
Interaction on emotions

Arno Hartholt Tijmen Joppe Muller

January 16, 2004

ii

Authors
Arno Hartholt, d.o.a.hartholt@student.utwente.nl

Tijmen Joppe Muller, tijmen@avpec1910.nl

Supervisor
Jonathan Gratch, gratch@ict.usc.edu

Institute for Creative Technologies

13274, Fiji Way

Marina del Rey, California 90292-7008

United States of America

Mentor
Anton Nijholt, anijholt@cs.utwente.nl

University of Twente

Postbus 217

7500 AE Enschede

The Netherlands

Copyright 2004. All rights reserved. For the outlining of this document LATEX
has been used. This document and other related documents can be found on
http://mullert.adsl.utwente.nl/∼stage.

Acknowledgement
This work was funded by the Department of the Army under contract DAAD 19-
99-D-0046. Any opinions, findings, and conclusions expressed in this article are
those of the authors and do not necessarily reflect the views of the Department
of the Army.

Preface

A compulsary part within the study of Computer Science at the University of
Twente is a 14 week internship. We’ve chose to perform this internship abroad,
at the Institute for Creative Technologies in the United States of America.
The internship consists of two assignments, both within the Mission Rehearsel
Exercise project. The first assignment, Interaction on emotion, will be discussed
in this report; the other assignment, Everything in perspective, is the subject of
a second report.

We had a great time during time during our internship, both on a personal1
and professional level. In terms of this particular assignment we want to thank
Jonathan Gratch for making this internship possible and for taking the time
and effort to guide us. Also, we want to thank David Traum for all the times
he explained how natural language architecture was designed and implemented,
and especially for helping debug our code. Thanks to Stacy Marsella for the
discussions about emotion dialogue and coping strategies. Finally, we want
to thank Anton Nijholt for his valuable insights and his guidance during our
internship.

Arno Hartholt and Tijmen Muller
January 16, 2004

1Working and lunching, for example, was made more enjoyable because of Charlie, who
wouldn’t leave our side. We tried to reason with him. We tried to convince him he was
beginning to annoy us. He still wouldn’t leave our side.

iii

iv

Abstract

This report describes the addition of an emotion dialogue to the Mission Re-
hearsal Exercise (MRE) system. The goal of the MRE system is to provide an
immersive learning environment for army officer recruits. The user can engage
in conversation with several intelligent agents in order to accomplish the goals
within a certain scenario. Although these agents did already posses emotions,
they were unable to express them verbally. A question - answer dialogue has
been implemented to this purpose. The implementation makes use of propo-
sition states for modelling knowledge, keyword scanning for natural language
understanding and templates for natural language generation. The system is
implemented using Soar and TCL.

An agent can understand emotion related questions in four different domains,
type, intensity, state, and the combination of responsible-agent and blamewor-
thiness. Some limitations arise due to the techniques used and to the relative
short time frame in which the assignment was to be executed. Main issues are
that the existing natural language understanding and generation modules could
not be fully used, that very little context about the conversation is available
and that the emotion states simplify the emotional state of an agent. These
limitations and other thoughts give rise to the following recommendations for
further work:

• Make full use of references.

• Use coping strategies for generating agent’s utterances.

• Use focus mechanisms for generating agent’s utterances.

• Extend known utterances.

• Use NLU and NLG module.

• Use emotion dialogue and states to influence emotions.

• Fix known bugs.

Keywords: natural language, dialogue, emotions, multi-agent systems, key-
word scanning, templating

v

vi

Contents

1 Introduction 1
1.1 Mission Rehearsel Exercise project 1
1.2 Bosnia scenario . 2

2 Background 3
2.1 MRE architecture . 3
2.2 Steve . 5

2.2.1 Perception . 5
2.2.2 Virtual body . 5
2.2.3 Task planning . 6

2.3 Emotions . 6
2.3.1 Theoretical framework . 7
2.3.2 So, what is actually implemented? 8

2.4 Natural language . 9
2.4.1 Dialogue . 9
2.4.2 Natural language understanding 11
2.4.3 Natural language generation 11

3 Requirement specification 13
3.1 Assignment . 13
3.2 Requirements . 13

4 Analysis 15
4.1 Emotional state . 15

4.1.1 Emotions . 16
4.1.2 Events . 18
4.1.3 Structure . 18

4.2 Personality . 20
4.3 Speech acts . 20

4.3.1 Emotion type . 21
4.3.2 Intensity . 22
4.3.3 State . 23
4.3.4 Responsible agent and blameworthiness 23

4.4 Natural language . 24
4.4.1 Natural language understanding 24
4.4.2 Natural language generation 24

vii

viii CONTENTS

5 Design 27
5.1 Emotion states . 28

5.1.1 Emotion type . 28
5.1.2 Intensity . 29
5.1.3 State . 30
5.1.4 Responsible agent and blameworthiness 30

5.2 Natural language understanding 30
5.2.1 Emotion type . 30
5.2.2 Intensity . 31
5.2.3 State . 31
5.2.4 Responsible agent and blameworthiness 31
5.2.5 Synonyms . 32

5.3 Natural language generation . 32
5.3.1 Templates . 32
5.3.2 Pieces of objects . 36

5.4 Overview . 39
5.5 Iteration . 39

5.5.1 Keyword scanning . 41
5.5.2 Templates . 41

6 Implementation 43
6.1 Introduction . 43
6.2 Emotion states . 43
6.3 Natural language understanding 44
6.4 Natural language generation . 47

7 Testing 49
7.1 Introduction . 49
7.2 Unit and integration tests . 49

7.2.1 Method . 49
7.2.2 Results . 49

7.3 User tests . 51
7.3.1 User 1 . 51
7.3.2 User 2 . 52
7.3.3 User 3 . 52

8 Conclusion 53

9 Recommendations 55

A Speech acts 57
A.1 Emotion type . 57

A.1.1 Class 1 . 57
A.1.2 Class 2 . 58
A.1.3 Class 3 . 58

A.2 Intensity . 58
A.3 Emotion state . 59
A.4 Emotion responsibility . 59
A.5 Emotion synonyms . 59

CONTENTS ix

B Soar and TCL code 61
B.1 Emotion-states-emia.soar . 61
B.2 Language-emia.soar . 71
B.3 Lexicon-emia.soar . 95

C Test plans 99
C.1 Phase 1 . 99

C.1.1 lookup-table*template 99
C.1.2 emotion-state*max-feeling 99
C.1.3 emotion-state*feeling*true 101
C.1.4 emotion-state*feeling*false 102
C.1.5 apply*how-do-you-feel 104
C.1.6 add-lexicon-entries . 104

C.2 Phase 2 . 105
C.2.1 lookup-table*static-content 105
C.2.2 lookup-table*dynamic-content*medic 106
C.2.3 lookup-table*dynamic-content*mom 107
C.2.4 lookup-table*dynamic-content*sgt 107
C.2.5 lookup-table*dynamic-content*self 107
C.2.6 add*causality . 108
C.2.7 apply*how-do-you-feel-about-state*one 108
C.2.8 apply*how-do-you-feel-about-state*two 110
C.2.9 apply*how-do-you-feel-about-state*three 111
C.2.10 apply*do-you-feel-emotion 112
C.2.11 apply*why-do-you-feel-emotion 113
C.2.12 apply*responsible-for-emotion 114

C.3 Phase 3 . 115
C.3.1 add*causality*to*negation 115
C.3.2 responsible-for-[emotion] 115
C.3.3 apply*emotion-sematics-priority 116
C.3.4 apply*emotion-semantics-selection*same 117
C.3.5 apply*emotion-semantics-selection*cause-vs-no-cause117
C.3.6 apply*emotion-semantics-selection*int -vs-no-int 118
C.3.7 apply*emotion-semantics-preference 119

C.4 Phase 4 . 119
C.4.1 apply*answer-how-do-you-feel*cause 120
C.4.2 apply*answer-how-do-you-feel*no-cause 121
C.4.3 apply*answer-do-you-feel-emotion*cause 122
C.4.4 apply*answer-do-you-feel-emotion*no-cause 123
C.4.5 apply*answer-emotion-about-state*cause 123
C.4.6 apply*answer-emotion-about-state*no-cause 124
C.4.7 apply*answer-calm-down 125
C.4.8 apply*answer-why-do-you-feel-emotion*cause 125
C.4.9 apply*answer-why-do-you-feel-emotion*no-agent . . 126
C.4.10 apply*answer-why-do-you-feel-emotion*no-cause . . 127
C.4.11 apply*answer-whos-responsible 127
C.4.12 apply*answer-whos-responsible*no-agent 128

C.5 Missing tests . 129

x CONTENTS

List of Tables

2.1 Problem-focused coping strategies 7
2.2 Emotion-focused coping strategies 7

4.1 Appraisal variables . 15
4.2 States in mother’s perspective 16
4.3 States in sergeant’s, lieutenant’s and medic’s perspective 17
4.4 Emotion categorization . 18
4.5 Possible values for responsible agent 20

5.1 Synonyms for states . 33
5.2 Values for the nl-emotion attribute 37
5.3 Values for the nl-intensity attribute 37
5.4 Values for the nl-influence attribute 37
5.5 Values for the nl-status attribute 38
5.6 Values for the nl-responsible agent attribute 38
5.7 Values for the nl-responsible agent poss attribute 39
5.8 Values for the nl-state-pre and the nl-state-post attributes 40
5.9 Values for the nl-influence-status attribute 41

xi

xii LIST OF TABLES

List of Figures

1.1 Screenshot of the Bosnia scenario 1
1.2 The situation in the Bosnia scenario 2

2.1 Architecture of the MRE system 4
2.2 The cognitive-motivational-emotive system 8

4.1 Tree structure of the locations of the emotion WMEs 19
4.2 Tree structure of the locations in the input link 20
4.3 Semantic mapping of “What happened here?” 25
4.4 Tree structure of general propositions 26
4.5 Tree structure of general propositions 26

5.1 Dataflow user-agent emotional dialoge 39

6.1 Soar rule keyword mapping . 45
6.2 Soar rule which extends the lexicon with states 46

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

This document is the report of one of two internship assignments – the assign-
ment is explained in chapter 3.1. This chapter gives a brief introduction to
the Mission Rehearsel Exercise and the current implemented scenario. A more
extensive explanation of the system will be given in chapter 2. Chapter 3 gives
the requirements of our assignment. In chapter 4, we analyse the parts of the
system that are important to our assignment and mention the datastructures
we need to use or design. The design and implementation are given in respec-
tively chapter 5 and chapter 6. The testing phase will be discussed in chapter 7.
The conclusion and recommendations can be found in chapters 8 and 9. The
appendices contain the possible speech acts, written code and test plans.

Figure 1.1: Screenshot of the Bosnia scenario

1.1 Mission Rehearsel Exercise project

The goal of the Mission Rehearsal Exercise system is to provide an immer-
sive learning environment where the participants experience the sights, sounds
and circumstances they will encounter in real-world scenarios while performing

1

2 CHAPTER 1. INTRODUCTION

mission-oriented training [ICT03]. The user can engage in conversation with
several intelligent agents in order to accomplish the goals within a certain sce-
nario. We will explain more about the system in chapter 2.

1.2 Bosnia scenario

In the Bosnia scenario the user is a young lieutenant in the US Army on his
first peacekeeping mission. As you are sent to help another group of soldiers,
called Eagle 1-6, inspect a suspected weapon cache in a town called Celic, you
find that an accident occured at the assembly area: a civilian car crashed into
one of your platoon vehicles. A local boy lies injured on the ground, with his
mother and a medic from your team next to him. In the background a group
of locals is gathering and unrest is rising. A sketch of the situation is drawn in
figure 1.2.

✲
route to Celic

✍✌✎☞
accident site

✍✌✎☞12 to 4

✍✌✎☞
8 to 12 ✍✌✎☞

4 to 8

assembly
area

landing zone

Figure 1.2: The situation in the Bosnia scenario

It is up to you to decide what your team, Eagle 2-6, is going to do. You
have the possibility to move along to Celic or try and help the boy. One way is
to call an ambulance, another is to call the emphMedEvac, a helicopter, from
your base. Either way, you need to interact with your teammembers to find a
solution.

As the user you are able to interact with three emphintelligent agents: the
sergeant, the medic and the mother of the injured boy. [Ric02]

Chapter 2

Background

The Mission Rehearsal Exercise (MRE) project tries to create an immersive and
interactive learning environment in which users can gain experience through
decision-making scenarios [Ric02], like the Bosnia scenario described in chap-
ter 1. An important part of making such an environment both believable and
useful is the use of intelligent agents that cohabit virtual worlds with people,
and support face-to-face dialogue, serving as guides, mentors and teammates.
In the Bosnia scenario, the sergeant, medic and mom are implemented as such
agents.

The whole system tries to immerse the user by displaying the visuals on an
eight-foot-tall screen in a 150-degree arc with a 12-foot radius. The graphics
are rendered with Multigen-Paradigm’s Vega. Immersive audio software uses 10
audio channels and two subwoofer channels to envelop a participant in spatial-
ized sounds that include general ambience (such as crowd noise) and triggered
effects (such as explosions or helicopter flyovers).

This chapter provides the reader with a theoretical and practical background
concerning the MRE technology. In section 2.1 we talk briefly about it’s archi-
tecture. Next, we discuss Steve, the result of former research by the University
of Southern California’s Information Sciences Institute, which forms the basis
for the MRE agents. As emotions and natural language are of particular interest
for this assignment, these are discussed separately in sections 2.3 and section 2.4
respectively.

2.1 MRE architecture

MRE seeks to integrate and expand several results form various fields of re-
search, like embodied agents, natural language and emotion. Figure 2.1 gives
an overview of it’s architecture.

The MRE system consists of a virtual world and it’s agent inhabitants. The
world is modeled by a set of sequence files wherein states and state changes are
defined. These files can be called both by the system and the system’s oper-
ator using a GUI. The agents use speech recognition software (Sonic) and an
in-house developed Natural Language Understanding module. The core of the
agents is formed by Soar code, which models perception, planning, emotion,
dialogue, natural language generation and action. Soar is a low-level reason-

3

4 CHAPTER 2. BACKGROUND

❄ ❄

❄

❄ ❄

✛

✛

Soar Beat

Elvin

Dimr

Peopleshop

Haptek

Vega

Performer

Opengl

Projection Audio

planning-, emotion-,
and dialogue system gesture scheduler

communication bus

animation system

output

Figure 2.1: Architecture of the MRE system

ing programming language, which builds an environment by creating very small
datablocks by the name of working memory elements (WME). These WME’s
contain very small pieces of information about the world. By the use of op-
erators, which are defined by the programmer himself, it is possible to reason
about the world [Lai99]. The Soar code makes up Steve, wich will be discussed
in more detail in section 2.2.

Steve’s text output is synthesized into speech by Festival. This module works
together with the Beat module which creates gestures to accompany the speech.
The sound and visuals of both the world and the agents are generated through
some audio protocols and DIMR. DIMR is the visualization module, consisting
of Vega (renders the environment and special effects), PSERT (People Shop TM
Embedded Runtime System, responsible for animating the agents) and Haptek
(facial animations). All the modules communicate via Elvin/XML messages
through a shared communication bus.

2.2. STEVE 5

2.2 Steve

Steve is the result of the University of Southern California’s Information Sciences
Institute research and is capable of collaborating with people in 3D virtual
worlds as an instructor or teammate. It is able to provide feedback to students
and can lead students around in the virtual world.

Steve’s cognitive basis is formed by a domain-independent layer, constructed
in Soar. Soar is a general model of human cognition and as such provides Steve
with basic cognitive capabilities. These basics are enhanced to support task-
oriented collaboration, like demonstration and conversation. On top of this
layer, a declarative representation of domain tasks can be placed. For a more
extensive introduction to Steve, see [Ric00].

For the MRE project, Steve had to be extended in a variety of ways. We’ll
shortly discuss perception, virtual bodies and task planning here, emotions and
natural language are described in the following sections.

2.2.1 Perception

In order to make an agent believable as a virtual human, it has to perceive his
environment the same way a real human being should. Originally, Steve was
omniscient; he received messages from the virtual world simulator describing
every state-change relevant to his task model, regardless of his current location
or attention state. In MRE, the Steve agent’s perception is more human-like,
following the research presented in [Hil99], [Hil00] and [Cho99]. His vision is
limited to 190 horizontal degrees and 90 vertical degrees. The level of detail
Steve perceives about objects is high, medium, or low, depending on where the
object is in his field of view and whether he is giving attention to it. Steve
can perceive both dynamic and static objects in the environment. The first are
perceived under the control of a simulator, by filtering updates that the system
periodically broadcasts. Static objects such as buildings or trees are perceived
by using the scene graph and edge-detection and are encoded in a cognitive
map.

2.2.2 Virtual body

Steve’s is a so-called emobied conversational agent, which is a type of virtual
body that, next to speech, uses nonverbal communication like facial expressions,
gestures and body stance when engaging in conversation. For an introduction
to embodied conversational agents, see [Cas00].

Steve was designed to accommodate different bodies. His motor-control
module accepts abstract motor commands from his cognition module and sends
detailed commands to his body through a generic API. Steve’s original body,
although suitable for tutoring ends, had some limitations which restricted it
from simulating a life-like human being. It had, for instance, no legs, and it’s
gestures and facial expressions where somewhat limited. For MRE, new bodies
were developed by Boston Dynamics Incorporated with faces developed by Hap-
tek Incorporated. In order to provide the agents with a realistic body without
losing flexibility over their motions, a method using both motion capture and
procedural animation was used. Motion capture provided a basic repertoire of
gestures, which were then decomposed into stages (such as preparation, stroke,

6 CHAPTER 2. BACKGROUND

and retraction). Moreover, these gestures are available in two extremes: a small,
restrained one and a large, emphatic one. A Steve agent can dynamically gen-
erate any gesture between these extremes by specifying a weighted combination
of the two. Thus, bodies leverage the realism of motion capture while providing
the flexibility of procedural animation.

2.2.3 Task planning

In a system with agents serving as teammates, an agent should be able to do
some goal focused planning: task modelling. For a believable world, the user
should be able to act freely, within the restrictions of the scenario, e.g. taking
the goals of the scenario into account. This means the user has to be free
in decision making, trying different alternatives, and interact naturally with
teammates. As a result, the agents need to be able to understand authority,
responsibility, coordinated actions, organizational relationships and most of all
the structure of tasks.

The plan representation, which is a relatively standard hierarchical model,
consists of a set of steps, either primitive (i.e. a physical or sensing action) or ab-
stract (i.e. a task that needs further decomposing), a set of ordering constraints,
and a set of causal links and threat relationships that define the dependencies
among the steps. In this way, a causal link can define one step as either a
precondition or a threat to another step. In the MRE project, the agents use
domain-independent reasoning algorithms over general representation of team
tasks to create a task model. In order to create such a model, the agent uses
the implemented tasks and world knowledge.

In addition to the understanding of the tasks, the agents also need to un-
derstand the social relationships or roles among themselves. One thing is that
the task steps are linked to an agent responsible for that task. Another is the
optional authorizing agent – a responsible agent cannot execute his task before
the authorizing agent has granted his authority; this is, of course, very common
in the military.

Given an abstract task for the whole team to accomplish, each agent inde-
pendently uses his task knowledge to create his task model. This practically
means decomposing the abstract task recursively until a task model has been
created. Since agents may not have the same knowledge, different task mod-
els may occur for different agents. As a result, negotiating may be needed –
here, natural language comes into focus, with the different roles in the back-
ground [Tra03] [Ric02].

2.3 Emotions

One of the main goals of the MRE project is implementing a computational
model of human behavior. Emotions are considered a very important part of
artificial intelligence, since they have a great influence on human behavior, are
needed to correctly interpret beliefs, motives and intentions, and play an impor-
tant role in social communication. Of course, emotions are tightly connected to
other capabilites of these virtual humans, such as planning, acting, natural lan-
guage understanding, and speech. Creating a domain-independent model could
assist in building believable intelligent agents in general. [Gra04].

2.3. EMOTIONS 7

2.3.1 Theoretical framework

Attempting to find an unified theory, the MRE project characterizes emotion as
the result of cognitive appraisal. Cognitive appraisal emphasizes the connections
between cognition, emotion, personality and the resulting coping strategies,
following certain psychological theories.

Strategy Description

active coping taking steps to remove or circumvent the stressor

planning coming up with action strategies

seeking social support seeking advice, assistance, or information

Table 2.1: Problem-focused coping strategies

The sources for all emotional behavior are the environment and the goals
and beliefs of an agent. Appraisal can be seen as the interpretation of the
person-environment relationship, assigning values to abstract attributes of this
relationship, called appraisal variables – these are listed in table 4.1. The envi-
ronment partly consists of other agents; this is represented by the fact that an
agent may have beliefs about the feelings of other agents. The appraisal vari-
ables’ values depend on the cognitive processes that build up the individual’s
interpretation of how (external) events influence their goals and beliefs.

The resulting coping strategies plan actions to change either the environment
(problem-focused strategies) or the agent’s goals and beliefs (emotion-focused
strategies). Some common coping strategies are listed in table 2.1 and table 2.2.
What strategy is picked by an agent is based on his ‘personality’: for example,
a self-confident agent would use a planning strategy to solve a problem, while
a not so confident agent could use a denial strategy. The system is explained
graphically in figure 2.2.

Strategy Description

suppress competing activities put other projects aside or let them slide

restraint coping waiting for appropriate opportunity, holding back

seeking social support getting moral support, sympathy, or understanding

positive reintegration look for silver lining and try to grow as a person

acceptance accept stressor and learn to live with it

denial denying the reality of event

behavioral disengagement admit you cannot deal and reduce effort

mental disengagement daydreaming, sleeping, turn to drugs or religion

Table 2.2: Emotion-focused coping strategies

The following is a simplified algorithm for cognitive appraisal by the name
of the ema algorithm. It is explained in detail in [Gra04].

1. Construct and maintain a causal interpretation of ongoing world events in
terms of beliefs, disires and intentions.

2. Generate multiple appraisal frames that characterize features of the causal
interpretation in terms of appraisal variables.

3. Map individual appraisal frames into individual instances of emotion.

8 CHAPTER 2. BACKGROUND

✻

✻

✲

❄

❄

❄

❄

✲✛Environment Situational
construal

Goals/beliefs/
intentions

Appraisal

Appraisal outcome

Action
tendencies Affect Physiolog.

response

Coping

Coping
outcome

Problem-focused
strategies

Emotion-focused
strategies

Figure 2.2: The cognitive-motivational-emotive system

4. Aggregate emotion instances into a current emotional state, focusing on
instances associated with recent changes to the causal interpretation.

5. Adopt a coping strategy in response to the current emotional state.

2.3.2 So, what is actually implemented?

To implement a realistic emotional behavior in an interactive setting, the coping
strategies need to be dynamically dependent of the underlying emotional system.
This means the internal processes of an agent in the MRE system need to lead
to facial expressions, gestures, intonation and action planning. A realisation
needs to satisfy various requirements:

• To make dynamic interaction possible on cognition, appraisal and cop-
ing, the model must represent intermediate knowledge states that can be
appraised.

• To reason about relevance and desirability, the model must represent pref-
erences over outcomes.

• To make causal attributions, causal relations between states need to be
possible.

2.4. NATURAL LANGUAGE 9

• To reason about likelihood and expectedness about future states, the sys-
tem needs to represent factors influencing events, outcomes and interaction
between these events.

• To reason about urgency, the system needs to have some notice of time.

• To reason about controllability, the system must represent to what extent
events can be controlled.

• To reason about social power, the system need to represent relations and
organizational hierarchies of agents.

• To reason about adaptability and to support emotional coping strategies,
the system must represent subjective beliefs.

• To reason about ego-involvement, the system needs to represent how ‘ego-
istic’ a desire of an agent is.

In order to meet these requirements, the emotional system of MRE is based
on the design of Steve (section 2.2, which in turn is built using Soar. This makes
it possible to, for example, reason about a certain event that is about to happen
and that endangers the personal desires (or desired states) and as a result leads
to appraised fear. More details about the way the emotional state of an agent
is constructed in the MRE system is presented in section 4.1.

The emotional state and the coping strategies together result in mental and
physical activity. At this point, these states are linked to the movement of the
virtual body, so the agent adjusts his facial expressions and gestures to what
he feels. Manipulation of the utterances (different utterances for one speech
act and adjusted intonation, depending on emotion) has only been partially
implemented, but the foundation to realize the whole of it is present.

2.4 Natural language

Steve used commercial speech recognition and synthesis products to communi-
cate with human students and teammates. It had no true natural language un-
derstanding capabilities and understood only a relatively small set of preselected
phrases. Although easy to implement, this method has two major drawbacks.
The obvious one is that a system with hard coded language is very limited in
both understanding and generating speech, and that adding new content is a
cumbersome task. Secondly, all the recognition is done by the speech recognizer
itself rather than by modules that have access to the evolving task and dialogue
context. Because of these reasons, Steve has been modified in a variety of ways.
We distinguish three areas, namely dialogue, natural language understanding
(NLU) and natural language generation (NLG). These will be discussed in the
following subsections.

2.4.1 Dialogue

In MRE, the main conversation is between the lieutenant and the sergeant.
Also, the medic is some times brought in, and the mother is an important
overhearer. Additionally, separate conversations between the sergeant and the

10 CHAPTER 2. BACKGROUND

squad leaders occur, and both the lieutenant and the sergeant can engage in
some radio conversation. The agents must be capable to reason about who they
are talking to, who is listening, and whether they are being addressed.

The dialogue model used within MRE is capable of accomplishing these
multi-party, multi-conversation dialogues. It is modelled as a layered structure:

• contact

• attention

• conversation

– participants

– turn

– initiative

– grounding

– topic

– rhetorical

• social commitments (obligations)

• negotiation

The state of each layer is represented by an information state and a set of
dialogue acts corresponding to changes to this information state. There are also
conventional signals – behaviors (for instance a speech act or gazing) that can
be associated with the performance of dialogue acts, given the right context.

The contact layer is concerned with which individuals are accessible for
communication. The attention layer concerns the object or process that agents
attend to. Contact is required for attention. The conversation layer models
the separate dialogue episodes that go on during an interaction. This layer has
several sub-layers which may consist different information for each conversation
that is going on. The participants include active speakers, adressees, or over-
hearers. The turn indicates which participant has the right to speak. Initiative
holds the person who is leading the conversation. The grounding component
tracks how information is added to the common ground of the participants. The
topic contains the topic of the associated conversation and furthermore there
are rhetorical connections relating content units to each other. Once material
is grounded, even as it still relates to the topic and rhetorical structure of an
ongoing conversation, it is also added to the social fabric linking agents, which
is not part of any individual converstaion. This includes social commitments –
both obligations to act or restrictions on actions, as well as commitments to fac-
tual information. There is also a negotiation layer, modeling how agents come
to agree on these commitments. A more in-depth survey of these layers can be
found in [Tra02].

In addition to these layers, there are several classes of rules which relate the
dialogue acts to the information state. These are:

Recognition rules that associate observed behavior (speech and/or other modal-
ities) with performance of one or more of these dialogue acts.

2.4. NATURAL LANGUAGE 11

Update rules that modify the information state components with information
from the inferred dialogue acts.

Selection rules that decide which dialogue acts the system should perform.

Realization rules that indicate how to realize the selected dialogue act, using
natural language, non-verbal communications, and other behavior.

Currently, the model isn’t implemented entirely. Some aspects, like the
rhetorical layer are divided amongst several layers and others demand more
attention. This is especially true for the contact and attention layer.

2.4.2 Natural language understanding

The agent relies on external speech recognition and the NLU module. The goal
of this module is to convert a string of words, as uttered into the microphone
by the MRE trainee and then recognized by the speech recognition module,
into one or more semantic frames that represent the meaning of the sentence.
This module currently includes three engines operating in parallel: two use
finite state technology and one is a statistically trained parser. These three
engines exhibit complementary strengths. The first finite state engine is limited
in scope, but its output is always 100 percent correct; it is most useful for
sentences where speech recognition is fully correct. The second can recognize
portions of inputs, for cases in which speech recognition provides a partially
correct sentence. The third, statistical engine is more robust, and can easily
be extended to handle new sentence types and new words, but its output may
include erroneous propositions. This module is stand-alone Java code.

The semantics form the input for the Soar code which keeps track of the
dialogue and is responsible for the natural language generation. Knowledge
is represented using state propositions, which form the basis for the system’s
reasoning capabilities. The states currently known to the agents can be found
in tables 4.2 and 4.3. Two abbreviated examples can be seen below. The first
is a state proposition, stating that the boy is currently not healthy. Example
two is a partial proposition: the q-slot field represents the missing information,
e.g. the attribute that is asked about. Here, the question “Who is hurt?” is
represented [Tra03c].

1. ^attribute health-status ^object-id boy ^polarity negative

^time present ^type state ^value healthy

2. ^q-slot object-id ^attribute health-status ^polarity negative

^time present ^type state ^value healthy

2.4.3 Natural language generation

Depending on the information state of the dialogue, the Soar code concerning
language generation proposes one or more communicative goals. Once a goal
has been selected the following phases will be executed:

Content selection phase during which is determined whether the commu-
nicative goal can be met and what content satisfies the given goal.

12 CHAPTER 2. BACKGROUND

Sentence planning phase during which is decided in what way the message
is best conveyed. This generates the sentence in an abstract way.

Realization phase during which the abstract sentence is mapped to words
and phrase structures.

Ranking phase during which the possibly multiple ways of realizing the sen-
tence is being considered and a best match is selected.

This final sentence is then augmented with communicative gestures, includ-
ing lip synch, gaze, and hand gestures, converted to XML, and sent to the
synthesizer and rendering modules to produce the speech. After the message
is spoken, the agent receives feedback in order to verify if the sentence was ut-
tered successfully after which the dialogue state is updated. The article [Tra03b]
discusses the NLG phases in more detail.

Chapter 3

Requirement specification

3.1 Assignment

At this point, the agents within MRE do possess emotional behavior, but they
are unable to express it explicitly; it surfaces only by means of body language
and facial gestures. Our task is to specify and implement utterances that express
the emotional state of the agent and the reasons for that state, i.e. the user
should be able to ask the agent how it feels and why he is feeling that way.

3.2 Requirements

The final result should be a scenario-independent implementation of an emo-
tional dialogue, where agents can:

• understand user’s utterances concerning emotions;

• use existing knowledge of their emotional state to express themselves; and

• express themselves using natural language.

An emotional dialogue should involve the following possible subjects:

• type of emotion;

• intensity of emotion;

• cause of emotion;

• involved agents for a certain emotion.

13

14 CHAPTER 3. REQUIREMENT SPECIFICATION

Chapter 4

Analysis

In this chapter the parts of the system that are important to our assignment
are analysed. First, the emotional state is discussed, followed by the agents
personality. Next the possible emotion based speech acts are analysed. This
chapter concludes with a short description of natural language understanding
(NLU) and natural language generation (NLG).

4.1 Emotional state

The emotional state of an agent is the result of the cognitive appraisal of the
world; it is calculated by taking various events into consideration. Some events
in the world have a direct impact on the agent’s emotional state (i.e. the joy
at winning a game) and some events are involved through a causal relation
(i.e. feeling guilty for the distress of one’s opponent after winning a game). All
these appraisals are annotated by attributes, called appraisal variables; these
variables characterize the event and as a result, determine the type and intensity
of the emotion. The different appraisal variables are described in table 4.1; the
variables that are actually implemented in the current model are marked with
a †. [Gra04]

Appraisal variable Description

† relevance does the event require attention or adaptive reaction

† desirability does the event facilitate or threat the agent’s goals

† agency what agent is responsible for the event

† blameworthiness does the responsible agent deserve blame or credit

† likelihood how probable is the event to happen

† inexpectedness was the event predicted from past knowledge

urgency will delaying a response make matters worse

ego involvement how does the event impact a person’s sense of self

† controllability to what extent can the event be influenced

power what power has an agent to (in)directly control the event

adaptability can the person live with the consequences of the event

† changability will the effect change of it’s own accord

Table 4.1: Appraisal variables

15

16 CHAPTER 4. ANALYSIS

In the MRE system an appraisal is linked to a certain state and an event
(or act) that either helps or threatens progress towards the state. The emotion
raised depends on whether the agent wants that state to be true in the world
or not – this means the desirability variable in table 4.1 is a result of the
desirability of the state and whether the event is either helping or threatening
that state.

The appraisals (or appraisal frames) in the MRE system are stored in work-
ing memory elements (WME’s), the elements that contain all the current knowl-
edge in the world in the Soar system. In this section all information available
on emotions will be presented; this information can be used to construct speech
acts. The information stored in the WME about each emotion are type and
intensity and what event it was raised by. Information on events are the state,
importancestate, desirabilitystate (which actually is a binary mapping of the
importancestate attribute), likelihood, responsible agent, blameworthiness,
influence (i.e. if the event helps or threatens the state, this is the actual type
of the appraisal), and status (i.e. has it already happened or is it about to
happen).

4.1.1 Emotions

There are seven emotion types: joy, hope, distress, fear, anger, guilt, and
anxiety; they are stored in WMEs by the same name. Every emotion has a
certain intensity between 0 and 1.

For every appraisal there is an action towards a certain state that has hap-
pened or is about to happen. All these states in the MRE Bosnia mission are
split into states with respect to the mother’s perspective, which are listed and
explained in table 4.2, and states with respect to the lieutenant’s, sergeant’s
and medic’s perspective, which are listed and explained in table 4.3.

State Meaning

child-dead My child is dead

child-healthy My child is healthy.

troops-helping The foreign troops are helping us.

facilities-ok The facilities to help the boy are available.

lz-secure The landing zone for the medivac is secure.

medevac-called The medevac has been called.

authority-present There is authority present at the accident site.

help-requested Help for my son had been requested.

Table 4.2: States in mother’s perspective

The attribute importancestate has a value between -100 and 100. The
desirabilitystate is a binary mapping of the former attribute: if importancestate <
0 then desirabilitystate = undesired and if importancestate ≥ 0 then desirabilitystate

= desired.
The possible values for influence are facilitator, which means the emo-

tion is raised by an event that helps progress towards a certain state, and
inhibitor, which threatens progress.

What type of emotion is raised by an event depends on the desirability of the
event. This desirability depends on the importancestate and the influence. If

4.1. EMOTIONAL STATE 17

Name Meaning

maintain-goodwill The goodwill of the crowd is maintained

crowd-angry The crowd is angry

boy-dead The boy is dead

boy-healthy The boy is healthy.

minor-injuries The boy has minor injuries.

serious-injuries The boy has serious injuries.

critical-injuries The boy has critical injuries.

driver-healthy The driver is healthy.

driver-minor-inj The driver has minor injuries.

mother-healthy The mother is healthy.

know-boy-health The health of the boy is known.

sqds-in-transit The squads are in transit to the assembly area.

lt-in-transit The lieutenant is in transit to the assembly area.

lt-at-aa The lieutenant is at the assembly area.

lt-at-celic The lieutenant is at Celic.

sgt-at-aa The sergeant is at the assembly area.

medic-at-aa The medic is at the assembly area.

at-boy-aa The boy is at the assembly area.

mom-at-aa The mother is at the assembly area.

1st-sqd-at-aa First squad is at the assembly area.

1st-sqd-at-celic First squad is at Celic.

1st-sqd-at-lz First squad is at the landing zone.

(same for 2nd, 3rd and 4th)

1st-sqd-in-transit First squad is in transit.

4th-sqd-in-transit Fourth squad is in transit.

at-boy-hospital The boy is at the hospital.

mom-in-intersect The mother is at the intersection.

sqd-in-intersect The squad is at the intersection.

medevac-at-aa The medevac is at the assembly area.

medevac-at-base The medevac is at the base.

medevac-called The medevac has been called for.

medevac-overhead The medevac is overhead.

amb-at-aa The ambulance is at the assembly area.

amb-at-base The ambulance is at the base.

ambulance-called The ambulance ahs been called for.

secure-route The route to Celic has been secured.

aa-secure The assembly area has been secured.

accident-secure The accident site has been secured.

12-to-4-secure 12 to 4 hours secure.

4-to-8-secure 4 to 8 hours secure.

8-to-12-secure 8 to 12 hours secure.

lz-secure The landing zone has been secured.

lz-marked The landing zone has been marked by green smoke.

lz-clear The landing zone is cleared of civilians.

support-1-6 Eagle 2-6 is supporting Eagle 1-6

retain-mass Eagle 2-6 is together (as a team).

fracture-unit Eagle 2-6 has been split up

1-6-at-celic Eagle 1-6 is at Celic

hospital-at-tuzla The hospital is at Tuzla

Table 4.3: States in sergeant’s, lieutenant’s and medic’s perspective

18 CHAPTER 4. ANALYSIS

the state is not desired and the event is threatening progress towards that state,
the event will of course be desired, i.e. desirability > 0. The categorization of
the emotions is described in table 4.4; we consider the source of the event known
(i.e. state �= NULL) unless stated otherwise.

Joy and hope are the results of a positive desirability: joy if the outcome is
certain, hope if it is not certain. Fear is the result of knowing the source of the
undesired event that might happen, while distress is the result of an event that
already has happened or is going to happen for sure. If the source is unknown,
the agent will feel anxiety. Anger is the result of an undesired event which has
a responsible agent (notice it is possible to be angry with yourself), while guilt
is the result of being the responsible agent for an event that is undesired in
someone else’s perspective. All variables always depend on a certain agent’s
perspective (p and q).

The total intensity for each emotion is calculated by taking the intensity for
every single appraisal frame that has that emotion as type into account. The
intensity for a single event is calculated by the formula

|desirability(p)× likelihood(p)|

In this formula, likelihood is the probability of the event happening in the
future. [Gra04].

Appraisal configuration Emotion

desirability(p) > 0, likelihood(p) = 1 joy

desirability(p) > 0, likelihood(p) < 1 hope

desirability(p) < 0, likelihood(p) = 1 distress

desirability(p) < 0, likelihood(p) < 1 fear

desirability(p) < 0, likelihood(p) < 1, state = NULL anxiety

desirability(p) < 0, blameworthiness(q) = blameworthy anger

desirability(q) < 0, blameworthiness(p) = blameworthy, p �= q guilt

Table 4.4: Emotion categorization

4.1.2 Events

Each emotion is linked to one of the states in table 4.3 or table 4.2. These
states are the result of events, which usually have a responsible person – all the
possible values for the responsible agent attribute are in table 4.5.

The value of the blameworthiness attribute declares whether the resposible
agent should be blamed (blameworthy) or receive credit (praiseworthy) for
the event. Finally, the attribute status states whether the event has already
happened, confirmed, or has yet to happen, unconfirmed.

4.1.3 Structure

The WMEs in Soar can be graphically presented by a directed graph. To en-
hance in clarity, the structure of the locations of the data is presented as a tree;
see figure 4.1.

The total values of each emotion are stored as in figure 4.2.

4.1. EMOTIONAL STATE 19

S1 top state

+ appraisals

| + types all possible types for emotion

| |

| + {Anger, Anxiety, ...} type of this emotion

| | |

| | + emotion-type type of this emotion

| | + importance state importance

| | + intensity of this emotion

| | + agent agent the appraisal is judged by

| | + appraisal by which emotion was raised

| | | |

| | | + object

| | | | |

| | | | + name the state

| | | |

| | | + type event helps or threatens state

| | | + desired-self binary mapping of importance

| | | + evaluation

| | | | |

| | | | + responsible-agent responsible agent for the event

| | | | + evaluation whether responsible agent is

| | | | blamed or praised

| | | + feature

| | | | |

| | | | + status is event confirmed/unconfirmed

Figure 4.1: Tree structure of the locations of the emotion WMEs

20 CHAPTER 4. ANALYSIS

Value Person

1sldr First squad (leader)

2sldr Second squad (leader)

3sldr Third squad (leader)

4sldr Fourth squad (leader)

ambulance The ambulance

base The base

lt Lieutenant (you)

medevac The medevac (helicopter)

medic† The team’s medic

mom† The mother

sgt† The sergeant

Table 4.5: Possible values for responsible agent; entries marked with a † are
intelligent agents in the MRE system

4.2 Personality

Apart from the emotional state, an agent has a personality. This personality has
influence on his coping strategy and (body) language. It can only be changed
manually by the use of sliders, which is justified, as personality does not change
in a short time interval as with a mission scenario.

S1 top state

+ io

| |

| + input-link input link

| | |

| | + {Defensiveness, ...} type of personality with intensity as value

| | + self

| | | |

| | | + {Anger, Anxiety, ...} total intensity of the emotion

| | | + max emotion with the highest total intensity

Figure 4.2: Tree structure of the locations in the input link

The personality is defined by four personality types: defensiveness, terseness,
initiative, and expressiveness. As with the emotions, the intensity of a
personality personality intensity has a value between 0 and 1. The location of
these values are in the input link of the Soar-environment, see figure 4.2.

4.3 Speech acts

In this section possible utterances concerning emotions are evaluated. Some
assumptions are made:

1. the speech acts are both domain and scenario independent

2. the emotional dialogue exists as a side line to existing dialogue

3. the emotional dialogue is always user driven

4.3. SPEECH ACTS 21

The first one is taken from section 3.2. The second assumption is made
because, first of all, the current scenario isn’t very suitable for having a nat-
ural emotional conversation. Also, blending emotional dialogue into existing
dialogue in a natural way, would imply emotional, dialogue and social studies,
which cannot be performed within the given time frame. The lack of dialogue
context implies the third assumption, i.e. the emotional conversation is initiated
by the user and has a question-answer construction. As mentioned in section 4.1,
information about emotions are classified in the subjects type, intensity, state,
importancestate, desirabilitystate, likelihood, responsible agent, blameworthiness,
influence, and status. Of these subjects, type, intensity, state, responsible agent
and blameworthiness can directly be used within conversations about emotions.
We use this distinction for classifying the utterances in the following subsections.

The outline for a question-answer interaction consists of all possible questions
with the same meaning, annotated with their keywords, and the possible answers
for the questions, with the data that answer supplies and thus is needed to
construct the answer.

Note: During implementation and testing certain revisions were made to
the speech acts. In order to show the iteration process, the original speech acts
are still depicted here. The final speech acts can be found in appendix A.

4.3.1 Emotion type

Our first question tries to find out how an agent feels. It’s assumed his answer
will give information about the emotion he feels the most, i.e. the emotion with
the highest intensity. In addition to this information, the agent can answer more
extensively, giving information on why he feels that way, how much he feels that
way, et cetera.

Question How do you feel?
Keywords: how, feel

Question What’s wrong with you?
Keywords: what, wrong, you

Answer I’m [emotion].
Data: type, intensity

Answer I’m a bit/really/very/. . . [emotion].
Data: type, intensity

Answer I’m a bit/really/very/. . . [emotion], because [additional information
on state, responsible agent, . . .]
Data: type, intensity, influence, state, responsible agent, . . .

The second question is simular to the first one, but now is focused on a
particular state. Further attention should be given to the fact that this question
could also imply a desire to get to know the agent’s plan of action.

Question How do you feel about [state]?
Keywords: feel, [state]

22 CHAPTER 4. ANALYSIS

Answer That doesn’t seem really important at this time, sir.

Answer I’m [emotion] about [state].
Data: type, intensity

Answer I’m a bit/really/very/. . . [emotion] about [state].
Data: type, intensity, state

Answer I’m a bit/really/very/. . . [emotion] about [state], because [additional
information on state, responsible agent, . . .]
Data: type, intensity, influence, state, responsible agent, . . .

The third question wants confirmation on a certain feeling. The answer
consists of a confirmation and if positive, can be extended with information on
why the agent feels the emotion. To be able to answer this question, a certain
threshold needs to be set for the intensity.

Question Do you feel [emotion]?
Keywords: feel, [emotion]

Question Are you [emotion]?
Keywords: are (to be), [emotion]

Answer Yes / No, sir.
Data: type, intensity

Answer Yes, sir, because [additional information on state, responsible agent,
. . .]
Data: type, intensity, influence, state, responsible agent, . . .

4.3.2 Intensity

A user should be able to reassure an agent, when the intensity of a certain
emotion is too high. Although this isn’t a real question, for clarity the same
structure as in the other subsections is used.

The following utterances can be used for every emotion.

Question Calm down.
Keywords: calm, down

Question Relax.
Keywords: relax

Answer Yes, sir.
Data: type, intensity

Answer Will do, sir.
Data: type, intensity

Answer I am calm/relaxed, sir.
Data: type, intensity

Whether such an utterance of the lieutenant will have in fact an impact on
the agent’s emotion is a point of further attention.

4.3. SPEECH ACTS 23

4.3.3 State

If the user asks his interlocutor for the reasons of his emotional state, he’s
actually asking for the state an event helps or treatens, which as a result creates
the agent’s emotional state. In the answer a lot of information on this state has
to be grouped.

Question Why are you [emotion]?

Keywords: why, are (to be), [emotion]

Question What’s causing you to feel [emotion]?

Keywords: what, causing, [emotion]

Answer Because [state].

Data: emotion, state, influence

Answer It’s [responsible agent]’s fault that [state]!

Data: emotion, state, influence, responsible agent, blameworthiness

Answer I’m not [emotion]!

Data: emotion, intensity

Answer That’s personal, sir.

Data: emotion

4.3.4 Responsible agent and blameworthiness

The user might want to ask the interlocutor more details about the state, in par-
ticular who is responsible for the state and thus for the emotion. This question
may depend on the emotion.

Question Who’s responsible for [state]?

Keywords: who, responsible, [state]

Question Who’s responsible for making you feel [emotion]?

Keywords: who, responsible, [emotion]

Question Towards whom do you feel guilty?

Data: whom, guilty

Answer [responsible agent].

Data: emotion, state, influence, responsible agent, blameworthiness

Answer It’s [responsible agent]’s fault that [state]!

Data: emotion, state, influence, responsible agent, blameworthiness

24 CHAPTER 4. ANALYSIS

4.4 Natural language

In chapter 2 the theories behind the natural language modules of MRE were
presented. In a perfect world all speech would pass the speech recognizer, turn-
ing it into a string of words, which would be transformed into a set of semantic
frames by the NLU module. These frames would travel through the system, up-
dating the dialogue state, generating a communicative goal, selecting the proper
content for output, and realizing the specific sentence which conveys that con-
tent. Unfortunately, we don’t live in a perfect world. Real life isn’t neat, it’s
filthy, dirty and full of hacks.

Although the ’neat’ method described above is of course prefered over other
ways of implementation, some problems concerning this method arise. First of
all, the MRE project has currently no direct control over the core of the NLU
module. This means that any natural language understanding added to MRE
has to bypass this module, using Soar. Secondly, it is unclear if the NLG module
can be used since there is no expert code maintainer at this moment.

This section discusses the various ways natural language understanding and
natural language generation are implemented and how we can make use of them,
bypassing both the NLU and part of the NLG.

4.4.1 Natural language understanding

The MRE system has two methods of bypassing the NLU module. One can
either type in question propositions or one can define rules which scan for certain
keywords in an utterance. Both these methods will create semantics which can
continue the normal flow of the system.

The entered propositions should match the sequence state-q object-id

attribute value polarity, where state-q serves for making clear a propo-
sition is typed in, rather than natural language. The subject of the question
should be indicated by typing q in it’s place, i.e. the question “Are you feel-
ing angry?” can be entered as state-q sgt |Angry| yes q, when adressing
the sergeant. The typed in proposition is mapped to the proper semantics by
placing the tokens in the ^semantics attribute.

Keyword scanning is not actively used anymore, although some rules still ex-
ist. Figure 4.3 depicts a combination of these rules. It scans for the words “hap-
pened” and “here” in order to detect the utterance “What happened here?”.
When this rule fires, it generates the proper semantics by defining a question
(^type question) with an event as subject (^q-slot event). The question is
further defined as what event (^type event) happened at the Assembly Area
(^location aa, which is where the scene takes place) in the past (^time past).

4.4.2 Natural language generation

The dialogue code will generate a certain obligation (also called goal) for the
agent, for instance the obligation to assert a question. In order to adress this
obligation, a communicative goal is formed, which holds the actual response.
This is done by selecting one or more states (as discussed in 2.4.2) from all
matching states. The system then generates natural language for the chosen
alternative. The goal can be seen as why the agent is making an utterance, the
comgoal is what this utterance is.

4.4. NATURAL LANGUAGE 25

sp {top-state*apply*operator*understand-speech*nlu*what-happened-here

(state <s> ^name top-state

^operator <o>)

(<o> ^name understand-speech

^speech-input <si>)

(<si> ^id <id>

^speaker lt

^interpretation <i>)

(<i> ^token.lex << happened >>

^token.lex << here >>)

-->

(<i> ^addressee sgt

^mood question

^semantics <sem> + = >)

(<sem> ^type question

^q-slot event

^prop <sem1>)

(<sem1> ^type event

^location aa

^time past)}

Figure 4.3: Soar rule which maps the question “What happened here?” to the
proper semantics

In terms of this assignment, there are three possibilities for generating lan-
guage. The first method consists of defining new states, based upon the existing
emotion code. This will make the system able to reason about emotions the same
way it does in general. Two problems have to be adressed, though, when using
this method. First, as an agent appraises all states in order to compute his
emotions, adding emotion states (which then would also be appraised) could
unbalance the system. Secondly, the system isn’t capable of handling causality,
so there’s no way to get to know why an agent is, for example, feeling guilty.
In order to make use of general reasoning rules, the system should be extended
with causality features. The general outline of a proposition state can be found
in figure 4.4.

The second method consists of directly mapping a goal to the proper seman-
tics for the speech act. The NLG module then uses these semantics to generate
certain sentences. This method bypasses the reasoning part of the system.

The third method bypasses both the content selection and sentence gener-
ating code, by mapping a certain goal directly to a speech act (surface). An
example of such a rule can be found in figure 4.5, where a communicative goal
of the sergeant answering the lieutenant whether he is hopeful is met by utter-
ing “I’m hopeful”. The fact that this rule will make the sergeant reply in this
fashion even if he’s in fact not hopeful, can be seen as a small indication that
some work still remains to be done.

26 CHAPTER 4. ANALYSIS

S1 top state

+ current-state

| |

| + {state1, state2, ...} state name

| | |

| | + attribute subject of the state

| | + belief whether agent thinks state is true or false

| | + concern intrinsic (context free) value of state

| | + emotion emotion of every agent for this state

| | + established-by effect that caused current value of state

| | + id state name

| | + initial-belief initial belief of the agent

| | + name state name

| | + negation link to inverse state

| | + object-id concerned agent

| | + polarity positive or negative focused

| | + satisfied is state satisfied (may differ from belief)

| | + sim-object name of the object in the VR-simulation

| | + source source of state (inference)

| | + type "state"

| | + value value of the state

Figure 4.4: Tree structure of general propositions

sp {apply*output-speech*answer-emotion-type

(state <s> ^agent-name sgt

^operator <o>)

(<o> ^name output-speech

^comgoal <cg>)

(<cg> ^speaker sgt

^addressee lt

^speech-act)

(^type backward

^action answer

^actor sgt

^question <sem>)

(<sem> ^type question

^q-slot value

^prop <sem1>)

(<sem1> ^type value

^object-id sgt

^attribute |Hope|)

-->

(<cg> ^surface |"I’m hopeful"| + =)}

Figure 4.5: Tree structure of general propositions

Chapter 5

Design

This chapter describes the design of our system. Where possible, it uses methods
already available.

We recall from subsection 4.4.1 that there are two alternatives for language
understanding:

• Propositions

• Keyword scanning

As the use of propositions would imply abandoning the requirement of using
natural language, this alternative is discarded and keyword scanning is chosen.
For language generation three alternatives were presented:

• State reasoning

• Creating formal semantics manually

• Surfacing a string directly

Despite the problems mentioned in subsection 4.4.2 it showed that using
state reasoning is possible. The MRE team allowed the addition of a ^cause at-
tribute to the state structre and implemented a generic follow-up why-question.
It was asserted that possible issues with appraising emotion states could be
dealt with. Also, it showed that using the NLG sentence planning ability could
not be used within the given time frame, as it is quite domain specific. The
design of the language generation therefore is a mixture between the first and
third alternative. Emotion states will be created in order to make reasoning
possible. When the system has come up with the communicative goal, though,
the formal semantics will not be send to the NLG sentence generation. Rather,
the semantics form a trigger to use certain templates.

As states form the informational basis for both the reasoning part and the
creation of formal semantics, this subject will be discussed first in section 5.1.
Section 5.2 uses the states as a starting point to design the natural language un-
derstanding part. In section 5.3 the required templates are designed. Section 5.4
concludes with an overview of the design.

Certain issues during later phases of the assignment caused some changes to
the original design. In order to show some insight in the process, the original
design is shown in the following sections, revisions can be found in section 5.5.

27

28 CHAPTER 5. DESIGN

5.1 Emotion states

Making the required data for the output available is done by creating states as
mentioned above. The current state design as depicted in figure 4.4 is used,
with the addition of a cause attribute. These new states are called emotion
states. The states contain the data that is in the speech act; additional data
(i.e. terseness of the agent to determine the template) is extracted from the rest
of the system. The actual template fillings will be placed in lookup tables – see
subsection 5.3.2 for more details on this subject.

Since it is not desirable to have states for every single subject that can be
talked about, certain states are created on-the-fly. For example, if the user
asks for the cause of a certain feeling, the state containing that information
is only available as long as the question is under discussion, otherwise every
reason for every feeling should be available in permanent states. Some states
are permenant, though, since there is only one piece of information needed, i.e.
the answer to the question “How do you feel?” only requires a single state of
information.

The following subsections describe every emotion state related to a ques-
tion. Following the original design of the states, every state has a negated
state (belief = false instead of the belief = true); only the states with
belief = true are listed for each question. The value for initialbelief must be
equal to that of belief , because of a syntax requirement of the system.

The values for certain emotion states depend on what the intensity of the
emotion is. If an agent feels a certain emotion with an intensity less than 0.2, he
does not believe he feels the emotion. This threshold has effect on the creation
of emotion states, but also on the selection of the template alternative and the
template fillings.

Note: In the figures in these sections plain text defines an attribute value.
A text between < and > defines a value that has to be looked up using an
algorithm. Text between [and] defines a value that can be acquired from the
user’s speech act, and text preceded by a * define a path of attributes to a value
in the system.

5.1.1 Emotion type

When the question “How do you feel?” is uttered, the adressee is asked for
his most important feeling, so the emotion state attribute will be max-feeling.
The value of the state is the most important emotion, which is the emotion
the agent feels most and can be found in s1.io.input-link.self.max. As
for every emotion state the value in s1.agent-name applies for the object− id
attribute. Since the most important feeling always exists, polarity is positive.
The cause attribute links to the object of the most important state generating
this feeling, the state that has the greatest part in boosting the most important
emotion – a link to the appraisal object of this state is provided in the source
attribute.

This emotion state will be available permanently.

5.1. EMOTION STATES 29

How do you feel?

attribute max-feeling

belief true

cause <most important state for this emotion>

initial − belief true

object− id *s1.agent-name

polarity positive

satisfied true

source <appraisal for most important state>

type state

value *s1.io.input-link.self.max

The emotion state for a question as “How do you feel about [state]?” will
be created on-the-fly. The value for the answer can be found in the appraisal of
the mentioned state.

How do you feel about [state]?

attribute feeling-about-state

belief true

cause *current-state.[state]

initial − belief true

object− id *s1.agent-name

polarity positive

satisfied true

sim− object *current-state.[state].sim-object

source <appraisal for state>

type state

value *current-state.[state].[emotion]?

For every emotion an emotion state feeling is created. The value of polarity
states whether the agent believes he feels this emotion or not; this depends on
the threshold for the intensity. If the agent does feel the emotion, causality is
added in the cause attribute and the appraisal source is added in the source
attribute.

Do you feel [emotion]?

attribute feeling

belief true

cause <most important state for this emotion>

if intensity[emotion] > 0.2
initial − belief true

object− id *s1.agent-name

polarity positive, if intensity[emotion] > 0.2
negative, if intensity[emotion] ≤ 0.2

satisfied true

sim− object
source <appraisal for most important state>

if intensity[emotion] > 0.2
type state

value *s1.io.input-link.self.[emotion]

5.1.2 Intensity

For the reactions on an utterance as “Calm down.” the emotion states max-feeling,
as described above, are used.

30 CHAPTER 5. DESIGN

5.1.3 State

For the reaction on a question “Why are you [emotion]?” the value of polarity
and cause in the feeling state attribute for that specific emotion is used, so
no new emotion states need to be designed here.

5.1.4 Responsible agent and blameworthiness

For the answer to the question “Who’s responsible for making you feel [emo-
tion]?” new (permanent) emotion states are needed. For every emotion an
emotion state responsible-for-[emotion] is created only if the intensity of
that emotion is higher than the threshold of 0.2. The value is the agent that
is responsible for the state that influences the emotion the most. In the cause
attribute, the blameworthiness of the responsible agent is stored. Note that in
this case the cause attribute is not a state.

Who’s responsible for [state]?

attribute responsible-for-[emotion]

belief true

cause <blameworthiness>

initial − belief true

object− id *s1.agent-name

polarity positive

satisfied true

type state

value <responsible agent for most important state>

5.2 Natural language understanding

With bypassing the NLU module cannot be used, semantic frames have to be
created by Soar, given a certain utterance. More specific this means scanning the
input for specific keywords, and on detection of the right keywords generating
the proper semantics, which continue the normal flow within the system, i.e.
dialogue and language generation code.

In the following subsections the semantics for each type of question are pre-
sented, accompanied by the keywords mentioned in section 4.3. The first colomn
of a table shows the natural language question, with the variable emotion

or state between straight brackets. The second column shows the keywords
needed in order to detect the question. All the words connected with ∧ are
needed for detection; ∨ denotes a choice between certain words. The semantics
associated with the question(s) are shown in the third column, based upon the
states discussed in section 5.1.

The last subsection discusses the mapping from emotions and states in nat-
ural language to the representation used by the system.

5.2.1 Emotion type

The semantics for the emotion type questions are straightforward: the first
and second are about the value of respectively the states max-feeling and

5.2. NATURAL LANGUAGE UNDERSTANDING 31

feeling-about-state. As there’s only one max-feeling no additional infor-
mation is needed. In order to get the right feeling-about-state, the cause

attribute is set to the state asked about.
The third question is about whether a certain state is true or false, so the

q-slot is set to polarity. The value of the value attribute will make sure the
right feeling state is selected.

Question Keywords Semantics

How do you feel? how ∧ feel ^type question ^q-slot value

What’s wrong (what ∨ what’s) ^attribute max-feeling

with you? ∧ wrong ∧ you

How do you feel feel ∧ [state] ^type question ^q-slot value

about [state] ^attribute feeling-about-state

^cause <state>

Do you feel [emotion]? feel ∧ [emotion] ^type question ^q-slot polarity

Are you [emotion]? are ∧ [emotion] ^attribute feeling ^value <emotion>

5.2.2 Intensity

Since this type of question is more or less a gimmick, no states have been
designed. In order to detect this question, a dummy is used to create fake
semantics. Although the formal semantics do not match the informal semantics,
it is possible to detect the question later on and present the proper reply.

Question Keywords Semantics

Calm down. calm ∧ down ^type question ^q-slot dummy-int

Relax. relax ^attribute max-feeling

5.2.3 State

When one asks “Why do you feel angry?”, we expect to get the cause of the
emotion as an answer. This semantics is presented formally in the table below.

Question Keywords Semantics

Why are you [emotion]? why ∧ are ∧ [emotion] ^type question ^q-slot cause

What’s causing you to (what ∨ what’s) ∧ causing ^attribute feeling

feel [emotion] ∧ [emotion] ^value <emotion>

5.2.4 Responsible agent and blameworthiness

Both of the quesions below are semanticly the same, but phrased differently.
Since a responsibility state exists for every emotion, it is merely a matter of
asking for the value of that state.

Question Keywords Semantics

Who’s responsible for making (who ∨ who’s) ∧ ^type question

you feel [emotion]? responsible ∧ [emotion] ^q-slot value ^attribute

Towards whom do you feel guilty? (whom ∨ who) ∧ guilty responsible-for-[emotion]

32 CHAPTER 5. DESIGN

5.2.5 Synonyms

As the emotions and states are internally represented in a certain way, we need
to map natural language words to these internal representations. This also
provides us with the ability to use synonyms.

For this mapping we make additional look-up tables. The emotion synonyms
can be seen in the table below. Although in natural language not all synonyms
map exactly to one emotion or state, we use this many-to-one mapping for sake
of simplicity. This will result in the agent interpreting a user’s ambiguous ques-
tion (like “Do you feel stressed?”) in a way the user might not have intended1.

Natural language Internal representation

anger, angry, annoyed, irritated |Anger|

anxiety, anxious, worried, concerned |Anxiety|

distress, distressed, upset, disturbed, troubled |Distress|

fear, fearful, afraid, frightened, stressed |Fear|

guilt, guilty |Guilt|

hope, hopeful, optimistic |Hope|

joy, joyful, exited, happy |Joy|

In order to detect the state the user asks about (for instance boy-healthy),
a lookup table with boolean functions is used (table 5.1). In order to make
general questions like “How do you feel about the boy?” possible, questions
which contain only one keyword will be directed to one of the most likely states
the user is interested in.

5.3 Natural language generation

The agents’ answers will be constructed by the use of templates, as explained in
section 5.3.1. The information needed to fill in the templates must be provided
by the system; this is explained in more detail in section 5.3.2.

5.3.1 Templates

When the NLG module is not used for creating sentences, either fixed strings
(canned text) or templates are alternatives. Since templates are more flexible
and dynamical [Jur00], this method is used mainly for constructing the agents’
utterances.

For each of the questions mentioned in section 4.3 a template type is avail-
able; each type has one or more alternatives, depending for instance on the
terseness of the agent. The template types are listed in the following subsec-
tions. In what way the templates are filled is described in section 5.3.2.

The template type is selected in Soar, by detecting assertions to certain types
of questions, as discussed in section 5.2. Once a template type is selected, a TCL
script will be called, which selects and fills in a certain alternative, returning
the string to Soar.

EM is defined as the set containing the emotions: EM = {anger, anxiety,
distress, fear, guilt, hope, joy}.

1One can argue whether we are just lazy not implementing a clarification system, or
whether this one-to-many method makes the agent more human-like. We tend to favor the
latter.

5.3. NATURAL LANGUAGE GENERATION 33

Natural language Internal representation

crowd ∧ goodwil maintain-goodwill

crowd ∧ anger crowd-angry

(boy ∨ child ∨ kid) ∧ dead boy-dead

boy ∨ child ∨ kid boy-healthy

(boy ∨ child ∨ kid) ∧ minor ∧ injuries minor-injuries

(boy ∨ child ∨ kid) ∧ serious ∧ injuries serious-injuries

(boy ∨ child ∨ kid) ∧ critical ∧ injuries critical-injuries

driver driver-healthy

driver ∧ (injuries ∨ injured) driver-minor-inj

mom ∨ mother ∨ woman mother-healthy

(boy ∨ child ∨ kid) ∧ health ∧ known know-boy-health

(squads ∨ sqds) ∧ transit sqds-in-transit

(lieutenant ∨ lt) ∧ transit lt-in-transit

(lieutenant ∨ lt) ∧ (aa ∨ (assembly ∧ area)) lt-at-aa

(lieutenant ∨ lt) ∧ celic lt-at-celic

(sergeant ∨ sgt) ∧ (aa ∨ (assembly ∧ area)) sgt-at-aa

medic ∧ (aa ∨ (assembly ∧ area)) medic-at-aa

(boy ∨ child ∨ kid) ∧ (aa ∨ assembly ∧ area) at-boy-aa

((1st ∨ first) ∧ (sqd ∨ squad)) ∧ (aa ∨ (assembly ∧ area)) 1st-sqd-at-aa

((1st ∨ first) ∧ (sqd ∨ squad)) ∧ celic 1st-sqd-at-celic

((1st ∨ first) ∧ (sqd ∨ squad)) ∧ (lz ∨ (landing ∧ zone)) 1st-sqd-at-lz

same for 2nd, 3rd and 4th squad

((1st ∨ first) ∧ (sqd ∨ squad)) ∧ transit 1st-sqd-in-transit

((4th ∨ fourth) ∧ (sqd ∨ squad)) ∧ transit 4th-sqd-in-transit

(boy ∨ child ∨ kid) ∧ hospital at-boy-hospital

(mom ∨ mother ∨ woman) ∧ intersection mom-in-intersect

(sqd ∨ squad) ∧ intersection sqd-in-intersect

medevac ∧ (aa ∨ (assembly ∧ area)) medevac-at-aa

medevac ∧ base medevac-at-base

medevac medevac-called

(medevac ∧ overhead) medevac-overhead

amb ∧ (aa ∨ (assembly ∧ area) amb-at-aa

amb ∧ base amb-at-base

amb ambulance-called

route ∧ (secure ∨ secured) secure-route

(aa ∨ (assembly ∧ area)) ∧ (secure ∨ secured) aa-secure

(accident ∨ site) ∧ (secure ∨ secured) accident-secure

(12 ∨ twelve) ∧ (4 ∨ four) ∧ (secure ∨ secured) 12-to-4-secure

(4 ∨ four) ∧ (8 ∨ eight) ∧ (secure ∨ secured) 4-to-8-secure

(8 ∨ eight) ∧ (12 ∨ twelve) ∧ (secure ∨ secured) 8-to-12-secure

(lz ∨ (landing ∧ zone)) ∧ (secure ∨ secured) lz-secure

(lz ∨ (landing ∧ zone)) ∧ (mark ∨ marked) lz-marked

(lz ∨ (landing ∧ zone)) ∧ (clear ∨ clearedd ∨ free) lz-clear

(((2 ∨ two) ∧ (6 ∨ six)) ∨ unit ∨ team)

∧ (support ∨ supporting) support-1-6

(((2 ∨ two) ∧ (6 ∨ six)) ∨ unit ∨ team) ∧ together retain-mass

(((2 ∨ two) ∧ (6 ∨ six)) ∨ unit ∨ team)

∧ (fracture ∨ fractured ∨ split) fracture-unit

((1 ∨ one) ∧ (6 ∨ six)) ∧ celic 1-6-at-celic

hospital ∧ tuzla hospital-at-tuzla

Table 5.1: Synonyms for states

34 CHAPTER 5. DESIGN

As noted, the template fillings will be discussed in section 5.3.2.

Emotion type

As an answer to the question how one feels, i.e. “How do you feel?”, four tem-
plate alternatives are available. What emotion emotion is returned in the answer
depends on the intensity of the emotions:

emotion ∈ EM, ∀e ∈ EM : intensityemotion ≥ intensitye

The first template alternative is in effect if the maximum emotion has an
intensity small enough to make that agent belief he doesn’t feel it (compare with
the answer to “Do you feel [emotion]?”). If the intensity is high enough, the cho-
sen template alternative depends on the terseness personality intensityterseness

of the agent:

1. I’m fine, sir.
intensityemotion ≤ 0.2

2. I feel [emotion], sir.
intensityemotion > 0.2 ∧ personality intensityterseness > 0.75

3. I feel [intensity] [emotion], sir.
intensityemotion > 0.2 ∧ 0.25 < personality intensityterseness ≤ 0.75

4. I feel [intensity] [emotion], because of [state-pre] [influence] [status] [state-
post], sir.
intensityemotion > 0.2 ∧ personality intensityterseness ≤ 0.25

To the question how one feels about a certain state, two different template
alternatives are available. Here, too, does the chosen alternative depend on the
terseness of the agent:

1. I feel [emotion] about it, sir.
personality intensityterseness > 0.5

2. I feel [intensity] [emotion] about it, sir.
personality intensityterseness ≤ 0.5

The third question was about confirmation on a certain emotion. The given
answer depends on the intensity of the emotion asked for and the terseness of
the agent:

1. Not at all, sir.
intensityemotion ≤ 0.1

2. No, sir.
0.1 < intensityemotion ≤ 0.2

3. I don’t, sir.
0.1 < intensityemotion ≤ 0.2

4. Yes, sir.
0.2 < intensityemotion ≤ 0.5 ∧ personality intensityterseness > 0.25

5.3. NATURAL LANGUAGE GENERATION 35

5. I do, sir.
0.2 < intensityemotion ≤ 0.5 ∧ personality intensityterseness > 0.25

6. Certainly, sir.
intensityemotion > 0.5 ∧ personality intensityterseness > 0.25

7. I do, sir, because of [state-pre] [influence] [status] [state-post], sir.
intensityemotion > 0.2 ∧ personality intensityterseness ≤ 0.25

Intensity

In contradiction to all other speech acts, the speech acts concerning the intensity
(“Calm down.”) do not have a question-answer construction, but the user is
trying to soothe the agent. The agent’s reaction depends on the intensity of all
emotions, i.e. for every emotion the intensity needs to be really low to give a
negative reaction:

1. Yes, sir.
∃emotion ∈ EM : intensityemotion > 0.20

2. Will do, sir.
∃emotion ∈ EM : intensityemotion > 0.20

3. I am calm, sir.
∀emotion ∈ EM : intensityemotion ≤ 0.20

4. I am already relaxed, sir.
∀emotion ∈ EM : intensityemotion ≤ 0.20

State

The reason why an agent feels a certain way has already been discussed before, in
the most expressive version of the question “How do you feel?”. When explicitly
asked for the reason of a certain feeling, the agent may either answer that
question by naming a certain state or rejecting that question, depending on the
intensity of the emotion emotion asked for.

Note that it is only possible to explicitly blame one (“Your fault!”) if some-
one is actually to be blamed (blameworthiness = blameworthy).

1. I’m not feeling [emotion], sir.
intensityemotion ≤ 0.20

2. That’s personal, sir.
intensityemotion > 0.20 ∧ personality intensitydefensiveness > 0.75

3. Because of [state-pre] [influence] [status] [state-post], sir.
intensityemotion > 0.20 ∧ (¬∃r : responsible agentemotion = r ∨ 0.25 <
personality intensitydefensiveness ≤ 0.75∨(personality intensityterseness ≤
0.75∧ (blameworthiness = praiseworthy∨ emotion = hope∨ emotion =
joy)))

36 CHAPTER 5. DESIGN

4. The [state-pre] [influence] [status] [state-post], sir, that’s [responsible agent poss]
fault!
intensityemotion > 0.20 ∧ ∃r : responsible agentemotion = r ∧
personality intensitydefensiveness ≤ 0.25∧blameworthiness = blameworthy∧
¬(emotion = hope ∨ emotion = joy)

Responsible agent and blameworthiness

Although the question “Who’s responsible for [state]?” can be a logical part of
an emotion dialogue, it does not directly touch on the subject of emotion. For
the sake of time, this question therefore is left for the original MRE team to
implement.

The subject of the responsible agent has already been discussed above, but
there’s a small difference in the answer to the question “Who’s responsible for
making you feel [emotion]?”. The agent replies by naming the responsible agent,
which makes it not sound to use the same template fillings as in the section
above, because a pronoun is needed instead of a possessive pronoun.

It depends on the intensity of the emotion the responsible agent is involved
in whether the responsible agent is mentioned in the answer. If the intensity of
the emotion is less than the threshold, the agent does not actually consider the
emotion, so he replies negatively.

Since not all states have to have a responsible agent, if the intensity is greater
than the threshold, first it is checked if the responsible agent exists. If it does
not exist, the agent needs to reply accordingly.

1. I’m not [emotion], sir.
intensityemotion ≤ 0.20

2. I don’t know who is responsible, sir.
intensityemotion > 0.20 ∧ ¬∃r : responsible agentemotion = r

3. [Responsible agent], sir.
intensityemotion > 0.20 ∧ ∃r : responsible agentemotion = r ∧
(personality intensityterseness > 0.25∨blameworthiness = praiseworthy∨
emotion = hope ∨ emotion = joy)

4. That’s [responsible agent poss] fault, sir!
intensityemotion > 0.20 ∧ ∃r : responsible agentemotion = r ∧
personality intensityterseness ≤ 0.75∧blameworthiness = blameworthy∧
emotion �= hope ∧ emotion �= joy)

5.3.2 Pieces of objects

To be able to fill in the templates, the information provided by the system has
to be converted into usable pieces. The information deducted from the relevant
objects will be converted to natural language strings and stored in lookup tables
in the top state. In this subsection all the values for the different attributes are
presented. At this moment only one possible value is given. Because Soar has
the possibility of randomly picking an entry if more attributes with the same
name exist, it is possible to increase the number of translations, making the
answers of the agents more diverse and enhancing the use of natural language.

5.3. NATURAL LANGUAGE GENERATION 37

Emotions

Emotion Natural language string

anger angry

anxiety anxious

distress distressed

fear fearful

guilt guilty

hope hopeful

joy joyful

Table 5.2: Values for the nl-emotion attribute

The individual emotions are used in several templates. The translation to
natural language for the most important emotion is stored in the attribute
^nl-emotion. The translations are listed in table 5.2.

Intensity

Intensity i Natural language string

i ≤ 0.25 a little

0.25 < i ≤ 0.50 pretty

0.50 < i ≤ 0.75 really

0.75 < i very

Table 5.3: Values for the nl-intensity attribute

The intensity of the most important emotion is stored in the attribute
^nl-intensity in the top state. Translations are in table 5.3.

State

The translation of the states to natural language is split into two pieces, namely
^nl-state-pre and ^nl-state-post. This is necessary, since some templates
require certain words to be inserted between these two parts, like the verb in a
sentence and optionally a negational word (“not”). Both pieces of text for every
status are listed in table 5.8 on page 40.

Since it is only possible to have a conversation in English with the sergeant
and the medic, only the states for these two agents are transformed to natural
language.

Influence

Influence Natural language string

facilitator <nothing>
inhabitor not

Table 5.4: Values for the nl-influence attribute

38 CHAPTER 5. DESIGN

The type attribute of an appraisal (table 5.4) indicates whether the event
facilitates (helps) or inhibits (threatens) the appraised state. This information
is used to express if the emotion is about progress towards or the blocking of a
(un)desired state. In the second case, the word “not” is added, see table 5.4.

Status

Status Natural language string

confirmed being

unconfirmed going to be

Table 5.5: Values for the nl-status attribute

For every state, the attribute status annotates whether the state has already
happened (confirmed) or if it not yet has happened (unconfirmed). If the state
has not yet happened, the feelings of the agent are about the future, so the verb
of the output sentence should by altered to future tense in that case, as shown
in table 5.5.

Responsible agent

Responsible agent Natural language string

1sldr The first squad leader / Johnson

2sldr The second squad leader

3sldr The third squad leader

4sldr The fourth squad leader / Lopez

ambulance The ambulance

base The base

lt You are

medevac The medevac

medic† The medic / Tucci

mom† The mother

sgt† The sergeant

Table 5.6: Values for the nl-responsible agent attribute

Every state has a certain responsible agent and it’s possible the agent wants
to express this information in his utterance, especially when he feels angry about
someone messing something up. Both the pronoun nl-responsible agent and
the possessive pronoun nl-responsible agent poss of every agent are needed
(see subsection 5.3.1). The different values for the responsible agents are in
table 5.6 and table 5.7. These values have one exception: for the intelligent
agents in the system (marked with a †) respectively “my” and “I am” applies
for the value that is equal to themselves, i.e. for the sergeant, the value of sgt
will be “my” and “I am” instead of “the sergeant’s” and “The sergeant”.

5.4. OVERVIEW 39

Responsible agent Natural language string

1sldr first squad leader’s / Johnson’s

2sldr second squad leader’s

3sldr third squad leader’s

4sldr fourth squad leader’s / Lopez’s

ambulance the ambulance’s

base the base’s

lt your

medevac the medevac’s

medic† the medic’s / Tucci’s

mom† the mother’s

sgt† the sergeant’s

Table 5.7: Values for the nl-responsible agent poss attribute

5.4 Overview

An overview of the design is depicted in figure 5.1. The straight path (indicated
by bold lines) is normally taken with fully implemented questions and answers.
We will bypass both the NLU module and part of the NLG module, as described
earlier

✲ ✲ ✲

✲ ✲ ✲

✻

✻

speech
recognition

module

NLU
module

dialogue
code

reasoning
code

sentence
realization

speech string sem
question

answer
obligation

sem
answer

speech
act

keyword
scanning

templates

Figure 5.1: Dataflow user-agent emotional dialoge

5.5 Iteration

This section will discuss the encountered aspects during later phases, which led
to changes to the original design.

40 CHAPTER 5. DESIGN

State nl-state-pre nl-state-post

maintain-goodwill the goodwill of the crowd maintained

crowd-angry the crowd angry

boy-dead the boy dead

boy-healthy the boy healthy

minor-injuries the boy slightly injured

serious-injuries the boy seriously injured

critical-injuries the boy critically injured

driver-healthy the driver healthy

driver-minor-inj the driver slightly injured

mom-healthy the mother healthy

know-boy-health the health of the boy known

sqds-in-transit the squads in transit to the assembly area

lt-in-transit the lieutenant in transit to the assembly area

lt-at-aa the lieutenant at the assembly area

lt-at-celic the lieutenant at Celic

sgt-at-aa the sergeant at the assembly area

medic-at-aa the medic at the assembly area

at-boy-aa the boy at the assembly area

mom-at-aa the mother at the assembly area

1st-sqd-at-aa the first squad at the assembly area

1st-sqd-at-celic the first squad at Celic

1st-sqd-at-lz the first squad at the landing zone

(same for 2nd, 3rd and 4th)

1st-sqd-in-transit the first squad in transit to the assembly area

4th-sqd-in-transit the fourth squad in transit to the assembly area

at-boy-hospital the boy at the hospital

mom-in-intersect the mother at the intersection

sqd-in-intersect the squad at the intersection

medevac-at-aa the medevac at the assembly area

medevac-at-base the medevac at the base

medevac-called the medevac called for

medevac-overhead the medevac overhead

amb-at-aa the ambulance at the assembly area

amb-at-base the ambulance at the base

ambulance-called the ambulance called for

secure-route the route to Celic secured

aa-secure the assembly area secured

accident-secure the accident site secured

12-to-4-secure the assembly area partly secured

4-to-8-secure the assembly area partly secured

8-to-12-secure the assembly area partly secured

lz-secure the landing zone secured

lz-marked the landing zone marked by green smoke

lz-clear the landing zone cleared of civilians

support-1-6 our team active supporting Eagle 2-6

retain-mass our team together

fracture-unit our team split up

1-6-at-celic our team at Celic

hospital-at-tuzla the hospital at Tuzla

Table 5.8: Values for the nl-state-pre and the nl-state-post attributes

5.5. ITERATION 41

5.5.1 Keyword scanning

As noted in chapter 4.3, certain changes were made to the speech acts. A list of
speech acts which were implemented can be found in appendix A. Some of these
speech acts were not detected properly when using the keywords in section 5.2.
As a result, different keywords are used in the actual implementation and the
absence of keywords is also checked. The Soar code of language-emia.soar in
appendix B shows the implemented keywords.

During the design we weren’t aware of the fact that a lexicon already existed.
This lexicon already contained most of the synonyms needed, so it was extended
with some additional entries, like the emotion synonyms. The boolean functions
for detecting states caused some problems, as these are hard to implement in a
static Soar look-up table. This will be discussed in section 6.3.

During the implementation it became clear that the formal semantics didn’t
lead to the expected results if the type attribute within the properties of the
semantics wasn’t set. Also, we learned that although not really necessary for
our purposes, it is good practise to include an object-id. Therefore all semantics
were extended with ^type state and ^object <self>.

It is noted that the use of the state attributes, like max-feeling, as the value
for the semantic ^attribute, will in most cases restrict the matching states for
answering a question to one. A more sophisticated mechanism could lead to
more complicated answers. More on this subject in the next chapter.

5.5.2 Templates

During implementation, it became clear that the design of the templates did
not fulfill our demands in terms of how natural their output was. Even though
they looked good on paper, in discussion with the agents the sentences seemed
artificial. To enhance the quality of the sentences, the following changes have
been made:

1. The values for the status and the influence attribute are linked together
to choose an output utterance, instead of them individually selecting tem-
plate fillings. The design in table 5.9 is now used, instead of the one in
tables 5.4 and 5.5.

2. The templates that included causality have been modified: the part of
sentences that read “. . . because of [state-pre] [influence] [status] [state-
post] . . . ” have been changed to “. . . because [state-pre] [influence-status]
[state-post] . . . ”, [influence-status] being the value found in table 5.9.

Influence Status Natural language string

facilitator confirmed is

inhabitor confirmed is not

facilitator unconfirmed will probably be

inhabitor unconfirmed probably won’t be

Table 5.9: Values for the nl-influence-status attribute

Furthermore, some changes were made in the way an utterance is exactly
phrased. For instance, the agent now answers a question about the boy or driver

42 CHAPTER 5. DESIGN

with “I’m worried about him.”, rather than “I’m worried about it.”. In some
cases these alterations lead to incorrect English, but we’ve chosen to give priority
to natural and correct language for most cases and small discrepancies for others
over correct but innatural language for all cases. All types of speech acts can
be seen in appendix A, the exact implementation can be seen in appendix B.

Chapter 6

Implementation

6.1 Introduction

This chapter shows how the design in the last chapter was implemented, using
Soar and TCL. It discusses aspects of both implementation and testing which
led to problems or certain insights. The first section is about emotion states.
Natural language understanding and generation will be discussed in subsequent
sections. All the Soar and TCL code can be found in appendix B.

6.2 Emotion states

The emotion state max-feeling is created, using the ^max attribute of the
input-link, which can be found in io.input-link on the top state. The seven
feeling states are created by taking the aggregate intensity out of the input-
link and letting the polarity depend on this intensity and the designed thresh-
old. For every responsible-for-[emotion] (e.g. responsible-for-anger

and responsible-for-hope) an individual rule is implemented, which depends
in the left-hand-side on the existence of a feeling emotion state with positive
polarity: if the agent does not feel a certain emotion, there cannot be a re-
sponsible agent for that emotion. Finally, the on-the-fly feeling-about-state

emotion state is elaborated if the right operator is in effect (output-speech)
and there actually exists a significant appraisal about that state (significance
is implemented by a small threshold on the intensity of an appraisal). If one
or more significant appraisals do exist, the appraisal with the highest inten-
sity is chosen and the emotion of that appraisal is taken as the value for the
feeling-about-state state.

Causality for max-feeling and feeling emotion states is added after the
elaboration of the states. For every emotion, the appraisal objects are scanned
for the object with the highest intensity. A link to the appraisal object is saved in
the ^source attribute, while the appraised state is saved in the cause attribute.

One last rule adds the simulation object to the feeling-about-state emo-
tion state. A simulation object is the name of one of the objects in the virtual
world, which for example can be used to have agents gaze at that object. Unfor-
tunately, the names of these object do not equal the names in the Soar system,
so they have to be added explicitly.

43

44 CHAPTER 6. IMPLEMENTATION

6.3 Natural language understanding

The basis of the natural language understanding part is formed by a type of Soar
rule that maps a certain question related to emotions to the right semantics.
For the left-hand side of this rule, two things are important. First, how to
detect the right sentences, and second, how to map natural language to the the
formal representation of emotions and states. For detecting the right sentences,
keywords are used as described in section 5.2. In order to avoid ambiguity we
use both words that must be present and those that must be absent. This makes
it possible to distinct between “How do you feel?” and “How do you feel about
[state]?” when the question “How do you feel about the boy being injured?” is
uttered.

For mapping natural language to the formal representation both the existing
lexicon and new code is used. The lexicon is expanded with emotions so, for
instance, both “angry” and “anger” are mapped to the internal representation
|Anger|. The implementation of state detection caused a bit of a problem, as
boolean functions like in table 5.8 are hard to represent in a static Soar structure.
A Soar rule for every state would be a solution, mapping certain words directly
to the appropiate state, but this is of course very labour extensive, hard to
maintain and also not very neat. The existing lexicon is therefore extended with
a list of all the states and all the words which map to a certain state. Figure 6.2
shows part of this list. The problem now is that one single word already leads
to a state and in cases like “boy” to multiple states. Therefore three Soar rules
were made, which would scan for either one, two or three keywords which could
lead to a state. When all posibilities are found, a Soar rule will select the one
with the highest priority, i.e. the most keywords (the most detailed description).
The selection of which keywords are needed for a certain state is now somewhat
restricted, as in no situation a lower priority match is to be better than than a
higher priority match. Originally, when more than one candidate with the same
priority was present, the system would randomly choose one. During testing
it was noticed, that this often resulted in unnatural situations where the agent
dismissed the question as not being important, while it cleary was. This is
particulary true for the question “How do you feel about the boy?” which leads
to eight possible states, of which only two are relevant. Now, all the states that
don’t lead to an emotion with a certain intensity are discarded and a random
choice between all remaining candidates is made. The randomization should
make conversation more dynamic, as opposed to always selecting the one with
the highest assiociated emotion. As there is already a threshold implemented
for linking emotions to states, these random answers should be sensible. It is
noted that this selection mechanism is performed on the understanding side,
rather than the generation side. More about this at the end of this section.

As Soar computes all possibilities of how certain keywords lead to states, it
can be rather processor intensive. When a question contains three keywords,
for instance, it not only finds the states which can be reached with these three
words, but also all possiblities of how to reach states with one and two words.
For now the impact doesn’t seem to be too big, but if it turns out that these
rules take relatively too much processor time, one could alter the mechanism a
bit by putting a counter on the top state which holds track of the number of
keywords needed in order to find the right state. It can be set to three at first
in order to find all states for three found keywords. If no results show, it will

6.3. NATURAL LANGUAGE UNDERSTANDING 45

be set to two, so all results with two keywords can be found. This will ensure
that no time is wasted on finding states with a lower priority then necessary.

The right-hand side of the basic Soar rule is a rather straight forward im-
plementation of the design given in section 5.2, with a few exceptions. First of
all, a priority attribute and an attribute emotion-semantics were added. This
provides an opportunity to gather all possible semantics for the emotion ques-
tion and select an appropiate one. After that, the emotion semantics is given a
higher preference than the semantics found by the NLU, as this for now delivers
only garbage. In order to get the right state name when asking about respon-
siblity (for instance responsible-for-anger) a TCL rule is used, as Soar isn’t
particularly good with strings.

sp {top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-state*two

(state <s> ^name top-state

^operator <o>

^lexicon <lexicon>)

(<o> ^name understand-speech

^speech-input <si>)

(<si> ^interpretation <i>)

(<i> ^token.lex << feel feeling think >>

^token.lex << about of >>

^token.lex <word1>

^token.lex {<word2> <> <word1>})

(<lexicon> ^{<domain1> <> states <> emotion-responsibility-states}.<word-int1> <word1>

^{<domain2> <> states <> emotion-responsibility-states}.<word-int2> <word2>

^states.<state> <word-int1>

^states.<state> <word-int2>)

-->

(<i> ^mood question

^emotion-semantics <sem> + &)

(<sem> ^type question

^q-slot value

^priority 2

^prop <sem1>)

(<sem1> ^attribute feeling-about-state

^cause <state>

^type state)}

Figure 6.1: Soar rule which maps the utterance “How do you feel about [state]?”
to the proper semantics

The original lexicon is divided into different types of entries, like attributes,
values and actions. This is extended with states, emotions, emotion-

responsiblity-states and misc. Part of the extension of the lexicon can
be seen in figure 6.2. Of particular interest is the states entry. Every state
is followed by all the words which define the state. Unfortunately, not all the
naming conventions are consistent within MRE, so some percularities do arise.
The phrase minor-injuries, for instance, is used both as a value and a state.
The original lexicon maps several words to the value minor-injuries, which
in our code is then used to detect the state minor-injuries. Furthermore, the
same word can lead to different synonyms (for instance the word “secure” can

46 CHAPTER 6. IMPLEMENTATION

lead to the attribute safety, the value secure and the action secure). This
can lead to variation in state detection, as no further criteria for selecting a
particular synonym is used. Excluding the actions entry in the search is a first
step in resolving such ambiguities, but it is noted that additional mechanisms
might be needed when extending the lexicon.

sp {top-state*elaborate*state*add-lexicon-entries*emotions

(state <s> ^name top-state

^agent-name << sgt medic director >>

^lexicon <lexicon>)

-->

(<lexicon> ^states <states>

^emotions <emotions>

^emotion-responsibility-states <emotion-responsibility-states>

^misc <misc>)

(<states> ^maintain-goodwill crowd + &, goodwill + &

^crowd-angry crowd + &, |Anger| + &

^boy-dead boy + &, dead + &

^boy-healthy boy + &, healthy + &

^minor-injuries minor-injuries + &, injuries + &, boy + &

^serious-injuries serious-injuries + &, injuries + &, boy + &

^critical-injuries critical-injuries + &, injuries + &, boy + &

^driver-healthy driver + &, healthy + &

^driver-minor-inj driver + &, minor-injuries + &, injuries + &

^mother-healthy mom + &, healthy + &

^know-boy-health boy + &, healthy + &, known + &

^sqds-in-transit squads + &, transit + &

^lt-in-transit lt + &, transit + &

^lt-at-aa lt + &, aa + &

^lt-at-celic lt + &, celic + &

....)}

Figure 6.2: Soar rule which extends the lexicon with states

An issue already briefly pointed out in subsection 5.5.1 is the fact that the
emotion code is rather restrictive on the understanding side. All current se-
mantics take the emotion state attribute, like max-feeling, as the attribute
value. This will in most cases result in only one matching emotion state (refer-
ence) for answering a question later on in the generation side, as described in
subsection 4.4.2. In other words, selecting the state to use for an appropiate
answer to a certain question is now done within the language understanding
side, as opposed to the generation side. Future work could be focused on a
more sophisticated answering mechanism, closer to the ones now used within
MRE. One could think of losing the max-feeling state and when receiving
the question “How do you feel?” creating semantics like ^attribute feeling

^object-id <self> ^q-slot value. This will result in the generation of a set
of references to all the feeling states, after which a complicated answer like
“I’m feeling both worried and hopeful about the boy” is possible. One could
also use intermediate attributes. An example of how this is done, is the use of
the attribute health-status, which is mapped to all possible states concern-
ing health, like boy-dead or driver-minor-inj. Due to lack of time, it was

6.4. NATURAL LANGUAGE GENERATION 47

not possible to make fully use of referencing. The current implementation does
contain the foundations for further work, though. Note that state referencing
can also be used for making references within a conversation, like asking “How
do you feel about him?”.

An example of a keyword mapping Soar rule can be found in figure 6.1. The
rule searches for a couple of words used in asking a question like “How do you feel
about [state]?” and two words which could lead to a state. These two words are
mapped to the internal representation word-int, so for instance “kid” becomes
boy. The two standardized words together lead to a certain state, for instance
boy and healthy lead to the state boy-healthy. Initially, all entries were
searched, which lead to problems during testing. Therefore, next to the already
mentioned actions entry, the state and emotion-responsibility-states

entries are excluded from the search, as these are ment for a final rather than
intermediate result. All possibilities are added as an emotion-semantics at-
tribute to the interpretation attribute. Certain Soar rules will select one
emotion-semantics as the semantics that will continue the rest of the flow
within the system.

6.4 Natural language generation

For the natural language generation part both Soar and TCL are used. The
Soar rules detect the agent’s intention to utter something and the particular
rule that fires will gather all the necessary information needed to generate an
output. This information is given to a TCL script which returns the utterance.

The left-hand side of a Soar rule first tries to detect a certain intention to say
something. When implementation started the comgoal within the output-speech
operator was used, but it turned out that it’s structure would change, according
to whether the agent would want to make an assertion or an answer. Conse-
quently, the goal attribute is used instead. Recall from subsection 4.4.2 that
the goal can be seen as the “why” and the communicative goal as that “what”
in answering a question. Early during the implementation phase the decision of
which emotion state to use was made by looking at the semantics of the original
question, stored in goal. Later, it was learned that existing mechanisms within
the MRE system automatically generate reference states for every state that
can be used to answer the question (with the exception of questions for which
on the fly states are used). These references are now used, but as explained in
section 6.3 the mechanism is not used to it’s full potentional.

Depending on the type of question and answer, certain information is needed
in order to construct that answer. There are several places from where that
information is gathered. All natural language is found in the look-up table
emia-template-filling. The different strings of language are stored in at-
tributes per category, as described in section 5.3.2. For the intensity, both the
lower and the upper bound are stored, making it possible for other code to check
on both. The agent-dependent template fillings for the responsible agent are
added in seperate rules, because the agent’s name has to be checked here. For
the selection of the right words, information from the emotion and regular states
is used. Personality information is taken from io.input-link. In the case a
cause or responsible agent could be either present or absent, all possibilities
are checked and the one with the highest information value receives the highest

48 CHAPTER 6. IMPLEMENTATION

priority.
The right-hand side produces a surface attribute which holds the answer as

a value. An existing process will make sure this surface value will be spoken by
the agent. In order to differentiate between certain surfaces, a priority system
is used in some cases. This makes it possible to select a surface, before giving
it a certain Soar preference. This priority system was introduced, because the
why-questions originally interfered with the existing MRE code.

The value for the surface is generated by a template in TCL. All the nec-
essary information is provided by Soar to TCL as parameters. Based on these
parameters it selects a certain template alternative, as discussed in section 5.3.1.
During implementation it was decided that the answer would be deterministic
for the sake of time.

Chapter 7

Testing

7.1 Introduction

This chapter describes the testing phase of the assignment. The combined unit
and integrations tests can be found in section 7.2. User tests will be discussed in
section 7.3. These sections will only discuss how the tests were being performed
and what the results are. All the test plans can be found in appendix C.

7.2 Unit and integration tests

7.2.1 Method

Unit testing is about testing the smallest unit of the software, in this case the
Soar rule. Integration testing tests if the implemented software works correctly
together. These tests are combined, because the smallest testable unit is the
Soar rule, but certain rules depend on other rules.

The tests executed are white-box, in a sense that every Soar rule is added
individually and is checked for it’s results by looking at the created WME’s in
the Soar system. For integration testing the use-based testing method is used:
in the first phase the Soar rules that do not depend on other rules (independent
rules) but the original code are tested. The rules tested in the second phase
only depend on rules in the first phase, rules tested in the third phase depend
on rules in the first two phases, and so forth. The rules in Phase 5 produce
the final output and will therefore be tested as a black-box, i.e. we look at the
actual outcome, rather than any internal values. The testing environment is the
initialized agent for the sergeant character (vital information, for some code is
agent-dependant). The original MRE code is assumed correct.

7.2.2 Results

The tests resulted in a couple of issues. For minor ones like spelling errors within
templates we point to the appendix. Others will be discussed here.

In general, it showed that the emotion code is often in battle with the existing
code, as the NLU cannot dynamically be shut down. A rule was added which
states that if there are more speech acts, the one generated by the emotion code

49

50 CHAPTER 7. TESTING

is preferred. Furthermore, our “Why do you feel [emotion]?” question interfered
with the generic why-question, causing unexpected answers. This was due to
the fact that for this particular question three Soar rules existed, all with a
different preference. When the rule with the lowest preference was selected as
a candidate by the system, it was always competing with existing rules which
also had the lowest preference. In order to avoid these situations, priorities
for surfaces were introduced which will first select the appropiate emotion rule,
after which the selected rule receives a preference high enough not to interfere
with existing rules.

The use of the existing follow-up why-question led to some problems too.
Most of the time, a proper answer wouldn’t come up and if it did, it was always
constructed in the present tense, even if the state was to happen in the future.
The first issue was due the way the code behind the why-question was getting
the proper information and, again, the fact that two process race each other.
The system would copy information neede for answering the why-question as
soon as it was ready, not noticing that that information could be rewritten by
another process later on. This will be taken care of by the MRE team, and
should also fix a small bug where the agent sometimes utters “nothing” next
to the answer about a world state. The tense issue required some work in the
NLG module by the MRE team, and an additional Soar in the emotion code
setting a time attribute to future where necessary. It is noted that the follow-up
why-question cannot be used in combination with the on-the-fly states.

A problem with the feeling and max-feeling emotion states arose when
more sources with equal intensity were available. To repair the fact that the
source object associated with the causality (cause) was not properly created,
an extra Soar rule has been added. The rule creates only the source attribute
for an emotion state, picking one randomly if more options are available. The
original rule has been altered so that if a source attribute exists, this object is
used to add the cause attribute.

State detection didn’t always go according to plan. This is due to how the
original lexicon was set up, namely diveded into various entries. As several en-
tries must be used by the emotion code in order to find the necessary synonyms,
the code scans all the entries in the lexicon. By adding a specific states entry,
this too is included in the search and so “boy” can lead to “minor-injuries” and
from there either to the state minor-injuries or driver-minor-inj. To avoid
these situations these rules has been changed, so it will exclude the states

entry. Also, the emotion-responsibility-states and actions entries are ex-
cluded as these led to conflicts and ambiguities when using emotions for state
detection.

Two bugs remain unsolved. The first one is that when emotion states are
being updated during answering an emotion question, the agent won’t be able
to answer properly. This is due to the design of how the emotion states are
created in combination with the use of references. When a question is received,
references to states are produced, which will be used later on in the generation
side. In the time between creating the references and using them, the states
can be recreated, though, in order to match a new situation. This results in
invalid references. In order to adress this problem, the emotion states should be
created only once (O-support) and be updated by additional rules (I-support).
A second problem arises as a result of a bug within the original MRE code.
It came to light that the Terseness attribute isn’t always present, due to an

7.3. USER TESTS 51

impasse during initialization. As this attribute is needed for determining the
template alternative, it’s absence will cause the agent to fail generating a proper
answer. The impasse is rare, though, and is beyond our abilities to fix.

7.3 User tests

For now, the emotion dialogue isn’t meant for real use by army cadets, but
rather as a feature for demonstrating the underlying emotional model of the
agents. We therefore handled the user test quite informally. A user was given
the possibility to ’play’ with the system. We would observe the user, on what
questions he asked, which phrasing he used and whether he found the answers
sufficient and natural. Afterwards, our observations were discussed with the
user. A total of three users participated in a user test.

7.3.1 User 1

During the first user test a couple of things came to light. Firt of all, the user
asked a couple of questions which weren’t covered by our code. These can be
split up in questions which we do cover but use different phrasing for:

• How is it going?

• What’s on your mind?

• How are you feeling?

• Who are you mad at?

• What are you worried about?

and sentences which semantics aren’t covered:

• You don’t look calm.

• Why are you mad at the mother?

• Why else? (follow up question)

• Are you feeling OK?

• Are you feeling bad?

We decided to implement the first type, as this would enhance the usability
and required little effort. The second type of question would either require
new states or advanced use of references. For instance, the last two questions
would require designing a state dividing all emotions in good and bad ones. The
second question requires states concerning emotions towards other agents. As
these type of questions weren’t covered in the initial analysis and design and
would take quite some effort to implement and test, we decided not to implement
these type of questions.

After this user test we mapped the word “sad” to Distress and “mad” to
anger.

52 CHAPTER 7. TESTING

7.3.2 User 2

Most issues in the first user test were addressed for our second user test. Again
the fact that references to earlier conversation parts are not possible was re-
marked. Furthermore, it became apparent that users can ask question negation
wise, as in “Why are you not afraid?” We will save this type of questions for
further research.

7.3.3 User 3

Again, the lack of context was noted. The user, not familiar with the MRE
system, furthermore expected the emotions to be associated directly to certain
personas rather than to states associated with personas. This, of course, is
something dictated by the original MRE system, but could be an interesting
point of discussion. As in the first user test, some types of questions were asked
which are not covered, like “Why does the medic make you hopeful?”, “Are you
anxious about the boy?” and “Does the medic bring joy?”. Again, we leave
these for further research. Finally, the synonym “scared” was used and has been
added to the lexicon.

Chapter 8

Conclusion

Recall from chapter 3 that the goal of this assignment was to make a scenario-
independent implementation of an emotion dialogue, where agents can:

• understand user’s utterances concerning emotions;

• use existing knowledge of their emotional state to express themselves; and

• express themselves using natural language.

These requirements were met: a user can ask a range of emotion related ques-
tions and receive answers to these questions, all in natural language. During
the implementation, various limitations were encountered, creating opportuni-
ties for further research and fine-tuning – these recommendation can be found
in chapter 9. This chapter concludes the assignment by looking at the different
segments of the final implementation.

Knowledge about the emotions is made available by creating emotion states.
The information needed for the analyzed questions are filtered out of the existing
appraisals and structured into states with a conventional structure; the creation
is scenario-independent. The translations of this information into strings of
natural language is stored in look-up tables.

By preparing the necessary information in this way, some information is lost.
For instance, the emotion state for a feeling, say Distress, only has the state
it is most distressed about as a cause; all states an agent feels less distressed
about are ignored. This can lead to odd conversations like:

“How do you feel about the driver?”
–“I’m worried about him, sir.”
“Why are you worried?”
–“I’m worried, because the boy has critical injuries.”

Because of limitations of the original natural language understanding mod-
ule, a new design involving keywords has been implemented. The number of
keywords per question was kept at a minimum to be as little restrictive as
possible. After scanning, the most complete mapping is translated into seman-
tics compliant to the system’s conventions. In this way, the emotion code still
utilizes the available language reasoning model.

53

54 CHAPTER 8. CONCLUSION

A limitation using keywords is the fact that subtleties are hard to detect.
For instance, negation-wise questions like “Why are you not happy?” would
require to duplicate all existing rules. In addition, in order to be deterministic
in detecting the correct questions, the number of keyword increases rapidly when
increasing the number of questions.

For the language generation a system using templates has been designed,
since the original NLG was too domain-specific to use. The choice of templates
depends on various variables supplied by the agent. The templates are filled
with the strings of natural language in the look-up tables mentioned earlier.

Unfortunately, a system using templates is very domain-specific, too. In
order to provide the agent with the ability to utter various types of utterances
in a natural way, a lot of templates are needed. We’ve chosen to give priority to
natural and correct language for most cases and small discrepancies for others
over correct but innatural language for all cases.

In order to use keyword scanning and templates in other scenario’s a little
effort is required. On the understanding side the new states must be made
known, i.e. for every state certain keywords that detect that state must be
given. For generating language concerning these new states, verbal references
must be made known, i.e. for every state some strings of natural language must
be given to use when referring to a certain state in an utterance.

During the assignment, some interesting points concerning emotion dialogue
came to attention. A discussion was started about how to blend emotion di-
alogue naturally into existing dialogue. This discussion can be split into two
main topics:

• How do humans in general use emotions in conversations?

• If and in what way is emotion dialogue used within an army environment?

The first question leads to aspects like the relation one has with its conver-
sational partner, one’s personality and one’s coping strategies used. One could
think of using emotions as a threshold to bring up certain conversational topics
or using coping strategies for selecting an answer; denial, for instance, might
then trigger a factual false, but emotional true answer. As for the use of emo-
tion dialogue in the army, one could think of debriefing situations, or media
training.

A major part in integrating emotion utterances in the dialogue is to make
use of the dialogue context, like asking “How do you feel about that?”. The
reference system should be fully implemented for this.

A point of interest too, can be appraising emotion states. That would result
in the agent being aware of his own emotions and react accordingly. Currently,
the emotion code does alter the emotion intensity somewhat, but not much
attention has been given to this aspect.

All in all, a lot of work remains to be done. Still, this assignment was worth-
while. The current result can be used for demonstrating the agent’s emotions
in a natural way and can, with a little effort, be extended to other scenarios.
Also, it resulted in valuable insights for further work, of which an overview can
be seen in the next chapter.

Chapter 9

Recommendations

A couple of aspects can be pointed out for future work:

Make full use of references. References are used to gather all states which
could be used for answering a question. A decision mechanism then uses
these states to come up with an aswer by, for instance, using one or more
states information sources, or by deciding more information is needed in
order to answer the question correctly. References can be used to create
context (“How do you feel about him?” will come up with all the possible
references for “him”) and to create more sophisticated answers (“How do
you feel?” will come up with all the matching feelings after which one
or combination of these can be selected). In the original MRE system
references are used for a couple of different types, like states and events.
Using it for emotions would require designing and implementing a new
type. Also, it would require to redesign and extend the number of emotion
states in order to have a larger set for references.

Use coping strategies for generating agent’s utterances. The emotion code
currently always delivers an answer which is true. Of course, real people
are often lying bastards. This can be realized for agents by using coping
strategies for generating answers. For instance, when an agent uses a de-
nial strategy when angry and is being confronted with “You seem angry...”
it could reply with the opposite of the truth like “I am NOT angry!”. For
other emotions it could trigger empathatic reactions or problem solving
reactions.

Use focus mechanisms for generating agent’s utterances. In order to gen-
erate emotional verbal expressions the existing focus mechanism could be
used. When for instance the dialogue involves the boy, this could trigger
the agent in saying he is worried about the boy or suggesting appropiate
action.

Extend known utterances. The known utterances could be extended with
a couple of new ones, like “Why are you mad at the mother?”. This
would require new natural language understanding and generation code,
and new states. For this particular question, one could think of designing
new states, which for every person holds reasons why a particular emotion

55

56 CHAPTER 9. RECOMMENDATIONS

is directed towards that individual. One could also think of extending the
semantics, so it would be possible to dig deeper in the already known
information. Then, instead of looking at the cause attribute for finding
the cause of an emotion, one could check if that cause involves a certain
individual. Other possible utterances are “Are you okay?”, “How angry
are you?”, “Do you like the medic?” and “Why are you not happy?”

Use NLU and NLG module. Keyword scanning and templates can be used
when aiming for a small and known set of utterances. When increasing
the utterances, more and more effort goes into proper keyword detection
and templating. It is therefore recommended to switch to a more generic
approach, like the already existing NLU and NLG module. If that is not
possible, it is recommended to use more parameters for template selection,
like personality or coping traits, gender of subject and verb type. This will
make an agent’s utterances more dynamic and natural. Special attention
could be given to include army hierarchy within a conversation.

Use emotion dialogue and states to influence emotions. Emotions are in-
fluenced by a lot of parameters, including emotions itself. In terms of the
MRE system, emotions should be able to trigger an emotional change both
internally and externally. Changes could be the results from the internal
process of appraisal, requiring rules how to appraise a certain emotional
state. As people are not always aware of their emotions, agents too should
not be appraising their own emotional state all the time. Rather, certain
conditions could lead to this, like reaching a critical intensity of a certain
emotion. Secondly, talking about emotions could be a trigger to change
one’s emotion, as emotional dialogue forces people to examine their emo-
tions, thus making them explicit. Both methods would result in either
intensifying or soothing a certain emotion.

Fix known bugs. Two bugs remain unsolved. The first one is that when emo-
tions states are being updated during answering an emotion question, the
agent won’t be able to answer properly. This is due to the design of how
the emotion states are created in combination with the use of references.
When a question is received, references to states are produced, which will
be used later on in the generation side. In the time between creating the
references and using them, the states can be recreated, though, in order
to match a new situation. This results in invalid references. In order
to adress this problem, the emotion states should be created only once
(O-support) and be updated by additional rules (I-support). A second
problem arises as a result of a bug within the original MRE code. It came
to light that in rare cases the Terseness attribute isn’t present, due to an
impasse during initialization. As this attribute is needed for determining
the template alternative, it’s absence will cause the agent to fail generating
a proper answer.

Appendix A

Speech acts

This appendix summarizes the type of speech acts which are currently covered by
the emotion code. As question recognition relies on detecting certain keywords,
only part of all possible questions will be mentioned. The answers too form only
a subset of the possible answers; the actual answers depend on the state of the
agent. Details can be found in the Soar and TCL code in appendix B.

It is noted that when engaging in emotion dialogue, the dialogue will be
most interesting when the terseness value is high. The agent will then answer
in a short manner, making follow up questions possible. Also, it is noted that
when typing questions, one should restrict to lower case characters only.

The last section of this appendix shows the synonyms used for the emotions.

A.1 Emotion type

A.1.1 Class 1

Questions:

• How are you?

• How is it going?

• How do you feel?

• What’s wrong?

Answers:

• I’m feeling pretty hopeful.

• I’m feeling pretty hopeful, because the boy will probably be treated at the
hospital.

• I’m fine, sir.

57

58 APPENDIX A. SPEECH ACTS

A.1.2 Class 2

Questions:

• Do you feel angry?

• Are you worried?

• You seem distressed.

Answers:

• Not at all, sir.

• Yes, sir.

• Quite a bit, sir.

• Yes, sir, because the boy has critical injuries.

A.1.3 Class 3

Questions:

• How do you feel about the boy

• What do you think of the boy being injured?

• How are you feeling about our team splitting up?

Answers:

• I’m feeling worried about him, sir.

• I’m feeling angry about it, sir.

A.2 Intensity

Questions:

• Calm down, you maniac!

• Relax, dude.

Answers:

• Will do, sir.

• I am calm, sir.

A.3. EMOTION STATE 59

A.3 Emotion state

Questions:

• Why are you worried?

• Why do you feel hopeful?

• What’s causing you to be sad?

Answers:

• I’m not feeling angry, sir.

• That’s personal, sir.

• Our team will probably split up, that’s your fault, sir.

• The boy has critical injuries, sir.

A.4 Emotion responsibility

Questions:

• Who’s responsible for making you feel angry?

• Who are you mad at?

• Who makes you feel sad?

• Towards whom do you feel guilty?

Answers:

• I’m not feeling angry, sir.

• That is Tucci’s fault, sir.

• Lopez, sir

• No one in particular, sir.

A.5 Emotion synonyms

Natural language input Natural language output

anger, angry, annoyed, pissed, mad angry

anxiety, anxious anxious

distress, distressed, upset, disturbed, troubled

worried, concerned, sad worried

fear, fearful, afraid, frightened, stressed

pessimistic, scared afraid

guilt, guilty guilty

hope, hopeful, optimistic hopeful

joy, joyful, exited, happy joyful

60 APPENDIX A. SPEECH ACTS

Appendix B

Soar and TCL code

This sections contains the Soar and TCL code for this assignment. Every file
has “emia” (EMotion InterAction) in it’s name as a recognition tag. These files
can be found on http://mullert.adsl.utwente.nl/ stage/soarcode.

B.1 Emotion-states-emia.soar

Copyright 2003 Arno Hartholt |Tijmen Joppe Muller
Institute for Creative Technologies
##
###
File : emotion-states-emia.soar
Original author(s): Tijmen Joppe Muller (tijmen@avpec1910.nl)
Arno Hartholt (d.o.a.hartholt@student.utwente.nl)
Supervisor : Jonathan Gratch (gratch@ict.usc.edu)
Organization : Institute for Creative Technologies
Created on : November 13, 2003
Last Modified By : Arno Hartholt
Soar Version : 7
Documentation : Interaction on emotions
(http://mullert.adsl.utwente.nl/~stage/reports/emia.pdf)
###___
HISTORY
###
11-13-03 [TJM] Document created, initialization section added.
11-17-03 [TJM] Rules top-ps*emia*elaborate*emotion-state*max-feeling and
-*feeling added.
11-18-03 [TJM] Rules top-ps*emia*emotion-state*add*causality and
-*to*negated added.
11-19-03 [TJM] Rules top-ps*emia*elaborate*emotion-state*responsible-for-
feeling added
11-25-03 [TJM] Rule top-ps*emia*emotion-state*feeling-about-state*add*
sim-object
12-04-03 [TJM] Rule top-ps*emia*emotion-state*add*fake*causality
Changes in the lookup-table (influence-status)
12-16-03 [AH] Initialization section moved to language-emia.soar
12-19-03 [AH] Changed rules top-ps*emia*emotion-state*add*cause and
top-state*emia*emotion-state*feeling-about-state so cause
is set tothe actual objects instead of only the names
###___
USE
###
Implements natural language understanding and generation, using emotion states

61

62 APPENDIX B. SOAR AND TCL CODE

and templates.
###___
ISSUES
###
At this moment, the causality relationship has only a single value, which
seems not right, since a feeling (i.e. anger) can have more than one reason.
As a result, the simulation object also has a single value.
###
For the cause attribute the state that has the most effect on a certain
emotion is taken as the value. This should be done in a better way, i.e.
if state A had 0.50 effect on the anger emotion and state B has 0.49 effect,
it doesn’t seem right to neglect state B completely. Possibly calculation
of probability should be used.
###___
KNOWN BUGS
###
###___
LIMITATIONS
###
###___
EXTERNAL REFERENCES
###
Used in combination with language-emia.soar and lexicon-emia.soar
###___
TO DO
###
###___
SUMMARY
###
###
##

echo "\nLoading emotion-states-emia.soar\n"

##
Emotion states
~~~~~~~~~~~~~~

Create the emotion states for the most important feeling. The second emotion
state is just the negation of the first.

sp {top-ps*emia*elaborate*emotion-state*max-feeling
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state
^io.input-link.self.max <maxfeeling>)

-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute max-feeling
^belief true
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <maxfeeling>)
(<nes2> ^attribute max-feeling
^belief false

B.1. EMOTION-STATES-EMIA.SOAR 63

^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <maxfeeling>)}

Create a feeling state for every emotion. If the intensity of the emotion
is greater or equal to 0.2, the agent beliefs he feels that emotion (which
means the polarity attribute has value ’positive’), if
smaller than 0.2 he does not.

sp {top-ps*emia*elaborate*emotion-state*feeling*true
(state <s> ^agent-name <name>

^appraisals.types.type <emotion>
^current-state <cs>
^name top-state
^io.input-link.self <self>)

(<self> ^<emotion> {<intensity> >= 0.2})
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute feeling
^belief true
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <emotion>)
(<nes2> ^attribute feeling
^belief false
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <emotion>)}

sp {top-ps*emia*elaborate*emotion-state*feeling*false
(state <s> ^agent-name <name>

^appraisals.types.type <emotion>
^current-state <cs>
^name top-state
^io.input-link.self <self>)

(<self> ^<emotion> {<intensity> < 0.2})
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute feeling
^belief true
^id <new-emotion-state1>

64 APPENDIX B. SOAR AND TCL CODE

^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity negative
^satisfied true
^type state
^value <emotion>)
(<nes2> ^attribute feeling
^belief false
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity positive
^satisfied false
^type state
^value <emotion>)}

Add the ’cause’ attribute to the ’feeling’ and ’max-feeling’ emotion states.
This is done only if the agent actually feels the emotion, i.e. polarity
is positive and belief is true.
The rule checks for the appraisal that has the biggest influence on a
emotion and places a link to the appropriate state in the emotion state.
The appraisal that is the source is saved in the attribute with the same
name. If two appraisal frames have the exact same influence, one of them is
picked arbitrarily. If no appraisal state can be found with a certain
emotion, no causality is added.
#
<emotion> a certain emotion
<emotion-appraisal-max> appraisal object with the largest intensity on
the emotion defined by <emotion>, is saved in the
^source attribute
<es> emotion state ’feeling’ or ’max-feeling’ which is
about emotion defined by <emotion>
<state> the state that is appraised by
<emotionappraisalmax>
<emotion-appraisal> any appraisal on emotion defined by <emotion>

sp {top-ps*emia*emotion-state*add*source
(state <s> ^agent-name <name>

^appraisals <appr>
^current-state <cs>
^name top-state)

(<appr> ^types.type <emotion>
^<emotion> <emotion-appraisal-max>)
(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-appraisal-max> ^agent <name>
^appraisal.object.name <state>
^context self
^intensity <em-intensity-max>)
(<emotion-state> ^attribute << feeling max-feeling >>
^belief true
^polarity positive
^value <emotion>)

-{(<appr> ^<emotion> <emotion-appraisal>)
(<emotion-appraisal> ^agent <name>

^context self
^intensity {<em-intensity> > <em-intensity-max>})}

-->

B.1. EMOTION-STATES-EMIA.SOAR 65

(<emotion-state> ^source <emotion-appraisal-max> + =)}

sp {top-ps*emia*emotion-state*add*cause
(state <s> ^current-state <cs>

^name top-state)
(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-appraisal-max> ^appraisal.object.state-obj <state>)
(<emotion-state> ^attribute << feeling max-feeling >>
^belief true
^polarity positive
^source <emotion-appraisal-max>)
-->
(<emotion-state> ^cause <state>)}

This rule makes sure that the negated state of ’feeling’ and ’max-feeling’
have the same cause and source attribute.

sp {top-ps*emia*emotion-state*add*causality*to*negation
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute << feeling max-feeling >>
^cause <cause>
^negation <negated-emotion-state>
^source <source>)
-->
(<negated-emotion-state> ^cause <cause>
^source <source>)}

Create a ’responsible-for-[emotion]’ state for every emotion. The creation of
this state depends on the ’feeling’ states, since it is only created if the
agent actually feels the emotion, e.g. intensity is greater than the
treshold.

sp {top-ps*emia*elaborate*emotion-state*responsible-for-anger
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute feeling
^belief true
^source <appraisal-obj>
^value |Anger|)
(<appraisal-obj> ^appraisal.evaluation.responsible-agent <resp-agent>
^appraisal.evaluation.evaluation <blame>)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute responsible-for-Anger
^belief true
^cause <blame>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true

66 APPENDIX B. SOAR AND TCL CODE

^type state
^value <resp-agent>)
(<nes2> ^attribute responsible-for-Anger
^belief false
^cause <blame>
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <resp-agent>)}

sp {top-ps*emia*elaborate*emotion-state*responsible-for-anxiety
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute feeling
^belief true
^source <appraisal-obj>
^value |Anxiety|)
(<appraisal-obj> ^appraisal.evaluation.responsible-agent <resp-agent>
^appraisal.evaluation.evaluation <blame>)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute responsible-for-Anxiety
^belief true
^cause <blame>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <resp-agent>)
(<nes2> ^attribute responsible-for-Anxiety
^belief false
^cause <blame>
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <resp-agent>)}

sp {top-ps*emia*elaborate*emotion-state*responsible-for-distress
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute feeling
^belief true
^source <appraisal-obj>

B.1. EMOTION-STATES-EMIA.SOAR 67

^value |Distress|)
(<appraisal-obj> ^appraisal.evaluation.responsible-agent <resp-agent>
^appraisal.evaluation.evaluation <blame>)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute responsible-for-Distress
^belief true
^cause <blame>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <resp-agent>)
(<nes2> ^attribute responsible-for-Distress
^belief false
^cause <blame>
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <resp-agent>)}

sp {top-ps*emia*elaborate*emotion-state*responsible-for-fear
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute feeling
^belief true
^source <appraisal-obj>
^value |Fear|)
(<appraisal-obj> ^appraisal.evaluation.responsible-agent <resp-agent>
^appraisal.evaluation.evaluation <blame>)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute responsible-for-Fear
^belief true
^cause <blame>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <resp-agent>)
(<nes2> ^attribute responsible-for-Fear
^belief false
^cause <blame>
^id <new-emotion-state2>
^initial-belief false

68 APPENDIX B. SOAR AND TCL CODE

^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <resp-agent>)}

sp {top-ps*emia*elaborate*emotion-state*responsible-for-guilt
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute feeling
^belief true
^source <appraisal-obj>
^value |Guilt|)
(<appraisal-obj> ^appraisal.evaluation.responsible-agent <resp-agent>
^appraisal.evaluation.evaluation <blame>)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute responsible-for-Guilt
^belief true
^cause <blame>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <resp-agent>)
(<nes2> ^attribute responsible-for-Guilt
^belief false
^cause <blame>
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <resp-agent>)}

sp {top-ps*emia*elaborate*emotion-state*responsible-for-hope
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute feeling
^belief true
^source <appraisal-obj>
^value |Hope|)
(<appraisal-obj> ^appraisal.evaluation.responsible-agent <resp-agent>
^appraisal.evaluation.evaluation <blame>)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute responsible-for-Hope

B.1. EMOTION-STATES-EMIA.SOAR 69

^belief true
^cause <blame>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <resp-agent>)
(<nes2> ^attribute responsible-for-Hope
^belief false
^cause <blame>
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <resp-agent>)}

sp {top-ps*emia*elaborate*emotion-state*responsible-for-joy
(state <s> ^agent-name <name>

^current-state <cs>
^name top-state)

(<cs> ^<emotion-state-obj> <emotion-state>)
(<emotion-state> ^attribute feeling
^belief true
^source <appraisal-obj>
^value |Joy|)
(<appraisal-obj> ^appraisal.evaluation.responsible-agent <resp-agent>
^appraisal.evaluation.evaluation <blame>)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute responsible-for-Joy
^belief true
^cause <blame>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^type state
^value <resp-agent>)
(<nes2> ^attribute responsible-for-Joy
^belief false
^cause <blame>
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false
^type state
^value <resp-agent>)}

70 APPENDIX B. SOAR AND TCL CODE

Create the on-the-fly ’feeling-about-state’ emotion state.
The emotion state is created only if the question is under discussion, and
therefor is an on-the-fly state. Also, it is only created if there actually
is an appraisal about the state asked for. Finally, we apply a small treshold
(not the same as for the aggregate emotion intensity!) to cut out
insignificant appraisals.

sp {top-ps*emia*elaborate*emotion-state*feeling-about-state
:i-support
(state <s> ^agent-name <name>

^appraisals <appr>
^current-state <cs>
^name top-state
^operator <op>)

(<appr> ^types.type <emotion>
^<emotion> <emotion-appraisal-max>)
(<emotion-appraisal-max> ^agent <name>
^appraisal.object.state-obj <state>
^appraisal.object.name <name-obj>
^context self
^intensity {<em-intensity-max> > 5 })

-{(<appr> ^<emotion> <emotion-appraisal>)
(<emotion-appraisal> ^agent <name>

^appraisal.object.state-obj <state>
^context self
^intensity {<em-intensity> > <em-intensity-max>})}

(<op> ^goal.content.content <c>
^name output-speech)

(<c> ^type question
^q-slot value
^prop <prop>)

(<prop> ^attribute feeling-about-state
^cause <name-obj>
^type state)
-->
(<cs> ^<new-emotion-state1> <nes1>

^<new-emotion-state2> <nes2>)
(<nes1> ^attribute feeling-about-state
^belief true
^cause <state>
^id <new-emotion-state1>
^initial-belief true
^name <new-emotion-state1>
^negation <nes2>
^object-id <name>
^polarity positive
^satisfied true
^source <emotion-appraisal-max>
^type state
^value <emotion>)
(<nes2> ^attribute feeling-about-state
^belief false
^cause <state>
^id <new-emotion-state2>
^initial-belief false
^name <new-emotion-state2>
^negation <nes1>
^object-id <name>
^polarity negative
^satisfied false

B.2. LANGUAGE-EMIA.SOAR 71

^source <emotion-appraisal-max>
^type state
^value <emotion>)}

Add a simulation-object attribute to the feeling-about-state object, by
copying it from the state the emotion state is about.

sp {top-ps*emia*emotion-state*feeling-about-state*add*sim-object
(state <s> ^current-state <cs>

^name top-state)
(<cs> ^<emotion-state-obj> <emotion-state>

^<state-obj> <state>)
(<emotion-state> ^attribute feeling-about-state
^cause <state-obj>)
(<state> ^sim-object <sim-obj>)
-->
(<emotion-state> ^sim-object <sim-obj>)}

B.2 Language-emia.soar

Copyright 2003 Arno Hartholt | Tijmen Joppe Muller
Institute for Creative Technologies
##
###
File : language-emia.soar
Original author(s): Arno Hartholt (d.o.a.hartholt@student.utwente.nl)
Tijmen Joppe Muller (tijmen@avpec1910.nl)
Supervisor : Jonathan Gratch (gratch@ict.usc.edu)
Organization : Institute for Creative Technologies
Created on : November 13, 2003
Last Modified By : Arno - no middle name - Hartholt
Soar Version : 7
Documentation : Interaction on emotions
(http://mullert.adsl.utwente.nl/~stage/reports/emia.pdf)
###___
HISTORY
###
11-13-03 [AH] Document created, keyword mapping & assertion rules try-outs
11-17-03 [AH] Added template try-outs
11-26-03 [AH] Extended templates, and keyword mapping and assertions rules
12-04-03 [AH] Introduced emotion-semantics and selection rules
12-15-03 [AH] Added additional keywords
12-16-03 [AH] Added [TJM]’s look-up table rules (initialization) from
emotion-states-emia.soar
Changed natural language for emotions
12-19-03 [AH] Started using references
12-22-03 [AH] Introduced priorities in speech-acts, so we can choose between
rules and give the winner a certain pref.
12-23-03 [AH] Introduced priorities in surfaces for why-questions
12-24-03 [AH] Fixed some reference stuff
Added selection based on emotion intensity for ambiguous
’about’ questions
01-05-03 [AH] Added object-id to every semantics
01-12-03 [AH] Updated state list in order to match the current configuration
###
###___
USE
###
This file is used for emotion dialogue. It sets up a look-up table for
natural language, it scans for keywords in user’s questions and it produces

72 APPENDIX B. SOAR AND TCL CODE

answers to that questions.
###
###___
ISSUES
###
The Terseness attribute (io.input-link) sometimes isn’t set due to an impasse
during MRE initialization. This prevents the assertion rules from firing.
Restart the agent and pray.
###
As feeling-about-state states are generated on the fly, the system does not
generate references when this type of question is asked. The assertion rules
for these questions are therefore implemented without the use of references.
This means, among others, that ambiguity is resolved in understand-speech,
rather than in output-speech.
###___
KNOWN BUGS
###
Emotion questions don’t work if they’re asked at the same time the emotion
intensity changes. In other words: when emotions change, the system needs
some time before it can answer emotion questions. This is due to the fact that
the emotion states are recreated when emotion intensity changes, making earlier
references invalid. The states in emotion-states-emia.soar should be rewritten
so that existing states get updated rather than recreated.
###___
LIMITATIONS
###
###___
EXTERNAL REFERENCES
###
Used in combination with emotion-states-emia.soar and lexicon-emia.soar
###___
TO DO
###
###___
SUMMARY
###
###
##

echo "\nLoading language-emia.soar\n"

##
INITIALIZATION
~~~~~~~~~~~~~~
#
Produces a look-up table which the output-speech rules in this file use
in order to get natural language.
#
##

Set up the shell for the template fillings lookup table.
sp {top-ps*emia*elaborate*lookup-table*template

(state <s> ^name top-state)
-->
(write (crlf) |emia.soar: Initialize lookup table template fillings | (crlf))
(<s> ^emia-template-filling <etf>)
(<etf> ^nl-emotion <nle>

^nl-influence-status <nlis>
^nl-intensity-lower <nlil>
^nl-intensity-upper <nliu>
^nl-responsible_agent <nlr>
^nl-responsible_agent-poss <nlrp>

B.2. LANGUAGE-EMIA.SOAR 73

^nl-state-pre <nls1>
^nl-state-post <nls2>)}

Add the static (agent-independent) template fillings to the lookup table.
sp {top-ps*emia*elaborate*lookup-table*static-content*template

(state <s> ^name top-state
^emia-template-filling <etf>)

(<etf> ^nl-emotion <nle>
^nl-influence-status <nlis>
^nl-intensity-lower <nlil>
^nl-intensity-upper <nliu>
^nl-responsible_agent <nlr>
^nl-responsible_agent-poss <nlrp>
^nl-state-pre <nls1>
^nl-state-post <nls2>)
-->
(write (crlf) |emia.soar: Elaborate lookup table, static content| (crlf))
(<nle> ^|Anger| |angry|
^|Anxiety| |anxious|
^|Distress| |worried|
^|Fear| |afraid|
^|Guilt| |guilty|
^|Hope| |hopeful|
^|Joy| |joyful|)
(<nlil> ^0 |"a little"|
^0.25 |pretty|
^0.5 |""|
^0.75 |very|
^1 |very|)
(<nliu> ^0.25 |"a little"|
^0.5 |pretty|
^0.75 |""|
^1.1 |very|)
(<nlis> ^inhabitor <nlis1>
^facilitator <nlis2>)
(<nlis1> ^confirmed |"is not"|
^unconfirmed |"probably won’t be"|)
(<nlis2> ^confirmed |is|
^unconfirmed |"will probably be"|)
(<nlr> ^1sldr |Johnson|
^2sldr |"The second squad leader"|
^3sldr |"The third squad leader"|
^4sldr |Lopez|
^ambulance |"The ambulance"|
^base |"The base"|
^lt |"You are"|
^medevac |"The MedEvac"|)
(<nlrp> ^1sldr |"Johnson’s"|
^2sldr |"second squad leader’s"|
^3sldr |"third squad leader’s"|
^4sldr |"Lopez’s"|
^ambulance |"the ambulance’s"|
^base |"the base’s"|
^lt |your|
^medevac |"the MedEvac’s"|)
(<nls1> ^maintain-goodwill |"the goodwill of the crowd"|
^crowd-angry |"the crowd"|
^boy-dead |"the boy"|
^boy-healthy |"the boy"|
^minor-injuries |"the boy"|
^serious-injuries |"the boy"|

74 APPENDIX B. SOAR AND TCL CODE

^critical-injuries |"the boy"|
^driver-healthy |"the driver"|
^driver-minor-inj |"the driver"|
^mother-healthy |"the mother"|
^know-boy-health |"the health of the boy"|
^sqds-in-transit |"the squads"|
^lt-in-transit |"the lieutenant"|
^lt-at-aa |"the lieutenant"|
^lt-at-celic |"the lieutenant"|
^sgt-at-aa |"the sergeant"|
^medic-at-aa |"the medic"|
^at-boy-aa |"the boy"|
^mom-at-aa |"the mother"|
^1st-sqd-at-aa |"the first squad"|
^1st-sqd-at-celic |"the first squad"|
^1st-sqd-at-lz |"the first squad"|
^1st-sqd-in-transit |"the first squad"|
^2nd-sqd-at-aa |"the second squad"|
^2nd-sqd-at-celic |"the second squad"|
^2nd-sqd-at-lz |"the second squad"|
^3rd-sqd-at-aa |"the third squad"|
^3rd-sqd-at-celic |"the third squad"|
^3rd-sqd-at-lz |"the third squad"|
^4th-sqd-at-aa |"the fourth squad"|
^4th-sqd-at-celic |"the fourth squad"|
^4th-sqd-at-lz |"the fourth squad"|
^4th-sqd-in-transit |"the fourth squad"|
^at-boy-hospital |"the boy"|
^mom-in-intersect |"the mother"|
^sqd-in-intersect |"the squad"|
^medevac-at-aa |"the MedEvac"|
^medevac-at-base |"the MedEvac"|
^medevac-called |"the MedEvac"|
^medevac-overhead |"the MedEvac"|
^amb-at-aa |"the ambulance"|
^amb-at-base |"the ambulance"|
^ambulance-called |"the ambulance"|
^secure-route |"the route to Celic"|
^aa-secure |"the assembly area"|
^accident-secure |"the accident site"|
^12-to-4-secure |"the assembly area"|
^4-to-8-secure |"the assembly area"|
^8-to-12-secure |"the assembly area"|
^lz-secure |"the landing zone"|
^lz-marked |"the landing zone"|
^lz-clear |"the landing zone"|
^support-1-6 |"our team"|
^retain-mass |"our team"|
^fracture-unit |"our team"|
^1-6-at-celic |"our team"|
^hospital-at-tuzla |"the hospital"|)
(<nls2> ^maintain-goodwill |maintained|
^crowd-angry |angry|
^boy-dead |dead|
^boy-healthy |healthy|
^minor-injuries |"slightly injured"|
^serious-injuries |"seriously injured"|
^critical-injuries |"critically injured"|
^driver-healthy |healthy|
^driver-minor-inj |"slightly injured"|
^mother-healthy |healthy|
^know-boy-health |known|

B.2. LANGUAGE-EMIA.SOAR 75

^sqds-in-transit |"in transit to the assembly area"|
^lt-in-transit |"in transit to the assembly area"|
^lt-at-aa |"at the assembly area"|
^lt-at-celic |"at Celic"|
^sgt-at-aa |"at the assembly area"|
^medic-at-aa |"at the assembly area"|
^at-boy-aa |"at the assembly area"|
^mom-at-aa |"at the assembly area"|
^1st-sqd-at-aa |"at the assembly area"|
^1st-sqd-at-celic |"at Celic"|
^1st-sqd-at-lz |"at the landing zone"|
^1st-sqd-in-transit |"in transit to the assembly area"|
^2nd-sqd-at-aa |"at the assembly area"|
^2nd-sqd-at-celic |"at Celic"|
^2nd-sqd-at-lz |"at the landing zone"|
^3rd-sqd-at-aa |"at the assembly area"|
^3rd-sqd-at-celic |"at Celic"|
^3rd-sqd-at-lz |"at the landing zone"|
^4th-sqd-at-aa |"at the assembly area"|
^4th-sqd-at-celic |"at Celic"|
^4th-sqd-at-lz |"at the landing zone"|
^4th-sqd-in-transit |"in transit to the assembly area"|
^at-boy-hospital |"treated at the hospital"|
^mom-in-intersect |"at the intersection"|
^sqd-in-intersect |"at the intersection"|
^medevac-at-aa |"at the assembly area"|
^medevac-at-base |"at the base"|
^medevac-called |"called for"|
^medevac-overhead |overhead|
^amb-at-aa |"at the assembly area"|
^amb-at-base |"at the base"|
^ambulance-called |"called for"|
^secure-route |secured|
^aa-secure |secured|
^accident-secure |secured|
^12-to-4-secure |"partly secured"|
^4-to-8-secure |"partly secured"|
^8-to-12-secure |"partly secured"|
^lz-secure |secured|
^lz-marked |"marked by green smoke"|
^lz-clear |"cleared of civilians"|
^support-1-6 |"active supporting Eagle 2-6"|
^retain-mass |together|
^fracture-unit |"split up"|
^1-6-at-celic |"at Celic"|
^hospital-at-tuzla |"at Tuzla"|)}

Add the dynamic (agent-dependent) template fillings to the loopup table, i.e.
pronouns for the medic, mother, sergeant and self.

sp {top-ps*emia*elaborate*lookup-table*dynamic-content*medic
(state <s> ^agent-name <name> <> medic

^emia-template-filling <etf>
^name top-state)

(<etf> ^nl-responsible_agent <nlr>
^nl-responsible_agent-poss <nlrp>)
-->
(write (crlf) |emia.soar: Elaborate lookup table, dynamic content (medic)| (crlf))
(<nlr> ^medic |Tucci|)
(<nlrp> ^medic |"Tucci’s"|)}

76 APPENDIX B. SOAR AND TCL CODE

sp {top-ps*emia*elaborate*lookup-table*dynamic-content*mom
(state <s> ^agent-name <name> <> mom

^emia-template-filling <etf>
^name top-state)

(<etf> ^nl-responsible_agent <nlr>
^nl-responsible_agent-poss <nlrp>)
-->
(write (crlf) |emia.soar: Elaborate lookup table, dynamic content (mother)| (crlf))
(<nlr> ^mom |"The mother"|)
(<nlrp> ^mom |"the mother’s"|)}

sp {top-ps*emia*elaborate*lookup-table*dynamic-content*sgt
(state <s> ^agent-name <name> <> sgt

^emia-template-filling <etf>
^name top-state)

(<etf> ^nl-responsible_agent <nlr>
^nl-responsible_agent-poss <nlrp>)
-->
(write (crlf) |emia.soar: Elaborate lookup table, dynamic content (sergeant)| (crlf))
(<nlr> ^sgt |"The sergeant"|)
(<nlrp> ^sgt |"the sergeant’s"|)}

sp {top-ps*emia*elaborate*lookup-table*dynamic-content*self
(state <s> ^agent-name <name>

^emia-template-filling <etf>
^name top-state)

(<etf> ^nl-responsible_agent <nlr>
^nl-responsible_agent-poss <nlrp>)
-->
(write (crlf) |emia.soar: Elaborate lookup table, dynamic content (self)| (crlf))
(<nlr> ^<name> |"I am"|)
(<nlrp> ^<name> |my|)}

##
UNDERSTAND-SPEECH RULES
~~~~~~~~~~~~~~~~~~~~~~~
#
These rules scan for certain keywords in order to detect a users question. When
a rule fires, it will put the semantics of the question in ’emotion-semantics’
Some rules in the Misc sections will select the right emotion-semantics, when
more candidates are available.
These rules are classified by type as can be read in the report ’Interaction
on Emotion’ by Hartholt and Muller.
#
Some Misc understand-speech rules can be found elsewhere in this file.
#
###

##############
Emotion type
##############

Scans for ’How do you feel?’
sp {top-state*apply*operator*understand-speech*nlu*how-do-you-feel

(state <s> ^name top-state
^operator <o>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)

B.2. LANGUAGE-EMIA.SOAR 77

(<i> ^token.lex << how hows >>
^token.lex << feel feeling hanging hangin going are >>
-^token.lex << about >>)

-->
(<i> ^mood question

^emotion-semantics <sem> + &) ;# & collects all the emotion-semantics, code in the
(<sem> ^type question ;# misc section of this file will pick the right one
^q-slot value ;# It is used here because some questions can trigger
^prop <sem1> ;# this rule twice and one instance has to be selected
^priority 1)
(<sem1> ^attribute max-feeling
^type state
^objec-id <self>)}

Scans for ’What is wrong with you?’
sp {top-state*apply*operator*understand-speech*nlu*whats-wrong-with-you
(state <s> ^name top-state

^operator <o>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<i> ^token.lex << what whats >>

^token.lex << wrong mind >>)
-->
(<i> ^mood question

^emotion-semantics <sem>)
(<sem> ^type question
^q-slot value
^prop <sem1>)
(<sem1> ^attribute max-feeling
^type state
^objec-id <self>)}

Scans for ’Do you feel [emotion]?’
sp {top-state*apply*operator*understand-speech*nlu*do-you-feel-emotion
(state <s> ^name top-state

^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<lexicon> ^emotions.<emotion> <lex>)
(<i> ^token.lex << feel feeling are seem look >>

^token.lex <lex>
-^token.lex << responsible why what whats who whos whom about >>)

-->
(<i> ^mood question

^emotion-semantics <sem>)
(<sem> ^type question
^q-slot polarity
^prop <sem1>)
(<sem1> ^attribute feeling
^value <emotion>
^type state
^objec-id <self>)}

Scans for ’How do you feel about [state]?’, one keyword per state
sp {top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-state*one
(state <s> ^name top-state

^operator <o>

78 APPENDIX B. SOAR AND TCL CODE

^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<i> ^token.lex << feel feeling feelings think >>

^token.lex << about of >>
^token.lex <word>)

(<lexicon> ^{<domain> <> states <> emotion-responsibility-states <> actions}.<word-int> <word>
^states.<state> <word-int>)

-->
(<i> ^mood question

^emotion-semantics <sem> + &) ;# & collects all the emotion-semantics, code in the
(<sem> ^type question ;# misc section of this file will pick the right one
^q-slot value
^priority 1
^prop <sem1>)
(<sem1> ^attribute feeling-about-state
^cause <state>
^type state
^objec-id <self>)}

Scans for ’How do you feel about [state]?’, two keywords per state
sp {top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-state*two

(state <s> ^name top-state
^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<i> ^token.lex << feel feeling feelings think >>

^token.lex << about of >>
^token.lex <word1>
^token.lex {<word2> <> <word1>})

(<lexicon> ^{<domain1> <> states <> emotion-responsibility-states
<> actions}.<word-int1> <word1>

^{<domain2> <> states <> emotion-responsibility-states
<> actions}.<word-int2> <word2>

^states.<state> <word-int1>
^states.<state> <word-int2>)

-->
(<i> ^mood question

^emotion-semantics <sem> + &)
(<sem> ^type question
^q-slot value
^priority 2
^prop <sem1>)
(<sem1> ^attribute feeling-about-state
^cause <state>
^type state
^objec-id <self>)}

Scans for ’How do you feel about [state]?’, three keywords per state
sp {top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-state*three

(state <s> ^name top-state
^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)

B.2. LANGUAGE-EMIA.SOAR 79

(<i> ^token.lex << feel feeling feelings think >>
^token.lex << about of >>
^token.lex <word1>
^token.lex {<word2> <> <word1> <> <word3>}
^token.lex {<word3> <> <word1> <> <word2>})

(<lexicon> ^{<domain1> <> states <> emotion-responsibility-states <> actions}.<word-int1> <word1>
^{<domain2> <> states <> emotion-responsibility-states <> actions}.<word-int2> <word2>
^{<domain3> <> states <> emotion-responsibility-states <> actions}.<word-int3> <word3>
^states.<state> <word-int1>
^states.<state> <word-int2>
^states.<state> <word-int3>)

-->
(<i> ^mood question

^emotion-semantics <sem> + &)
(<sem> ^type question
^q-slot value
^priority 3
^prop <sem1>)
(<sem1> ^attribute feeling-about-state
^cause <state>
^type state
^objec-id <self>)}

###################
Emotion intensity
###################

Scans for ’Calm down’
sp {top-state*apply*operator*understand-speech*nlu*calm-down
(state <s> ^name top-state

^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<i> ^token.lex << calm >>

^token.lex << down >>)
-->
(<i> ^mood question

^emotion-semantics <sem>)
(<sem> ^type question
^q-slot dummy-int ;# formal semantics do not match natural semantics, but this
^prop <sem1>) ;# is needed to detect it for the right answer further down the line
(<sem1> ^attribute max-feeling
^type state
^objec-id <self>)}

Scans for ’Relax’
sp {top-state*apply*operator*understand-speech*nlu*relax
(state <s> ^name top-state

^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<i> ^token.lex << relax >>)
-->
(<i> ^mood question

^emotion-semantics <sem>)
(<sem> ^type question

80 APPENDIX B. SOAR AND TCL CODE

^q-slot dummy-int ;# formal semantics do not match natural semantics, but this
^prop <sem1>) ;# is needed to detect it for the right answer further down the line
(<sem1> ^attribute max-feeling
^type state
^objec-id <self>)}

###############
Emotion state
###############

Scans for ’Why do you feel [emotion]?’
sp {top-state*apply*operator*understand-speech*nlu*why-do-you-feel-emotion

(state <s> ^name top-state
^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<lexicon> ^emotions.<emotion> <lex>)
(<i> ^token.lex << why >>

^token.lex << feel are >>
^token.lex <lex>)

-->
(<i> ^mood question

^emotion-semantics <sem>)
(<sem> ^type question
^q-slot cause
^prop <sem1>)
(<sem1> ^attribute feeling
^type state
^value <emotion>
^objec-id <self>)}

Scans for ’What’s causing you to feel [emotion]?’
sp {top-state*apply*operator*understand-speech*nlu*whats-causing-you-to-feel-emotion

(state <s> ^name top-state
^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<lexicon> ^emotions.<emotion> <lex>)
(<i> ^token.lex << what whats causing >>

^token.lex << feel be about >>
^token.lex <lex>)

-->
(<i> ^mood question

^emotion-semantics <sem> + &)
(<sem> ^type question
^q-slot cause
^prop <sem1>
^priority 1)
(<sem1> ^attribute feeling
^type state
^value <emotion>
^objec-id <self>)}

########################
Emotion responsibility
########################

B.2. LANGUAGE-EMIA.SOAR 81

Scans for ’Who’s responsible for making you feel [emotion]?’
sp {top-state*apply*operator*understand-speech*nlu*responsible-for-emotion
(state <s> ^name top-state

^operator <o>
^lexicon <lexicon>
^agent-name <self>)

(<o> ^name understand-speech
^speech-input <si>)

(<si> ^interpretation <i>)
(<lexicon> ^emotions.<emotion> <lex>)
(<i> ^token.lex << who whos whom >>

^token.lex << you >>
^token.lex <lex>)

-->
(<i> ^mood question

^emotion-semantics <sem> + &)
(<sem> ^type question
^q-slot value
^prop <sem1>
^priority 1)
(<sem1> ^attribute (tcl |stateResponsible | <emotion>)
^type state
^objec-id <self>)}

##
OUTPUT-SPEECH RULES
~~~~~~~~~~~~~~~~~~~
#
These rules detect the agent’s intention to say something about emotions and
generate the proper output, using templates. These templates are TCL code,
which can be found elsewhere in this file.
#
###

##############
Emotion type
##############

Directs the goal associated with the question ’How do you feel’
and alikes to the proper TCL template
sp {top-state*apply*operator*output-speech*answer-how-do-you-feel*cause
(state <s> ^agent-name <me>

^operator <o>
^io.input-link <io>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot value
^prop <p>
^reference <ems>)
(<p> ^attribute max-feeling)
(<ems> ^attribute max-feeling ;# You could lose this, as for now there’s only one reference which
^cause.name <cause> ;# always has the attribute max-feeling. Same holds for similar rules

82 APPENDIX B. SOAR AND TCL CODE

^value <emotion>
^source.appraisal.type <infl>
^source.appraisal.feature.status <st>)
(<etf> ^nl-emotion.<emotion> <nl_emotion>
^nl-intensity-lower <nlil>
^nl-intensity-upper <nliu>
^nl-influence-status.<infl>.<st> <influence-status>
^nl-state-pre.<cause> <state_pre>
^nl-state-post.<cause> <state_post>)
(<nlil> ^<valuelow> <nl_intensity>)
(<nliu> ^<valueupper> <nl_intensity>)
(<io> ^|Terseness| <terseness-intensity>

^self <self>)
(<self> ^<emotion> {<emotion_intensity> >= <valuelow> < <valueupper>})
-->
(<cg> ^surface (tcl |emotionTypeFeelCause | <emotion_intensity> | | <terseness-intensity>

| |<nl_emotion> | | <nl_intensity> | | <state_pre> | | <influence-status> | | <state_post>) + >)}

Directs the goal associated with the question ’How do you feel’
#and alikes to the proper TCL template
sp {top-state*apply*operator*output-speech*answer-how-do-you-feel*no-cause

(state <s> ^agent-name <me>
^operator <o>
^io.input-link <io>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot value
^prop <p>
^reference <ems>)

(<ems> ^attribute max-feeling
^value <emotion>)
(<etf> ^nl-emotion.<emotion> <nl-emotion>
^nl-intensity-lower <nlil>
^nl-intensity-upper <nliu>)
(<nlil> ^<value-low> <nl-intensity>)
(<nliu> ^<value-upper> <nl-intensity>)
(<io> ^|Terseness| <terseness-intensity>

^self <self>)
(<self> ^<emotion> {<emotion-intensity> >= <value-low> < <value-upper>})
-->
(<cg> ^surface (tcl |emotionTypeFeelNoCause | <emotion-intensity> | | <terseness-intensity> | | <nl-emotion> | | <nl-intensity>))}

Directs the goal associated with the question ’Are you [emotion]’
and alikes to the proper TCL template
sp {apply*output-speech*answer-do-you-feel-emotion*cause

(state <s> ^agent-name <me>
^operator <o>
^io.input-link <io>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address

B.2. LANGUAGE-EMIA.SOAR 83

^addressee lt)
(<c> ^content <ct>

^action info-req)
(<ct> ^type question

^q-slot polarity
^prop <p>
^reference <ems>)
(<p> ^attribute feeling

^value <emotion>)
(<ems> ^attribute feeling
^cause.name <cause>
^value <emotion>
^source.appraisal.type <infl>
^source.appraisal.feature.status <st>)
(<etf> ^nl-influence-status.<infl>.<st> <influence-status>
^nl-state-pre.<cause> <state_pre>
^nl-state-post.<cause> <state_post>)
(<io> ^|Terseness| <terseness_intensity>

^self <self>)
(<self> ^<emotion> {<emotion_intensity> >= 0})
-->
(<cg> ^surface (tcl |emotionTypeEmotionCause | <emotion_intensity> | | <terseness_intensity>
| | <state_pre> | | <influence-status> | | <state_post>) + >)}

Directs the goal associated with the question ’Are you [emotion]’
and alikes to the proper TCL template
sp {apply*output-speech*answer-do-you-feel-emotion*no-cause
(state <s> ^agent-name <me>

^operator <o>
^io.input-link <io>
^current-state <cs>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot polarity
^prop <p>
^reference <ems>)
(<p> ^value <emotion>

^attribute feeling)
(<cs> ^<emotion-state> <ems>)
(<ems> ^attribute feeling
^value <emotion>)
(<io> ^self <self>)
(<self> ^<emotion> {<emotion_intensity> >= 0})
-->
(<cg> ^surface (tcl |emotionTypeEmotionNoCause | <emotion_intensity>))}

As feeling-about-state states are generated dynamicly, the system does not
generate references when this type of question is asked. The assertion rules
for these questions are therefore implemented without the use of references.

Directs the goal associated with the question ’How do you feel about [state]’
and alikes to the proper TCL template
sp {top-state*apply*operator*output-speech*answer-emotion-about-state*cause
(state <s> ^agent-name <me>

84 APPENDIX B. SOAR AND TCL CODE

^operator <o>
^io.input-link <io>
^current-state <cs>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot value
^prop <p>)

(<p> ^attribute feeling-about-state
^cause <cause>)

(<cs> ^<emotion-state> <ems>
^<cause>.belief true)

(<ems> ^attribute feeling-about-state
^cause.name <cause>
^value <emotion>
^source.appraisal.type <infl>
^source.appraisal.feature.status <st>)
(<etf> ^nl-emotion.<emotion> <nl-emotion>
^nl-intensity-lower <nlil>
^nl-intensity-upper <nliu>
^nl-influence-status.<infl>.<st> <influence-status>
^nl-state-pre.<cause> <state-pre>)
(<nlil> ^<value-low> <nl-intensity>)
(<nliu> ^<value-upper> <nl-intensity>)
(<io> ^|Terseness| <terseness-intensity>

^self <self>)
(<self> ^<emotion> {<emotion-intensity> >= <value-low> < <value-upper>})
-->
(<cg> ^surface (tcl |emotionTypeState | <terseness-intensity> | | <nl-intensity>
| | <nl-emotion> | | <state-pre>) + >)}

Directs the goal associated with the question ’How do you feel about [state]]’
and alikes to a surface
sp {top-state*apply*operator*output-speech*answer-emotion-about-state*no-cause

(state <s> ^agent-name <me>
^operator <o>
^io.input-link <io>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot value
^prop <p>)

(<p> ^attribute feeling-about-state)
-->
(<cg> ^surface |"That’s not an issue right now sir"|)}

###################
Emotion intensity

B.2. LANGUAGE-EMIA.SOAR 85

###################

Directs the goal associated with the utterance ’calm down’
and alikes to the proper TCL template
sp {top-state*apply*operator*output-speech*answer-calm-down
(state <s> ^agent-name <me>

^operator <o>
^io.input-link <io>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot dummy-int
^prop <p>
^reference <ems>)
(<p> ^attribute max-feeling)
(<ems> ^attribute max-feeling
^value <emotion>)
(<io> ^self <self>)
(<self> ^<emotion> <emotion_intensity>)
-->
(<cg> ^surface (tcl |emotionCalm | <emotion_intensity>) + =)}

###############
Emotion state
###############

Directs the goal associated with the question ’Why are you [emotion]’
and alikes to the proper TCL template
sp {apply*output-speech*answer-why-do-you-feel-emotion*cause
(state <s> ^agent-name <me>

^operator <o>
^io.input-link <io>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot cause
^prop <p>
^reference <ems>)
(<p> ^attribute feeling

^value <emotion>)
(<ems> ^attribute feeling
^cause.name <cause>
^value <emotion>
^source.appraisal.type <infl>
^source.appraisal.feature.status <st>
^source.appraisal.evaluation.evaluation <blameworthiness>
^source.appraisal.evaluation.responsible-agent <responsible-agent>)
(<etf> ^nl-emotion.<emotion> <nl-emotion>
^nl-influence-status.<infl>.<st> <influence-status>

86 APPENDIX B. SOAR AND TCL CODE

^nl-state-pre.<cause> <state-pre>
^nl-state-post.<cause> <state-post>
^nl-responsible_agent-poss.<responsible-agent> <responsible-agent-poss>)
(<io> ^|Defensiveness| <defensiveness-intensity>

^|Terseness| <terseness-intensity>
^self <self>)

(<self> ^<emotion> {<emotion-intensity> >= 0})
-->
(<cg> ^surface-candidate <sc> + &)
(<sc> ^output (tcl |emotionWhyCause | <emotion-intensity> | | <terseness-intensity>

| | <defensiveness-intensity> | | <nl-emotion> | | <emotion> | | <state-pre>
| | <influence-status> | | <state-post> | | <responsible-agent-poss>
| | <blameworthiness>)

^priority 3)}

Directs the goal associated with the question ’Why are you [emotion]’
and alikes to the proper TCL template
sp {apply*output-speech*answer-why-do-you-feel-emotion*no-responsible-agent

(state <s> ^agent-name <me>
^operator <o>
^io.input-link <io>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot cause
^prop <p>
^reference <ems>)

(<p> ^attribute feeling
^value <emotion>)

(<ems> ^attribute feeling
^cause.name <cause>
^value <emotion>
^source.appraisal.type <infl>
^source.appraisal.feature.status <st>)
(<etf> ^nl-emotion.<emotion> <nl-emotion>
^nl-influence-status.<infl>.<st> <influence-status>
^nl-state-pre.<cause> <state-pre>
^nl-state-post.<cause> <state-post>)
(<io> ^|Defensiveness| <defensiveness-intensity>

^|Terseness| <terseness-intensity>
^self <self>)

(<self> ^<emotion> {<emotion-intensity> >= 0})
-->
(<cg> ^surface-candidate <sc> + &)
(<sc> ^output (tcl |emotionWhyNoResponsibleAgent | <emotion-intensity>

| | <terseness-intensity> | | <defensiveness-intensity> | | <nl-emotion>
| | <state-pre> | | <influence-status> | | <state-post>)

^priority 2)}

Directs the goal associated with the question ’Why are you [emotion]’
and alikes to the proper TCL template
sp {apply*output-speech*answer-why-do-you-feel-emotion*no-cause

(state <s> ^agent-name <me>
^operator <o>
^io.input-link <io>

B.2. LANGUAGE-EMIA.SOAR 87

^emia-template-filling <etf>)
(<o> ^name output-speech

^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot cause
^prop <p>
^reference <ems>)

(<p> ^value <emotion>
^attribute feeling)

(<ems> ^attribute feeling
^value <emotion>)
(<etf> ^nl-emotion.<emotion> <nl-emotion>)
(<io> ^self <self>)
(<self> ^<emotion> {<emotion-intensity> >= 0})
-->
(<cg> ^surface-candidate <sc> + &)
(<sc> ^output (tcl |emotionWhyNoCause | <emotion-intensity> | | <nl-emotion>)

^priority 1)}

########################
Emotion responsibility
########################

Directs the goal associated with the question ’Who’s resonsible for making you [emotion]’
and alikes to the proper TCL template
sp {apply*output-speech*answer-whos-responsible*emotion
(state <s> ^agent-name <me>

^operator <o>
^current-state <cs>
^io.input-link <io>
^emia-template-filling <etf>
^lexicon <l>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot value
^prop <p>
^reference <ems>)
(<p> ^attribute <responsible-for-emotion>)
(<l> ^emotion-responsibility-states.<responsible-for-emotion> <lex>

^emotions.<emotion> <lex>)
(<ems> ^attribute <responsible-for-emotion>
^cause <blameworthiness>
^value <agent>)
(<etf> ^nl-emotion.<emotion> <nl-emotion>
^nl-responsible_agent.<agent> <responsible-agent>
^nl-responsible_agent-poss.<agent> <responsible-agent-poss>)
(<io> ^|Terseness| <terseness-intensity>

^self <self>)
(<self> ^<emotion> <emotion-intensity>)

88 APPENDIX B. SOAR AND TCL CODE

-->
(<cg> ^surface (tcl |emotionResponsibility | <terseness-intensity>
| | <emotion-intensity> | | <nl-emotion> | | <emotion> | | <responsible-agent>
| | <responsible-agent-poss> | | <blameworthiness>) + >)}

Directs the goal associated with the question ’Who’s resonsible for making you [emotion]’
and alikes to the proper TCL template
sp {apply*output-speech*answer-whos-responsible*emotion*no-responsible-agent

(state <s> ^agent-name <me>
^operator <o>
^current-state <cs>
^lexicon <l>
^io.input-link <io>
^emia-template-filling <etf>)

(<o> ^name output-speech
^comgoal <cg>
^goal <g>)

(<g> ^content <c>
^action address
^addressee lt)

(<c> ^content <ct>
^action info-req)

(<ct> ^type question
^q-slot value
^prop <p>)

(<p> ^attribute <responsible-for-emotion>)
(<l> ^emotion-responsibility-states.<responsible-for-emotion> <lex>

^emotions.<emotion> <lex>)
(<etf> ^nl-emotion.<emotion> <nl-emotion>)
(<io> ^self.<emotion> <emotion-intensity>)
-->
(<cg> ^surface (tcl |emotionNoResponsibility | <emotion-intensity> | | <nl-emotion>))}

##
TEMPLATES
~~~~~~~~~
#
These TCL procedures are called by Soar rules passing the appropiate
information in order to construct a natural language utterance.
#
###

##############
Emotion type
##############

Template for answering questions like ’How do you feel?’
proc emotionTypeFeelCause {emotionIntensityNumber tersenessIntensity emotion
emotionIntensity statePre influenceStatus statePost} {

set utterance "\"I’m "

if {$emotionIntensityNumber <= 0.2} {
append utterance "fine sir\""

} elseif {$tersenessIntensity < 0.2} {
append utterance "feeling " $emotionIntensity " " $emotion " because " $statePre
" " $influenceStatus " " $statePost\"

} elseif {$tersenessIntensity < 0.6} {
append utterance "feeling " $emotionIntensity " " $emotion\"

} else {

B.2. LANGUAGE-EMIA.SOAR 89

append utterance "feeling " $emotion\"
}

return $utterance
}

Template for answering questions like ’How do you feel?’
proc emotionTypeFeelNoCause {emotionIntensityNumber tersenessIntensity emotion
emotionIntensity} {

set utterance "\"I’m "

if {$emotionIntensityNumber <= 0.2} {
append utterance "fine sir\""

} elseif {$tersenessIntensity < 0.6 } {
append utterance "feeling " $emotionIntensity " " $emotion\"

} else {
append utterance "feeling " $emotion\"

}

return $utterance
}

Template for answering questions like ’Are you feeling [emotion]?’
proc emotionTypeEmotionCause {emotionIntensityNumber tersenessIntensity statePre
influenceStatus statePost} {

set utterance "\""

if {$emotionIntensityNumber <= 0.1} {
append utterance "Not at all sir\""

} elseif {$emotionIntensityNumber <= 0.2} {
append utterance "No sir\""

} elseif {$tersenessIntensity <= 0.25} {
append utterance "Yes sir because " $statePre " " $influenceStatus " " $statePost\"

} elseif {$emotionIntensityNumber <= 0.5} {
append utterance "Yes sir\""

} else {
append utterance "Quite a bit sir\""

}

return $utterance
}

Template for answering questions like ’Are you feeling [emotion]?’
proc emotionTypeEmotionNoCause {emotionIntensityNumber} {

set utterance "\""

if {$emotionIntensityNumber <= 0.1} {
append utterance "Not at all sir\""

} elseif {$emotionIntensityNumber <= 0.2} {
append utterance "No sir\""

} elseif {$emotionIntensityNumber <= 0.5} {
append utterance "Yes sir\""

} else {
append utterance "Quite a bit sir\""

}

return $utterance
}

90 APPENDIX B. SOAR AND TCL CODE

Template for answering questions like ’How do you feel about [state]?’
proc emotionTypeState {tersenessIntensity emotionIntensity emotion statePre} {

set utterance "\"I’m "

if {$tersenessIntensity <= 0.5} {
append utterance $emotionIntensity " "

}

if {$statePre == "the boy" || $statePre == "the driver"} {
append utterance "feeling " $emotion " about him\""

} else {
append utterance "feeling " $emotion " about it sir\""

}

return $utterance
}

###################
Emotion intensity
###################

Template for reacting to ’Calm down’ and alikes
proc emotionCalm {emotionIntensity} {

set utterance "\""

if {$emotionIntensity > 0.2} {
append utterance "Will do sir\""

} else {
append utterance "I am calm sir\""

}

return $utterance
}

###############
Emotion state
###############

Template for answering questions like ’Why do you feel [emotion]?’
proc emotionWhyCause {emotionIntensityNumber tersenessIntensity defensivenessIntensity
emotionNL emotion statePre influenceStatus statePost responsibleAgentPoss blameworthiness} {

set utterance "\""

if {$emotionIntensityNumber <= 0.2} {
append utterance "I’m not feeling " $emotionNL " sir\""

} elseif {$defensivenessIntensity > 0.75} {
append utterance "That’s personal sir\""

} elseif {$blameworthiness == "blameworthy" && $emotion != "Hope" && $emotion != "Joy"} {
append utterance $statePre " " $influenceStatus " " $statePost " sir that’s "
$responsibleAgentPoss " fault\""

} else {
append utterance $statePre " " $influenceStatus " " $statePost " sir\""

}

return $utterance
}

Template for answering questions like ’Why do you feel [emotion]?’

B.2. LANGUAGE-EMIA.SOAR 91

proc emotionWhyNoResponsibleAgent {emotionIntensityNumber tersenessIntensity
defensivenessIntensity emotion statePre influenceStatus statePost} {

set utterance "\""

if {$emotionIntensityNumber <= 0.2} {
append utterance "I’m not feeling " $emotion " sir\""

} elseif {$defensivenessIntensity > 0.75} {
append utterance "That’s personal sir\""

} else {
append utterance $statePre " " $influenceStatus " " $statePost " sir\""

}

return $utterance
}

Template for answering questions like ’Why do you feel [emotion]?’
proc emotionWhyNoCause {emotionIntensityNumber emotion} {

set utterance "\""

if {$emotionIntensityNumber <= 0.1} {
append utterance "I’m not feeling " $emotion " sir\""

} else {
append utterance "I think because you are playing with my sliders
Please quit it It’s pretty annoying te be thrown between emotions like that\""

}

return $utterance
}

########################
Emotion responsibility
########################

Template for answering questions like ’Who’s responsible for making you feel [emotion]?’
proc emotionResponsibility {tersenessIntensity emotionIntensity emotionNL emotion
responsibleAgent responsibleAgentPoss blameworthiness} {

set utterance "\""

if {$emotionIntensity <= 0.2} {
append utterance "I’m not feeling " $emotionNL " sir\""

} elseif {$tersenessIntensity <= 0.25 && $blameworthiness == "blameworthy" &&
$emotion != "Hope" && $emotion != "Joy"} {
append utterance "That’s " $responsibleAgentPoss " fault sir\""

} else {
append utterance $responsibleAgent " sir\""

}

return $utterance
}

Template for answering questions like ’Who’s responsible for making you feel [emotion]?’
proc emotionNoResponsibility {emotionIntensity emotionNL} {

set utterance "\""

if {$emotionIntensity <= 0.2} {
append utterance "I’m not feeling " $emotionNL " sir\""

} else {
append utterance "No one in particular sir\""

92 APPENDIX B. SOAR AND TCL CODE

}

return $utterance
}

##
MISCELLANEOUS RULES
~~~~~~~~~~~~~~~~~~~
#
##

If there are two emotion-semantics, the one with the highest priority is preferred
sp {top-state*apply*operator*understand-speech*emotion-semantics-selection*priority

(state <s> ^name top-state
^operator <o>)

(<o> ^name understand-speech
^speech-input.interpretation <i>)

(<i> ^emotion-semantics <sem1>
^emotion-semantics <sem2>)

(<sem1> ^priority <p1>)
(<sem2> ^priority {<p2> < <p1>})
-->
(<i> ^emotion-semantics <sem1> > <sem2>

^emotion-semantics <sem1> +)}

If there are two emotion-semantics with the same priority, just pick one
sp {top-state*apply*operator*understand-speech*emotion-semantics-selection*same

(state <s> ^name top-state
^operator <o>)

(<o> ^name understand-speech
^speech-input.interpretation <i>)

(<i> ^emotion-semantics <sem1>
^emotion-semantics {<sem2> <> <sem1>})

(<sem1> ^priority <p1>)
(<sem2> ^priority <p1>)
-->
(<i> ^emotion-semantics <sem1> + =)}

If there are two emotion-semantics, and one of them has an associated emotion with
a cause and the other one an emotion without a cause, the one with the cause is preffered
the one with the cause is preffered
sp {top-state*apply*operator*understand-speech*emotion-semantics-selection*
cause-vs-rebel-without-a-cause

(state <s> ^name top-state
^operator <o>
^appraisals <appr>)

(<o> ^name understand-speech
^speech-input.interpretation <i>)

(<i> ^emotion-semantics <sem1>
^emotion-semantics {<sem2> <> <sem1>})

(<sem1> ^priority <p1>
^prop.cause <state1>)
(<sem2> ^priority <p1>
^prop.cause <state2>)
(<appr> ^<emotion1>.appraisal.object.name <state1>
-^<emotion2>.appraisal.object.name <state2>)
-->
(<i> ^emotion-semantics <sem1> > <sem2>

^emotion-semantics <sem1> +)}

If there are two emotion-semantics, and one of them has an associated emotion with an
intensity and the other one an emotion without an intensity, the one with the intensity

B.2. LANGUAGE-EMIA.SOAR 93

is preffered
sp {top-state*apply*operator*understand-speech*emotion-semantics-selection*
intensity-vs-no-intensity
(state <s> ^name top-state

^operator <o>
^current-state <cs>
^appraisals <appr>)

(<o> ^name understand-speech
^speech-input.interpretation <i>)

(<i> ^emotion-semantics <sem1>
^emotion-semantics {<sem2> <> <sem1>})

(<sem1> ^priority <p1>
^prop.cause <state1>)
(<sem2> ^priority <p1>
^prop.cause <state2>)
(<cs> ^<state1>.emotion.intensity <dummy1>

^<state2>.emotion <emotion2>)
-(<emotion2> ^intensity <dummy2>)
-->
(<i> ^emotion-semantics <sem1> > <sem2>

^emotion-semantics <sem1> + =)}

If both the NLU and the emotion code propose semantics, the emotion semantics is preferred
sp {top-state*apply*operator*understand-speech*emotion-semantics-preference*sem
(state <s> ^name top-state

^operator <o>)
(<o> ^name understand-speech

^speech-input.interpretation <i>)
(<i> ^emotion-semantics <sem>

-^emotion-semantics {<sem2> <> <sem>}
^nlu-interp.sem <sem3>)

-->
(<i> ^semantics <sem> > <sem3>

^semantics <sem> +) }

If both the NLU and the emotion code propose semantics, the emotion semantics is preferred
sp {top-state*apply*operator*understand-speech*emotion-semantics-preference*semantics
(state <s> ^name top-state

^operator <o>)
(<o> ^name understand-speech

^speech-input.interpretation <i>)
(<i> ^emotion-semantics <sem>

-^emotion-semantics {<sem2> <> <sem>}
^nlu-interp.semantics <sem3>)

-->
(<i> ^semantics <sem> > <sem3>

^semantics <sem> +)}

If there’s a comgoal with a surface attribute (probably caused by emotion code),
give it a high preference, otherwise, it might lose from whatever the NLU comes up with
sp {top-state*apply*operator*output-speech*comgoal-surface
(state <s> ^name top-state

^operator <o>)
(<o> ^name output-speech

^goal <cg>)
(<cg> ^surface)
-->
(<o> ^comgoal <cg> + >)}

If there are two speech acts and one of them is incomplete (NLU), the
other one (emotion speech-act) is better
sp {top-state*apply*operator*output-speech*emotion-speech-act

94 APPENDIX B. SOAR AND TCL CODE

(state <s> ^name top-state
^operator <o>)

(<o> ^name understand-speech
^speech-input.interpretation <i>)

(<i> ^speech-act <sa1>
^speech-act {<sa2> <> <sa1>})

(<sa2> ^content.incomplete yes)
-->
(<i> ^speech-act <sa1> + >

^speech-act <sa1> > <sa2>)}

If there are two surface-candidates, the one with the highest priority is preferred
sp {top-state*apply*operator*output-speech*surface-selection*priority

(state <s> ^name top-state
^operator <o>)

(<o> ^name output-speech
^comgoal <cg>)

(<cg> ^surface-candidate <sc1>
^surface-candidate <sc2>)

(<sc1> ^priority <p1>
^output <o1>)
(<sc2> ^priority {<p2> < <p1>}
^output <o2>)
-->
(<cg> ^surface <o1> > <o2>

^surface <o1> + >)}

If there’s one surface-candidate, make it the surface
sp {top-state*apply*operator*output-speech*surface-selection*copy

(state <s> ^name top-state
^operator <o>)

(<o> ^name output-speech
^comgoal <cg>)

(<cg> ^surface-candidate <sc1>
-^surface-candidate {<sc2> <> <sc1>})

(<sc1> ^output <o1>)
-->
(<cg> ^surface <o1> + >)}

TCL prodedure which produces the attribute name for the responsible agent question
proc stateResponsible {emotion} {

set utterance responsible-for-
append utterance $emotion
return $utterance

}

Adds attribute ’^time future’ to sem, when a state has nog happened yet. Necessary
to get the right tense in the answer when asking ’why’ as a follow up question to for
instance ‘‘I’m hopeful’’.
sp {top-state*apply*operator*output-speech*answer-state*why-question*assert*speech-acts*
emotion-future
(state <s> ^name top-state

^operator <o>
^agent-name <me>)

(<o> ^name output-speech
^goal <obl>
^comgoal <cg>)

(<obl> ^action address
^content <csa>)
(<csa> ^action info-req
^content <sem>)

B.3. LEXICON-EMIA.SOAR 95

(<sem> ^type question
^prop <sem1>
^q-slot cause
^reference <ref>)
(<ref> ^attribute << max-feeling feeling >>
^cause <cause>
^source.appraisal.feature.status unconfirmed)
(<sem1> ^type state)
(<cg> ^sem <semcg>)
-->
(write (crlf) TEST (crlf))
(<semcg> ^time future + >)}

B.3 Lexicon-emia.soar

Copyright 2003 Arno Hartholt |Tijmen Joppe Muller
Institute for Creative Technologies
##
###
File : lexicon-emia.soar
Original author(s): Arno Hartholt (hartholt@ict.usc.edu)
Tijmen Joppe Muller (tijmen@avpec1910.nl)
Supervisor : Jonathan Gratch (gratch@ict.usc.edu)
Organization : Institute for Creative Technologies
Created on : November 13, 2003
Last Modified By : Arno Hartholt
Soar Version : 7
Documentation : Interaction on emotions
(http://mullert.adsl.utwente.nl/~stage/reports/emia.pdf)
###___
HISTORY
###
11-17-03 [AH] Document created, only emotions
11-26-03 [AH] Added <states> and <emotion-responsibility-states>
12-04-03 [AH] Added <misc>
12-29-03 [AH] Added new states and some misc words
01-02-04 [AH] Added synonym ’scared’
###
###___
USE
###
Serves as an add-on for lexicon.soar.
<states> sums up all states and the words used to point to a certain state.
<emotions> is used to get to the internal representation of an emotion from
natural language
<emotion-responsibility-states> is not really used for mapping of natural language
to internal representation, but for detecting
the right goal in output-speech
<misc> is a list of words which could be included in one of the original lexicon
entries
###___
ISSUES
###
As both the words ’mark’ and ’secure’ point to the secure attribute in the
original lexicon, this can lead to a misunderstanding of the user, as the
distinction between lz-marked and lz-secure cannot always be made.
###___
KNOWN BUGS
###

96 APPENDIX B. SOAR AND TCL CODE

###___
LIMITATIONS
###
###___
EXTERNAL REFERENCES
###
Used in combination with emotion-states-emia.soar and language-emia.soar
###___
TO DO
###
###___
SUMMARY
###
###
##

echo "\nLoading lexicon-emia.soar\n"

Adds words concerning emotions to the allready existing lexicon
sp {top-state*elaborate*state*add-lexicon-entries*emotions

(state <s> ^name top-state
^agent-name << sgt medic director >>
^lexicon <lexicon>)

-->
(<lexicon> ^states <states>

^emotions <emotions>
^emotion-responsibility-states <emotion-responsibility-states>
^misc <misc>)

(<states> ^maintain-goodwill crowd + &, goodwill + &
^crowd-angry crowd + &, |Anger| + &
^boy-dead boy + &, dead + &
^boy-healthy boy + &, healthy + &
^minor-injuries minor-injuries + &, injuries + &, boy + &
^serious-injuries serious-injuries + &, injuries + &, boy + &
^critical-injuries critical-injuries + &, injuries + &, boy + &
^driver-healthy driver + &, healthy + &
^driver-minor-inj driver + &, minor-injuries + &, injuries + &
^mother-healthy mom + &, healthy + &
^know-boy-health boy + &, healthy + &, known + &
^sqds-in-transit squads + &, transit + &
^lt-in-transit lt + &, transit + &
^lt-at-aa lt + &, aa + &
^lt-at-celic lt + &, celic + &
^sgt-at-aa sgt + &, aa + &
^medic-at-aa medic + &, aa + &
^at-boy-aa boy + &, aa + &
^1st-sqd-at-aa 1st-sqd + &, aa + &
^1st-sqd-at-celic 1st-sqd + &, celic + &
^1st-sqd-at-lz 1st-sqd + &, lz + &
^1st-sqd-in-transit 1st-sqd + &, transit + &
^2nd-sqd-at-aa 2nd-sqd + &, aa + &
^2nd-sqd-at-celic 2nd-sqd + &, celic + &
^3rd-sqd-at-aa 3rd-sqd + &, aa + &
^3rd-sqd-at-celic 3rd-sqd + &, celic + &
^3rd-sqd-at-lz 3rd-sqd + &, lz + &
^4th-sqd-at-aa 4th-sqd + &, aa + &
^4th-sqd-at-celic 4th-sqd + &, celic + &
^4th-sqd-at-lz 4th-sqd + &, lz + &
^4th-sqd-in-transit 4th-sqd + &, transit + &
^at-boy-hospital boy + &, hospital + &
^mom-in-intersect mom + &, intersection + &
^sqd-in-intersect sqd + &, intersection + &

B.3. LEXICON-EMIA.SOAR 97

^medevac-at-aa medevac + &, aa + &
^medevac-at-base medevac + &, base + &
^medevac-called medevac + &, called + &
^medevac-overhead medevac + &, overhead + &
^amb-at-aa amb + &, aa + &
^amb-at-base amb + &, base + &
^ambulance-called amb + &, called + &
^secure-route route + &, secured + &
^aa-secure aa + &, secured + &
^accident-secure accident + &, secured + &
^12-to-4-secure 12-to-4 + &, secured + &
^4-to-8-secure 4-to-8 + &, secured + &
^8-to-12-secure 8-to-12 + &, secured + &
^lz-secure lz + &, secured + &
^lz-marked lz + &, marked + &
^lz-clear lz + &, clear + &
^support-1-6 eagle2-6 + &, support + &
^retain-mass eagle2-6 + &, together + &
^fracture-unit eagle2-6 + &, fractured + &
^1-6-at-celic eagle1-6 + &, celic + &
^hospital-at-tuzla hospital + &, tuzla + &)

(<emotions> ^|Anger| anger + &, angry + &, annoyed + &, irritated + &, pissed + &, mad + &
^|Anxiety| anxiety + &, anxious + &
^|Distress| distress + &, distressed + &, upset + &, disturbed + &,
troubled + &, worried + &, concerned + &, sad & +

^|Fear| fear + &, fearful + &, afraid + &, frightened + &, stressed + &,
pessimistic + &, scared + &

^|Guilt| guilt + &, guilty + &
^|Hope| hope + &, hopeful + &, optimistic + &
^|Joy| joy + &, joyful + &, excited + &, happy + &)

(<emotion-responsibility-states> ^|responsible-for-Anger| anger + &, angry + &, annoyed + &,
irritated + &

^|responsible-for-Anxiety| anxiety + &, anxious + &, worried + &,
concerned + &
^|responsible-for-Distress| distress + &, distressed + &, upset + &,
disturbed + &, troubled + &
^|responsible-for-Fear| fear + &, fearfull + &, afraid + &, frightened + &,
stressed + &, pessimistic + &, scared + &
^|responsible-for-Guilt| guilt + &, guilty + &
^|responsible-for-Hope| hope + &, hopefull + &, optimistic + &
^|responsible-for-Joy| joy + &, joyfull + &, exited + &, happy + &)

(<misc> ^crowd crowd + &, bosnians + &
^goodwill goodwill + &
^known known + &, know + &
^intersection intersection + &
^together together + &
^sqd squad + &, sqd + &
^fractured fracture + &, fractured + &, split + &, splitting + &
^eagle1-6 eagle1-6 + &
^injuries injuries + &, injured + &
^call called + &)}

98 APPENDIX B. SOAR AND TCL CODE

Appendix C

Test plans

The statements between < and > refer to unknown identifier names, they are
randomly choosen by the Soar system. It is tried to choose them in a way it is
clear what complex object’s they refer to.

C.1 Phase 1

C.1.1 top-ps*emia*elaborate*lookup-table*template

Conditions

None.

Test plan

1. Add rule to the system.

Expected results

1. Creation of WME (S1 ^emia-template-filling <emia-template-filling>).

2. Creation of WME (<emia-template-filling> ^nl-emotion <nl-emotion>)

(equivalent for the other eight ^nl- attributes).

Results

All expected results were met.

C.1.2 top-ps*emia*elaborate*emotion-state*max-feeling

Conditions

1. Initialized agent sergeant is used as testing environment; the intensity for
hope is 0.57, the intensity for distress is 0.56 and the intensity for the
other emotions are about 0.

99

100 APPENDIX C. TEST PLANS

Test plan

1. Add rule to the system.

2. Bring intensity of emotion hope below the intensity of distress.

3. Bring intensity of emotion hope equal to the intensity of distress.

Expected results

After first step of the test plan:

1. Creation of WME (<current-state> ^<new1> <newname1>).

2. Creation of WME (<current-state> ^<new2> <newname2>).

3. Creation of WME (<newname1> ^attribute max-feeling).

4. Creation of WME (<newname1> ^belief true).

5. Creation of WME (<newname1> ^polarity positive).

6. Creation of WME (<newname1> ^value |Hope|).

7. Creation of trivial WME’s concerning object <newname1>.

8. Creation of object <newname2>, the inverse of <newname1>.

After second step of the test plan:

1. Rejection of object <newname1>.

2. Rejection of object <newname2>.

3. Creation of WME (<current-state> ^<new3> <newname3>).

4. Creation of WME (<current-state> ^<new4> <newname4>).

5. Creation of WME (<newname3> ^attribute max-feeling).

6. Creation of WME (<newname3> ^belief true).

7. Creation of WME (<newname3> ^polarity positive).

8. Creation of WME (<newname3> ^value |Distress|).

9. Creation of trivial WME’s concerning object <newname3>.

10. Creation of object <newname4>, the inverse of <newname3>.

After third step of the test plan:

1. Rejection of object <newname3>.

2. Rejection of object <newname4>.

3. Creation of WME (<current-state> ^<new5> <newname5>).

4. Creation of WME (<current-state> ^<new6> <newname6>).

C.1. PHASE 1 101

5. Creation of WME (<newname5> ^attribute max-feeling).

6. Creation of WME (<newname5> ^belief true).

7. Creation of WME (<newname5> ^polarity positive).

8. Creation of WME (<newname5> ^value emotion), where emotion is a
random pick between |Hope| and |Distress|.

9. Creation of trivial WME’s concerning object <newname5>.

10. Creation of object <newname6>, the inverse of <newname5>.

Results

All expected results were met.

C.1.3 top-ps*emia*elaborate*emotion-state*feeling*true

Conditions

1. Initialized agent sergeant is used as testing environment; the intensity for
hope is 0.57, the intensity for distress is 0.56 and the intensity for the
other emotions are about 0.

Test plan

1. Add rule to the system.

2. Bring intensity of emotion distress to about 0.

3. Bring intensity of emotion fear to about 0.5.

Expected results

After first step of the test plan:

1. Creation of WME (<current-state> ^<new1> <newname1>).

2. Creation of WME (<current-state> ^<new2> <newname2>).

3. Creation of WME (<newname1> ^attribute feeling).

4. Creation of WME (<newname1> ^belief true).

5. Creation of WME (<newname1> ^polarity positive).

6. Creation of WME (<newname1> ^value |Distress|).

7. Creation of trivial WME’s concerning object <newname1>.

8. Creation of object <newname2>, the inverse of <newname1>.

9. Creation of object, equal to <newname1>, but with ^value |Hope|.

10. No creation of any other object with ^attribute feeling.

102 APPENDIX C. TEST PLANS

After second step of the test plan:

1. Rejection of object <newname1>.

2. Rejection of object <newname2>.

After third step of the test plan:

1. Creation of WME (<current-state> ^<new3> <newname3>).

2. Creation of WME (<current-state> ^<new4> <newname4>).

3. Creation of WME (<newname3> ^attribute feeling).

4. Creation of WME (<newname3> ^belief true).

5. Creation of WME (<newname3> ^polarity positive).

6. Creation of WME (<newname3> ^value |Fear|).

7. Creation of trivial WME’s concerning object <newname3>.

8. Creation of object <newname4>, the inverse of <newname3>.

Since the design for all seven emotions in the system are equal, we can safely
assume that if the above tests are executed correctly, the creation of emotion
states for all emotions are covered by this rule.

Results

All expected results were met.

C.1.4 top-ps*emia*elaborate*emotion-state*feeling*false

Conditions

1. Initialized agent sergeant is used as testing environment; the intensity for
hope is 0.57, the intensity for distress is 0.56 and the intensity for the
other emotions are about 0.

Test plan

1. Add rule to the system.

2. Bring intensity of emotion distress to about 0.

3. Bring intensity of emotion fear to about 0.5.

C.1. PHASE 1 103

Expected results

After first step of the test plan:

1. Creation of WME (<current-state> ^<new1> <newname1>).

2. Creation of WME (<current-state> ^<new2> <newname2>).

3. Creation of WME (<newname1> ^attribute feeling).

4. Creation of WME (<newname1> ^belief true).

5. Creation of WME (<newname1> ^polarity negative).

6. Creation of WME (<newname1> ^value |Fear|).

7. Creation of trivial WME’s concerning object <newname1>.

8. Creation of object <newname2>, the inverse of <newname1>.

9. Creation of objects, equal to <newname1>, but with ^value |Anger|,
^value |Anxiety|, ^value |Guilt|, ^value |Joy|.

10. No creation of any other object with ^attribute feeling.

After second step of the test plan:

1. Creation of WME (<current-state> ^<new3> <newname3>).

2. Creation of WME (<current-state> ^<new4> <newname4>).

3. Creation of WME (<newname3> ^attribute feeling).

4. Creation of WME (<newname3> ^belief true).

5. Creation of WME (<newname3> ^polarity negative).

6. Creation of WME (<newname3> ^value |Distress|).

7. Creation of trivial WME’s concerning object <newname3>.

8. Creation of object <newname4>, the inverse of <newname3>.

After third step of the test plan:

1. Rejection of object <newname1>.

2. Rejection of object <newname2>.

Since the design for all seven emotions in the system are equal, we can safely
assume that if the above tests are executed correctly, the creation of emotion
states for all emotions are covered by this rule.

Results

All expected results were met.

104 APPENDIX C. TEST PLANS

C.1.5 top-state*apply*operator*understand-speech*nlu*
how-do-you-feel

Conditions

none

Test plan

1. Add rule to the system.

2. Ask “How do you feel?”.

3. Ask “How do you feel about the boy?”.

Expected results

After first step of test plan: rule should not fire. After second step of test plan:

1. Creation of WME (^interpretation mood question)

2. Creation of WME (^interpretation emotion-semantics <emotion-semantics>)

3. Creation of WME (<emotion-semantics> ^type question)

4. Creation of WME (<emotion-semantics> ^q-slot value)

5. Creation of WME (<emotion-semantics> ^prop <sem>)

6. Creation of WME (<sem> ^attribute max-feeling)

7. Creation of WME (<sem> ^type state)

After third step of test plan: rule should not fire

Since the design of this rule is identical to that of ...*nlu*whats-wrong-with-you,
...*nlu*do-you-feel-emotion, ...*nlu*calm-down and ...*nlu*relax, we
can safely assume that if the above tests are executed correctly, all four rules
are covered.

Results

All expected results were met.

C.1.6 top-state*elaborate*state*add-lexicon-entries*emotions

Conditions

none

Test plan

1. Add rule to the system.

C.2. PHASE 2 105

Expected results

After first step of test plan:

1. Creation of WME (^lexicon states <states>)

2. Creation of WME (^lexicon emotions <emotions>)

3. Creation of WME (^lexicon emotion-responsibility-states <emotion-responsibility-states>)

4. Creation of WME (^lexicon misc <misc>)

5. Creation of WME (<states> ^maintain-goodwill crowd) (equivalent
for other 50 states)

6. Creation of WME (<emotions> ^|Anger| anger)

7. Creation of WME (<emotions> ^|Anger| angry)

8. Creation of WME (<emotions> ^|Anger| annoyed)

9. Creation of WME (<emotions> ^|Anger| irritated) (equivalent for
other 6 emotions)

10. Creation of WME (<emotion-responsibility-states> ^|responsible-for-Anger| anger)

11. Creation of WME (<emotion-responsibility-states> ^|responsible-for-Anger| angry)

12. Creation of WME (<emotion-responsibility-states> ^|responsible-for-Anger| annoyed)

13. Creation of WME (<emotion-responsibility-states> ^|responsible-for-Anger| irritated)

(equivalent for other 6 emotions)

14. Creation of WME (<misc> ^crowd crowd) (equivalent for other 3 mis-
celanious words)

Results

All results were met.

C.2 Phase 2

C.2.1 top-ps*emia*elaborate*lookup-table*static-content*template

Conditions

1. Rule top-ps*emia*elaborate*lookup-table*template.

Test plan

1. Add rule to the system.

106 APPENDIX C. TEST PLANS

Expected results

1. Creation of WME (<nl-emotion> ^|Anger| |angry| (equivalent for the
other six emotion translations).

2. Creation of WME (<nl-intensity-lower> ^0 |"a little"| (equiva-
lent for the other four lower intensity bound translations).

3. Creation of WME (<nl-intensity-upper> ^0.25 |"a little"| (equiv-
alent for the other four upper intensity bound translations).

4. Creation of WME (<nl-polarity> ^negative |not|.

5. Creation of WME (<nl-responsible_agent> ^1sldr |Johnson| (equiv-
alent for the other seven responsible agent pronoun translations).

6. Creation of WME (<nl-responsible_agent-poss> ^1sldr |"Johnson’s"|

(equivalent for the seven responsible agent possesive pronoun transla-
tions).

7. Creation of WME (<nl-state-pre> ^boy-dead |"the boy"| (equiva-
lent for the other 50 state translations).

8. Creation of WME (<nl-state-post> ^boy-dead |dead| (equivalent for
the other 50 state translations).

9. Creation of WME (<nl-status> ^confirmed |being| (equivalent for
the other status translation).

Results

For this rule, only indirect testing was possible as the Soar GUI isn’t able to deal
with quotes correctly, which results in an inability to show the corresponding
WME’s. Testing showed the WME’s were present internally though, so we can
state that all expected results were met.

C.2.2 top-ps*emia*elaborate*lookup-table*dynamic-content*
medic

Conditions

1. Agent sergeant is used as testing environment.

2. Rule top-ps*emia*elaborate*lookup-table*template.

Test plan

1. Add rule to the system.

Expected results

1. Creation of WME (<nl-responsible_agent> ^medic |Tucci|.

2. Creation of WME (<nl-responsible_agent-poss> ^medic |Tucci’s|.

C.2. PHASE 2 107

Results

Both expected results were met.

C.2.3 top-ps*emia*elaborate*lookup-table*dynamic-content*mom

Conditions

1. Agent sergeant is used as testing environment.

2. Rule top-ps*emia*elaborate*lookup-table*template.

Test plan

1. Add rule to the system.

Expected results

1. Creation of WME (<nl-responsible_agent> ^mom |The mother|.

2. Creation of WME (<nl-responsible_agent-poss> ^mom |the mother’s|.

Results

Both expected results were met.

C.2.4 top-ps*emia*elaborate*lookup-table*dynamic-content*sgt

Conditions

1. Agent sergeant is used as testing environment.

2. Rule top-ps*emia*elaborate*lookup-table*template.

Test plan

1. Add rule to the system.

Expected results

1. No creation of WME’s.

Results

The expected result was met.

C.2.5 top-ps*emia*elaborate*lookup-table*dynamic-content*self

Conditions

1. Agent sergeant is used as testing environment.

2. Rule top-ps*emia*elaborate*lookup-table*template.

108 APPENDIX C. TEST PLANS

Test plan

1. Add rule to the system.

Expected results

1. Creation of WME (<nl-responsible_agent> ^sgt |I am|.

2. Creation of WME (<nl-responsible_agent-poss> ^sgt |my|.

Results

Both expected results were met.

C.2.6 top-ps*emia*emotion-state*add*causality

Conditions

1. Initialized agent sergeant is used as testing environment; the intensity for
hope is 0.57, the intensity for distress is 0.56 and the intensity for the other
emotions are about 0. The appraisal with highest intensity concerning the
emotion hope appraises the state aa-secure.

2. Rule top-ps*emia*elaborate*emotion-state*max-feeling

Test plan

1. Add rule to the system.

Expected results

1. Creation of WME (<max-feeling-emotion-state> ^cause aa-secure).

2. Creation of WME (<max-feeling-emotion-state> ^source <appraisal-object>).

Since the construction for the feeling emotion state is equal to that of the
max-feeling emotion states, we can safely assume that if the above tests are
executed correctly, the causality is also added correctly to the feeling emotion
states.

Results

All expected results were met.

C.2.7 top-state*apply*operator*understand-speech*nlu*
how-do-you-feel-about-state*one

Conditions

Rule top-state*elaborate*state*add-lexicon-entries*emotions

C.2. PHASE 2 109

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the crowd?”

3. Ask “How do you feel about the boy?”

4. Ask a few samples at random.

Expected results

After first step of test plan: rule should not fire. After second step of test plan:

1. Creation of WME (^interpretation mood question)

2. Creation of WME (^interpretation emotion-semantics <emotion-semantics>)

3. Creation of WME (<emotion-semantics> ^type question)

4. Creation of WME (<emotion-semantics> ^q-slot value)

5. Creation of WME (<emotion-semantics> ^priority 1)

6. Creation of WME (<emotion-semantics> ^prop <sem>)

7. Creation of WME (<sem> ^attribute feeling-about-state)

8. Creation of WME (<sem> ^type state)

9. Creation of WME (<sem> ^cause maintain-goodwill)

After third step of test plan: idem as step two, but mapping to all states
concerning the boy, choosing one of them for the cause:

1. boy-dead

2. boy-healthy

3. minor-injuries

4. serious-injuries

5. critical-injuries

6. know-boy-health

7. at-boy-aa

8. at-boy-hospital

After fourth step of test plan: idem as step two, but mapping cause to the
appropiate state.

The fourth step of the test plan is a compromise between testing all states
and being time efficient. Together with the testing of similar rules for two and
three keywords for states, and the lexicon testing, this should provide enough
security about the correctness of the code.

110 APPENDIX C. TEST PLANS

Results

The third part of the test plan went not according to plan, as the states
minor-injuries, serious-injuries and critical-injuries were pointed to
twice and the state driver-minor-inj also mapped to “boy”. This is due to
how te original lexicon was set up, namely diveded into various domains. As
several domains must be used by the emotion code in order to find the nec-
essary synonyms, the code scans all the domains in the lexicon. By adding a
specific states domain, this too is included in the search and so “boy” can
lead to “minor-injuries” and from there to either to the state minor-injuries

or driver-minor-inj. To avoid these situations the Soar code for this rule
(and the similar rules for two and three keywords) has been changed, so it will
exclude the states domain. Also, the emotion-responsibility-states entry
is excluded as this led to conflicts when using emotions for state detection.

Furthermore, there were some minor issues with both the existing as the
emotion lexicon, like spelling errors and missing synonyms. These were fixed.

C.2.8 top-state*apply*operator*understand-speech*nlu*
how-do-you-feel-about-state*two

Conditions

Rule top-state*elaborate*state*add-lexicon-entries*emotions

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the boy being injured?”.

3. Ask “How do you feel about the driver being healthy?”.

4. Ask “How do you feel about the route being secured?”.

5. Ask a few samples at random.

Expected results

After first step of test plan: rule should not fire. After second step of test plan:

1. Creation of WME (^interpretation mood question)

2. Creation of WME (^interpretation emotion-semantics <emotion-semantics>)

3. Creation of WME (<emotion-semantics> ^type question)

4. Creation of WME (<emotion-semantics> ^q-slot value)

5. Creation of WME (<emotion-semantics> ^priority 2)

6. Creation of WME (<emotion-semantics> ^prop <sem>)

7. Creation of WME (<sem> ^attribute feeling-about-state)

8. Creation of WME (<sem> ^type state)

C.2. PHASE 2 111

9. Creation of WME (<sem> ^cause [min/ser/crit]-injuries)

After third step of test plan: idem as step two, but mapping cause to state
driver-healthys.

After fourth step of test plan: idem as step two, but mapping cause to state
route-secure.

After fith step of test plan: idem as step two, but mapping cause to the
appropiate state.

As the principal for all other states is equivalent and the lexicon rule has
already been tested, we can savely assume that if the above tests are executed
correctly, this holds true for all states.

Results

There were some minor issues with both the existing as the emotion lexicon,
like spelling errors and missing synonyms. These were fixed.

C.2.9 top-state*apply*operator*understand-speech*nlu*
how-do-you-feel-about-state*three

Conditions

Rule top-state*elaborate*state*add-lexicon-entries*emotions

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the boy having serious injuries?”.

3. Ask “How do you feel about the minor injuries of the boy?”.

4. Ask “How do you feel about the driver having minor injuries?”.

5. Ask a few samples at random.

Expected results

After first step of test plan: rule should not fire. After second step of test plan:

1. Creation of WME (^interpretation mood question)

2. Creation of WME (^interpretation emotion-semantics <emotion-semantics>)

3. Creation of WME (<emotion-semantics> ^type question)

4. Creation of WME (<emotion-semantics> ^q-slot value)

5. Creation of WME (<emotion-semantics> ^priority 3)

6. Creation of WME (<emotion-semantics> ^prop <sem>)

7. Creation of WME (<sem> ^attribute feeling-about-state)

8. Creation of WME (<sem> ^type state)

112 APPENDIX C. TEST PLANS

9. Creation of WME (<sem> ^cause serious-injuries)

After third step of test plan: idem as step two, but mapping cause to state
minor-injuries.

After fourth step of test plan: idem as step two, but mapping cause to state
driver-minor-inj.

After fifth step of test plan: idem as step two, but mapping cause to the
appropiate state.

As the principal for all other states is equivalent and the lexicon rule has
already been tested, we can savely assume that if the above tests are executed
correctly, this holds true for all states.

Results

There were some minor issues with both the existing as the emotion lexicon,
like spelling errors and missing synonyms. These were fixed.

C.2.10 top-state*apply*operator*understand-speech*nlu*
do-you-feel-emotion

Conditions

Rule top-state*elaborate*state*add-lexicon-entries*emotions

Test plan

1. Add rule to the system.

2. Ask “Why do you feel guilty?”

3. Ask “Who’s responsible for making you feel angry?”

4. Ask “Are you angry?”.

5. Ask “Do you feel anger?”.

6. Ask “You seem worried”.

7. Ask “You look guilty”.

8. Ask a few samples at random.

Expected results

After the first, second and third step of test plan: rule should not fire. After
fourth step of test plan:

1. Creation of WME (^interpretation mood question)

2. Creation of WME (^interpretation emotion-semantics <emotion-semantics>)

3. Creation of WME (<emotion-semantics> ^type question)

4. Creation of WME (<emotion-semantics> ^q-slot polarity)

C.2. PHASE 2 113

5. Creation of WME (<emotion-semantics> ^prop <sem>)

6. Creation of WME (<sem> ^attribute feeling)

7. Creation of WME (<sem> ^type state)

8. Creation of WME (<sem> ^value |Anger|)

After fifth step of test plan: idem as step four
After sixth step of test plan: idem as step four, but mapping value to state

|Distress|.
After seventh step of test plan: idem as step four, but mapping value to

state |Guilt|.
After eighth step of test plan: idem as step four, but mapping value to the

appropiate emotion.
As the principal for all emotions is equivalent and the lexicon rule has already

been tested, we can savely assume that if the above tests are executed correctly,
this holds true for all emotions.

Results

As Soar is case sensive, the question “Why do you feel guilty” did trigger this
rule, because it didn’t contain the word “why”, but “Why”. It will be stated
that alle sentences should be typed in lower case characters. All other results
were met.

C.2.11 top-state*apply*operator*understand-speech*nlu*
why-do-you-feel-emotion

Conditions

Rule top-state*elaborate*state*add-lexicon-entries*emotions

Test plan

1. Add rule to the system.

2. Ask “Why do you feel guilty?”

3. Ask “Why are you worried?”

4. Ask a few samples at random.

Expected results

After the first step of test plan: rule should not fire. After second step of test
plan:

1. Creation of WME (^interpretation mood question)

2. Creation of WME (^interpretation emotion-semantics <emotion-semantics>)

3. Creation of WME (<emotion-semantics> ^type question)

4. Creation of WME (<emotion-semantics> ^q-slot cause)

114 APPENDIX C. TEST PLANS

5. Creation of WME (<emotion-semantics> ^prop <sem>)

6. Creation of WME (<sem> ^attribute feeling)

7. Creation of WME (<sem> ^type state)

8. Creation of WME (<sem> ^value |Guilt|)

After third step of test plan: idem as step four, but mapping value to state
|Distress|.

Results

The question “Why do you feel guilty?” let to the firing of both ...*nlu*

why-do-you-feel-emotion and ...*nlu*responsible-for-emotion*guil, be-
cause of overlapping keywords. It showed that the latter scanned for certain
keywords which were’nt necessary. This was fixed. All other results were met.

C.2.12 top-state*apply*operator*understand-speech*nlu*
responsible-for-emotion
proc stateResponsible

As the rule top-state*apply*operator*understand-speech*nlu*responsible-for-emotion
is used together with proc stateResponsible, we test them in one test.

Conditions

Rule top-state*elaborate*state*add-lexicon-entries*emotions

Test plan

1. Add rule to the system.

2. Ask “Whos responsible for making you feel hopeful?”

3. Ask a few samples at random.

Expected results

After the first step of test plan: rule should not fire. After second step of test
plan:

1. Creation of WME (^interpretation mood question)

2. Creation of WME (^interpretation emotion-semantics <emotion-semantics>)

3. Creation of WME (<emotion-semantics> ^type question)

4. Creation of WME (<emotion-semantics> ^q-slot value)

5. Creation of WME (<emotion-semantics> ^prop <sem>)

6. Creation of WME (<sem> ^attribute responsible-for-Hope)

7. Creation of WME (<sem> ^type state)

C.3. PHASE 3 115

After third step of test plan: idem as step four, but mapping attribute to
state |Distress|.

As the design is similar for the rule ...nlu*responsible-for-emotion*guilt,
we can savely assume that if the above tests are executed correctly and if during
the fourth step these rules are coverd, this holds true for both rules.

Results

All expected results were met.

C.3 Phase 3

C.3.1 top-ps*emia*emotion-state*add*causality*to*negation

Conditions

1. Initialized agent sergeant is used as testing environment; the intensity for
hope is 0.57, the intensity for distress is 0.56 and the intensity for the other
emotions are about 0. The appraisal with highest intensity concerning the
emotion hope appraises the state at-boy-hospital.

2. Rule top-ps*emia*elaborate*emotion-state*max-feeling

3. Rule top-ps*emia*emotion-state*add*causality

Test plan

1. Add rule to the system.

Expected results

1. Creation of WME (<max-feeling-emotion-state-negated> ^cause at-boy-hospital).

2. Creation of WME (<max-feeling-emotion-state-negated> ^source <appraisal-object>).

Since the construction for the feeling emotion state is equal to that of the
max-feeling emotion states, we can safely assume that if the above tests are
executed correctly, the causality is also added correctly to the feeling emotion
states.

Results

All expected results were met.

C.3.2 top-ps*emia*elaborate*emotion-state*responsible-for-[emotion]

Conditions

1. Initialized agent sergeant is used as testing environment; the intensity for
hope is 0.57, the intensity for distress is 0.56 and the intensity for the other
emotions are about 0. The appraisal with highest intensity concerning
the emotion hope appraises the state at-boy-hospital. The responsible
agent for this state is the medevac.

116 APPENDIX C. TEST PLANS

2. Rule top-ps*emia*elaborate*emotion-state*feeling

3. Rule top-ps*emia*emotion-state*add*causality

Test plan

1. Add rule to the system.

Expected results

1. Creation of WME (<current-state> ^<new1> <newname1>).

2. Creation of WME (<current-state> ^<new2> <newname2>).

3. Creation of WME (<newname1> ^attribute responsible-for-Anger).

4. Creation of WME (<newname1> ^belief true).

5. Creation of WME (<newname1> ^cause praiseworthy).

6. Creation of WME (<newname1> ^polarity positive).

7. Creation of WME (<newname1> ^value medevac).

8. Creation of trivial WME’s concerning object <newname1>.

9. Creation of object <newname2>, the inverse of <newname1>.

10. Creation of objects, equal to <newname1> and their inverses, but with
^attribute responsible-for-Anxiety, ^attribute responsible-for-Distress,
^attribute responsible-for-Fear, ^attribute responsible-for-Hope,
^attribute responsible-for-Guilt, ^attribute responsible-for-Joy,
only if a causality exists.

Results

All expected results were met.

C.3.3 top-state*apply*operator*understand-speech*
emotion-semantics-priority

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

how-do-you-feel-about-state*two or top-state*apply*operator*understand-
speech*nlu*how-do-you-feel-about-state*three

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the boy?”.

3. Ask “How do you feel about the boy being injured?”.

4. Ask “How do you feel about the driver having minor injuries?”

C.3. PHASE 3 117

Expected results

After the first and second step of the test plan, the rule should not fire.
After the third step of the test plan, there are only emotion-semantics

attributes with priority 2.
Afther the fourth step of the test plan, there are only emotion-semantics

attributes with priority 3.

Results

All expected results were met.

C.3.4 top-state*apply*operator*understand-speech*
emotion-semantics-selection*same

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-state*two
or top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-
state*three

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the boy?”.

3. Ask “How do you feel about the boy being injured?”.

4. Ask “How do you feel about the driver having minor injuries?”

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the test plan, there’s eventually only one emotion-semantics

with has priority 1.
After the third step of the test plan, there’s eventually only one emotion-semantics

with has priority 2.
After the fourth step of the test plan, there’s eventually only one emotion-semantics

with has priority 3.

Results

All expected results were met.

C.3.5 top-state*apply*operator*understand-speech*
emotion-semantics-selection*cause-vs-rebel-without-a-cause

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-state*two
or top-state*apply*operator*understand-speech*nlu*how-do-you-feel-about-
state*three

118 APPENDIX C. TEST PLANS

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the boy?”.

3. Ask “How do you feel about the boy being injured?”.

4. Ask “How do you feel about the driver having minor injuries?”

Expected results

After the first step of the test plan, the rule should not fire.
The other steps should result in all emotion-states which have cause; all

other states should be discarded.

Results

All expected results were met.

C.3.6 top-state*apply*operator*understand-speech*
emotion-semantics-selection*intensity-vs-no-intensity

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

how-do-you-feel-about-state*two or top-state*apply*operator*understand-
speech*nlu*how-do-you-feel-about-state*three

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the boy?”.

3. Ask “How do you feel about the boy being injured?”.

4. Ask “How do you feel about the driver having minor injuries?”

Expected results

After the first step of the test plan, the rule should not fire.
The other steps should result in all emotion-states which have an intensity;

all other states should be discarded.

Results

All expected results were met.

C.4. PHASE 4 119

C.3.7 top-state*apply*operator*understand-speech*
emotion-semantics-preference*sem

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

how-do-you-feel-about-state*two or top-state*apply*operator*understand-
speech*nlu*how-do-you-feel-about-state*three

Test plan

1. Add rule to the system.

2. Ask “How do you feel about the boy?”.

3. Ask “How do you feel about the boy being injured?”.

4. Ask “How do you feel about the driver having minor injuries?”

Expected results

After the first step of the test plan, the rule should not fire.
The other steps should result in one semantics under interpretation, with

the same attributes and values as emotion-semantics
This rule is simular to ...*emotion-semantics-preference*semantics,

so if these test are executed correctly, we can savely assume both rules arre
correct.

Results

All expected results were met.

C.4 Phase 4

This section will exclusively test the code which is responsible for selecting
and outputting the agents’ utterances. As an utterance is being produced by
the combination of both a Soar rule and a TCL template, these will be tested
together.

The first two tests will test all mechanisms of the template. As all the
templates are constructed according to the same design, subsequent template
features will only be tested randomly for the sake of time.

All the rules are dependend on the rules below. Additional depencies will
be depicted in the according subsection.

The Initiative value of the agent is set to zero.

1. Rule top-state*apply*operator*understand-speech*nlu*how-do-you-feel
or top-state*apply*operator*understand-speech*nlu*whats-wrong-with-you

2. Rule top-state*apply*operator*understand-speech*emotion-semantics-priority

3. Rule top-state*apply*operator*understand-speech*emotion-semantics-selection

4. Rule top-state*apply*operator*understand-speech*emotion-semantics-preference*sem

120 APPENDIX C. TEST PLANS

5. Rule top-state*apply*operator*understand-speech*

emotion-semantics-preference*semantics

6. Rule top-state*apply*operator*understand-speech*

emotion-semantics-interpretation-semantics

7. Rule top-ps*emia*elaborate*lookup-table*static-content*template

8. Rule top-ps*emia*elaborate*lookup-table*dynamic-content*medic

9. Rule top-ps*emia*elaborate*lookup-table*dynamic-content*mom

10. Rule top-ps*emia*elaborate*lookup-table*dynamic-content*sgt

11. Rule top-ps*emia*elaborate*lookup-table*dynamic-content*self

C.4.1 top-state*apply*operator*output-speech*
answer-how-do-you-feel*cause
proc emotionTypeFeelCause

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*how-do-you-feel

2. Rule top-ps*emia*elaborate*emotion-state*max-feeling

3. Rule top-ps*emia*emotion-state*add*source

4. Rule top-ps*emia*emotion-state*add*cause

Test plan

1. Add rules to the system.

2. Ask “How do you feel?”.

3. Set Hope < 0.2, ask “How do you feel?”

4. Set Distress > 0.75, ask “How do you feel?”

5. Set Distress > 0.25 < 0.5, ask “How do you feel?”

6. Set Distress > 0.2 < 0.25, ask “How do you feel?”

7. Set Terseness> 0.2, ask “How do you feel?”

8. Set Terseness > 0.6, ask “How do you feel?”

9. Set Distress < 0.2, ask “How do you feel?”

C.4. PHASE 4 121

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “I’m hopeful because

the boy will probably be treated at the hospital”.
After the third step of the plan, the agent should utter “I’m distressed

because the boy is critically injured”.
After the fourth step of the plan, the agent should utter “I’m very distressed

because the boy is critically injured”.
After the fifth step of the plan, the agent should utter “I’m pretty distressed

because the boy is critically injured”.
After the sixth step of the plan, the agent should utter “I’m a bit distressed

because the boy is critically injured”.
After the seventh step of the plan, the agent should utter “I’m a bit dis-

tressed”.
After the eigth step of the plan, the agent should utter “I’m distressed”.
After the ninth step of the plan, the agent should utter “I’m fine sir”.

Results

All expected results were met, although sometimes the agent answers twice,
either directly after each other, or seperated by the phrase “Well”. This will be
reported as a bug.

C.4.2 top-state*apply*operator*output-speech*
answer-how-do-you-feel*no-cause
proc emotionTypeFeelNoCause

Conditions

1. Hope set to 0

2. Distress set to 0

3. Guilt set > 0 < 0.2

4. Rule top-state*apply*operator*understand-speech*nlu*how-do-you-feel

5. Rule top-ps*emia*elaborate*emotion-state*max-feeling

Test plan

1. Add rules to the system.

2. Ask “How do you feel?”.

3. Set Guilt > 0.2 < 0.25, ask “How do you feel?”

4. Set Guilt > 0.25 < 0.5, ask “How do you feel?”

5. Set Guilt > 0.5 < 0.75, ask “How do you feel?”

6. Set Guilt > 0.75, ask “How do you feel?”

7. Set Terseness > 0.6, ask “How do you feel?”

122 APPENDIX C. TEST PLANS

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “I’m fine sir”.
After the third step of the plan, the agent should utter “I’m a little guilty”.
After the fourth step of the plan, the agent should utter “I’m pretty guilty”.
After the fifth step of the plan, the agent should utter “I’m guilty”.
After the sixth step of the plan, the agent should utter “I’m very guilty”.
After the seventh step of the plan, the agent should utter “I’m guilty”.

Results

All expected results were met. It is noted that the template doesnt produce
good natural language for “guilt”. This is something to be looked at.

C.4.3 apply*output-speech*answer-do-you-feel-emotion*cause
proc emotionTypeEmotionCause

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*how-do-you-feel

2. Rule top-ps*emia*elaborate*emotion-state*feeling*true

3. Rule top-ps*emia*elaborate*emotion-state*feeling*false

4. Rule top-ps*emia*emotion-state*add*source

5. Rule top-ps*emia*emotion-state*add*cause

Test plan

1. Add rules to the system.

2. Ask “Do you feel hopeful?”.

3. Ask “Are you distressed?”.

4. Set Terseness set to> 0.25, ask “Do you feel concerned?”

5. Set Distress set to > 0.1 < 0.2, ask “Are you distressed?”

6. Ask similar question with emotion and terseness values changed randomly

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “I do sir because

the boy will probably be treated at the hospital”.
After the third step of the plan, the agent should utter “I do sir because the

boy is critically injured”.
After the fourth step of the plan, the agent should utter “I sure do sir”.
After the fifth step of the plan, the agent should utter “No sir”.
After the sixth step of the plan, the agent should utter according to the

question

C.4. PHASE 4 123

Results

All expected results were met. It is noted that the template doesnt differentiate
between the verbs “are” and “feel”. This is something to be looked at.

C.4.4 apply*output-speech*answer-do-you-feel-emotion*no-cause
proc emotionTypeEmotionNoCause

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*how-do-you-feel

2. Rule top-ps*emia*elaborate*emotion-state*feeling*true

3. Rule top-ps*emia*elaborate*emotion-state*feeling*false

Test plan

1. Add rules to the system.

2. Ask “Are you happy?”

3. Set Anxiety > 0.1 < 0.2, ask “Do you feel anxious?”

4. Ask similar question with emotion and terseness values changed randomly

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “Not at all sir”.
After the third step of the plan, the agent should utter “No sir”.
After the fourth step of the plan, the agent should utter according to the

question

Results

All expected results were met.

C.4.5 top-state*apply*operator*output-speech*
answer-emotion-about-state*cause
proc emotionTypeState

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

how-do-you-feel-about-state*one or top-state*apply*operator*understand-speech*nlu*
how-do-you-feel-about-state*two or top-state*apply*operator*understand-speech*nlu*
how-do-you-feel-about-state*three

2. Rule top-ps*emia*elaborate*emotion-state*feeling-about-state

124 APPENDIX C. TEST PLANS

Test plan

1. Add rules to the system.

2. Ask “How do you feel about the boy being critical injured?”

3. Set Hope to > 0.75, ask “How do you feel about the boy going to the
hospital?”

4. Ask similar question with emotion and terseness values changed randomly

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “I’m distressed

about it sir”.
After the third step of the plan, the agent should utter “I’m very hopeful

about it sir”.
After the fourth step of the plan, the agent should utter according to the

question

Results

It came to light that the Terseness attribute isn’t always present. This prevents
our rules from being fired. It will reported as a bug to the MRE team. Next to
that, the expected result only turned up now and then. This will be treated as
a bug.

C.4.6 top-state*apply*operator*output-speech*
answer-emotion-about-state*no-cause

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

how-do-you-feel-about-state*one or top-state*apply*operator*understand-speech*nlu*
how-do-you-feel-about-state*two or top-state*apply*operator*understand-speech*nlu*
how-do-you-feel-about-state*three

2. Rule top-ps*emia*elaborate*emotion-state*feeling-about-state

Test plan

1. Add rules to the system.

2. Ask “How do you feel about the route being secured?”

3. Ask “How do you feel about the crowd?”

Expected results

After the first step of the test plan, the rule should not fire.
After the second and third step of the plan, the agent should utter “That’s

not an issue right now sir”.

C.4. PHASE 4 125

Results

All the expected results were met.

C.4.7 top-state*apply*operator*output-speech*answer-calm-down
proc emotionCalm

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*calm-down or
top-state*apply*operator*understand-speech*nlu*relax

2. Rule top-ps*emia*elaborate*emotion-state*feeling-about-state

Test plan

1. Add rules to the system.

2. Say “Calm down, you maniac!”

3. Set Hope and Distress to < 0.2, “You’d better relax...”

4. Set Fear to > 0.2, say ”Calm down, soldier, get a hold of yourself! Wasn’t
I always there for you in times of need? Haven’t I always covered your
back? Looking after you in even the most dangerous of situations? Pull
yourself together and give those mother****ers hell!!”

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “Will do sir”.
After the third step of the plan, the agent should utter “I am calm, sir”.
After the fourth step of the plan, the agent should utter “You’re right, sir!

We can make it togheter! You’ve always stood by my side, and I respect you
for that; both as my superior, and... as my friend,”, after which the lieutenant
and the sergeant embrace each other, assemble their men, and full of spirit face
the enemy on the battlefield where they will ultimately die a heroes death.

Results

The first step showed that the Soar rule matches twice, which is not necessary.
The predicate belief true was therefore added, as was already the case in the
other Soar rules. All expected results showed, though, except for the fourth
one, which was actually a little joke.

C.4.8 apply*output-speech*answer-why-do-you-feel-emotion*cause
proc emotionWhyCause

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*why-do-you-feel-emotion
or top-state*apply*operator*understand-speech*nlu*whats-causing-you-to-feel-emotion

2. Rule top-ps*emia*elaborate*emotion-state*feeling*true

126 APPENDIX C. TEST PLANS

3. Rule top-ps*emia*emotion-state*add*source

4. Rule top-ps*emia*emotion-state*add*cause

Test plan

1. Add rules to the system.

2. Ask “Why do you feel hopeful?”

3. Set Devensiveness > 0.75, Ask “Why do you feel hopeful?”

4. Ask appropiate question, changing emotions and Terseness randomly

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “Because the boy

will probably be treated at the hospital sir”.
After the third step of the plan, the agent should utter “That’s personal sir”.
After the fourth step of the plan, the agent should react accordingly.

Results

All expected results were met. As it is hard to get the agent in an state where he
really blames someone, the associated output was tested using slightly altered
versions of the code; all expected results were met.

C.4.9 apply*output-speech*answer-why-do-you-feel-emotion*
no-responsible-agent
proc emotionWhyNoResponsibleAgent

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

why-do-you-feel-emotion or top-state*apply*operator*understand-speech*nlu*
whats-causing-you-to-feel-emotion

2. Rule top-ps*emia*elaborate*emotion-state*feeling*true

3. Rule top-ps*emia*emotion-state*add*cause

Test plan

1. Add rules to the system.

2. Ask “Why are you distressed?”

3. SeEt Devensiveness > 0.75, Ask “Why are you distressed?”

4. Set Distress < 0.2, ask “Why do you feel distressed?”

C.4. PHASE 4 127

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “Because the boy

is critically injured sir”.
After the third step of the plan, the agent should utter “That’s personal sir”.
After the fourth step of the plan, the agent should utter “I’m not distressed

sir”.

Results

All expected results were met.

C.4.10 apply*output-speech*answer-why-do-you-feel-emotion*no-cause
proc emotionWhyNoCause

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

why-do-you-feel-emotion or top-state*apply*operator*understand-speech*nlu*
whats-causing-you-to-feel-emotion

2. Rule top-ps*emia*elaborate*emotion-state*feeling*true

Test plan

1. Add rules to the system.

2. Ask “Why are you anxious?”

3. Set Anxiety > 0.1, Ask “Why do you feel anxious?”

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “I’m not anxious

sir”.
After the third step of the plan, the agent should utter “I don’t know sir”.

Results

Expected results sometimes showed up, but there was a lot of interference with
the original code which handles the why-question. This will be discussed with
the MRE team.

C.4.11 apply*output-speech*answer-whos-responsible
proc emotionResponsibility

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*responsible-for-emotion
or top-state*apply*operator*understand-speech*nlu*responsible-for-emotion*guilt

2. Rule top-ps*emia*elaborate*emotion-state*responsible-for-[emotion]

128 APPENDIX C. TEST PLANS

Test plan

1. Add rules to the system.

2. Ask “Who’s responsible for making you feel hopeful?”

3. Set Hope < 0.1, Ask “Who’s responsible for making you feel hopeful?”

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “The medevac sir”.
After the third step of the plan, the agent should utter “I’m not hopeful sir”.

Results

Some minor issues concerning the template filling showed up; these were fixed.
As it is hard to get the agent in an state where he really blames someone,
the associated output was tested using slightly altered versions of the code; all
expected results were met.

C.4.12 apply*output-speech*answer-whos-responsible*
no-responsible-agent
proc emotionNoResponsibility

Conditions

1. Rule top-state*apply*operator*understand-speech*nlu*

responsible-for-emotion or top-state*apply*operator*understand-speech*nlu*
responsible-for-emotion*guilt

2. Rule top-ps*emia*elaborate*emotion-state*responsible-for-[emotion]

Test plan

1. Add rules to the system.

2. Ask “Who’s responsible for making you feel guilty?”

3. Set Guilty > 0.2, ask “Who’s responsible for making you feel guilty?”

Expected results

After the first step of the test plan, the rule should not fire.
After the second step of the plan, the agent should utter “I’m not guilty sir”.
After the third step of the plan, the agent should utter “I don’t know sir”.

Results

Some minor issues concerning the template filling showed up; these were fixed.

C.5. MISSING TESTS 129

C.5 Missing tests

e rules top-ps*emia*elaborate*emotion-state*feeling-about-state and
top-ps*emia*emotion-state*feeling-about-state*add*sim-object have not
been unit tested, because of the difficulty to create an environment with the
proper left hand side. The first rule needs an operator, but it is not possible in
Soar to hand select the operator at any given point in time. The second rule
has the first as a requirement, so without it, it cannot be tested.

130 APPENDIX C. TEST PLANS

Bibliography

[Cas00] Justine Cassell: Nudge Nudge Wink Wink: Elements of Face-to-
Face Conversation for Embodied Conversational Agents, Embodied
Conversational Agents, chapter 1, edited by Justine Cassell, et al.
(2000)

[Cho99] S. Chopra-Khullar, N.I. Badler: Where to Look? Automating At-
tending Behaviors of Virtual Human Characters, proc. 3rd Int‘l Conf.
Autonomous Agents, ACM Press, New York, pp. 16-23 (1999)

[Gra04] Jonathan Gratch, Stacy Marsella: A Domain-independent Frame-
work for Modeling Emotional Appraisal and Coping

[Gra02] Jonathan Gratch, Jeff Richel, Elisabeth André, Justine Cassell, Eric
Petajan, Norman Badler: Creating Interactive Virtual Humans:
Some Assembly Required

[Hil99] Randall Hill: Modeling Perceptual Attention in Virtual Humans,
Proc 8th Conf. Computer Generated Forces and Behavioral Repre-
sentation, SISO, Orlando, Fla., pp. 563-573 (1999)

[Hil00] Randall Hill: Perceptual Attention in Virtual Humans: Toward Re-
alistic and Believable Gaze Behaviors, Proc. AAAI Fall Symp. Sim-
ulating Human Agents, AAAI Press, Menlo Park, Calif., pp. 46-52
(2000)

[ICT03] Mission Rehearsel Exercise - Institute for Creative Technolo-
gies: http://www.ict.usc.edu/disp.php?bd=proj_mre (October
22, 2003)

[Jur00] D. Jurafsky, James H. Martin: Speech and language processing
(2000) - Prentice Hall, ISBN 0-13-096069-6

[Lai99] John E. Laird, Clare Bates Congdon, Karen J. Coulter: The Soar
User Manual (June 23, 1999)

[Mar??] Stacy Marsella, Jonathan Gratch, Jeff Rickel: Expressive Behaviors
for Virtual Worlds

[Ric00] Jeff Rickel, W. Lewis Johnson: Task-Oriented Collaboration with
Embodied Agents in Virtual Worlds, Embodied Conversational
Agents, chapter 4, Edited by Justine Cassell, et al. (2000)

131

132 BIBLIOGRAPHY

[Ric02] Jeff Rickel, Stacy Marsella, Jonathan Gratch, Randall Hill, David
Traum, William Swartout: Toward a New Generation of Virtual
Humans for Interactive Experiences (2002)

[Tra??] David R. Traum, Staffan Larsson: The information state approach
to dialogue management

[Tra02] David Traum, Jeff Rickel: Emodied Agents for Multi-party Dialogue
in Immersive Virtual Worlds (2002)

[Tra03] David Traum, Jeff Rickel, Jonathan Gratch, Stacy Marsella: Nego-
tiation over Tasks in Hybrid Human-Agent Teams for Simulation-
Based Training (July 18, 2003)

[Tra03b] David Traum, Michael Fleischman, Eduard Hovy: NL Generation
for Virtual Humans in a Complex Social Environment (2003)

[Tra03c] David Traum: Semantics and Pragmatics of Questions and Answers
for Dialogue Agents (2003)

Index

ema algorithm, 7

appraisal variables, 7, 15
authorizing agent, 6

Bosnia scenario, 2
intelligent agents, 3
medevac, 2

canned text, 32
cognitive appraisal, 7
communicative goal, 47
coping strategy, 7

emotion-focused, 7
problem focused, 7

dialogue, 9
acts, 10
information state, 10
layers, 10
model, 10
rules, 10

emobied conversational agent, 5
emotion state, 28

on-the-fly, 28
permanent, 28

emotion types, 16
emotional state, 15

goal, 47

keyword scanning, 30

lookup table, 36

Mission Rehearsal Exercise, 1, 3
architecture, 3

natural language
communicative goal, 11, 24
generation (NLG), 9, 24, 32, 47
generation phases, 11

goal, 24
keyword scanning, 24
propositions, 11, 24
semantic frames, 11
semantics, 30
speech acts, 20
states, 25
understanding (NLU), 9, 24, 30,

44
negotiating, 6
nonverbal communication, 5

perception, 5
personality, 20

reference, 46
roles, 6

sequence files, 3
Soar, 3, 9

working memory element, 16
working memory element (WME),

4
social commitment, 10
Steve, 5, 9

task modelling, 6
task planning, 6
template, 32

virtual body, 5
virtual humans, 6

133

