzle that is
included with GIFT 4.0.
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Figure 2. A screenshot example of a logic grid puzzle that is included as domain content in GIFT 4.0.

Before we review recent work on non-cognitive personalization in the context of the CT, MATHia, and
logic grid puzzles, we summarize previous research on personalized content for learning. We then provide
several recommendations for GIFT and important questions for future research.

Related Research

Personalization Research

Context personalization can be described as adjusting learning material to align with the interests of an
individual learner (Anand & Ross, 1987; Cordova & Lepper, 1996; Walkington, 2013). While the general
concept of personalizing material has been consistent, approaches to examining personalized material in
the literature have varied. Among the varying techniques that have been studied are the impact of provid-
ing examples and learning materials that are consistent with one’s own major (Ross, 1983; Ross, McCor-
mick & Krisak, 1986), using self-rated user interests to determine the topics of examples that are provided
(Walkington, 2013), providing instruction written in the first person (Moreno & Mayer, 2000), and using
self-generated names or interests within the learning materials (Anand & Ross, 1987; Cordova & Lepper,
1996; Ku & Sullivan, 2002; Sinatra, 2013). The research approaches generally fall into two categories:
(1) changing the topics of the learning material to something that the individual states that they find
interesting and (2) encouraging learners to relate the information to themselves. Despite different ap-
proaches to personalization, the results have been fairly consistent. Personalizing content does appear to
have a positive effect on learning outcomes, primarily in transfer performance, or taking the learned
material one step further and applying it in a new situation. One explanation for this effect may be that
relating information in the learning material to the individual’s interests, or the self, leads to better
understanding of the material, and deeper learning. This deeper learning is then demonstrated by the
individual through the ability to work with and apply the learned information in a new way.

There are at least two approaches to context personalization: at the individual level or at the classroom

level. In traditional classrooms and examples, it may be easier to find topic areas that many of the
students are familiar with and use these to personalize instruction (Ku & Sullivan, 2002; Ross, 1983).
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This is an easy task for an instructor and may show some improvements due to interest and motivation.
However, in these cases, there may be individual students who do not share the interests and will not
receive the benefits. With the increase in availability of computerized learning and ITSs, we now have the
ability to individually adapt the context of materials for each student. Research has shown positive
outcomes from adapting material to include student entered information (Anand & Ross, 1987; Cordova
& Lepper, 1996; Sinatra, 2013), as well as student-selected topic areas (Ross et al., 1986; Walkington,
2013).

Why Personalization Works

Two types of explanations for why personalization improves learning are common,; the first is affective
and the second is cognitive. Affective explanations often suggest that personalization increases the
likelihood that the learner will be inherently interested in the material, resulting in higher motivation to
engage with it. Engagement with the material leads to the individual paying closer attention to it and
feeling enjoyment while completing the lessons or assessments. Findings have been consistent that
individuals report enjoying personalized material more than non-personalized material (Anand & Ross,
1987; Cordova & Lepper, 1996; Ross, 1983; Ross et al., 1986). An additional affective explanation is at
the system level. Learners may be more attentive or more conscientious within a system that attends to
and acknowledges personal factors. This could lead to positive feelings toward the system, as the learner
feels acknowledged. In Cordova and Lepper (1996), the reactions of elementary school students support
this interpretation, as some offered exclamations of joy when seeing their names present in the learning
materials. These positive feelings may enhance engagement with the material during the learning phase,
leading to better performance and transfer performance.

Cognitive explanations often suggest that linking learned information to something that the learner
already understands reduces mental workload. By providing this context, particularly one of interest, the
individual expends less mental energy understanding the question itself and can spend more cognitive
resources on understanding it. Such explanations are consistent with the Cognitive Theory of Multimedia
Learning (Mayer, 2005), which suggests that relieving cognitive load frees up other resources to engage
with the material. For example, a student is familiar with baseball would have an easier time understand-
ing a math word problem that explains a baseball game rather than an unfamiliar area, such as a chemistry
experiment. Specifically, Ross (1983) found better learning outcomes for nursing students who received
medical examples (as opposed to education examples) and for teachers who received education examples
(as opposed to medical examples). It was suggested that having an interest and knowledge in the subject
matter increased motivation (Ross, 1983; Ross et al., 1986). An additional explanation posits that students
already had a foundation in the area, which assisted in providing context and reducing mental workload.
Further, this foundation may lead to better comprehension of the materials and problems that are being
presented to the learner (Anand & Ross, 1987). If fewer resources are used to make sense of the problem,
more resources will be available to learn from it and successfully solve it. The self-reference effect, or
benefit of linking information to one’s self (e.g., by including one’s own name in the materials), may
reduce cognitive workload in a