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Abstract Low-cost motion sensors have seen tremendous increase in popularity
in the past few years. Accelerometers, gyroscopes or cameras can be found in most
available smart phones and gaming controllers. The Apple� iPhone, Nintendo�

WiiTM and the PlayStatio� EyeToyTM are just a few examples where such tech-
nology is used to provide a more natural interaction for the user. Depth-sensing
cameras by companies such as Microsoft, PrimeSense and Asus can enhance the
user experience even further by enabling full-body interaction. This chapter will
specifically discuss the use of the Microsoft� KinectTM depth-sensing camera
(Kinect) for rehabilitation of patients with motor disabilities. In addition, examples
will be provided of how the Kinect can be used with off-the-shelf computer games
or utilized in conjunction with modern game development tools such as the game
engine Unity. The examples will outline concepts and required resources in order
to enable the reader to use low-cost depth-sensing cameras for rehabilitation.
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15.1 Virtual Reality and Video Games for Rehabilitation

Virtual reality (VR) based rehabilitation of motor disorders is a very promising
area of research and development. Virtual reality systems can range from high-cost
platform systems and robotics to low-cost off-the-shelf video gaming technologies.
There has been growing recognition of the potential value of VR and video game
technology for creating a new generation of tools for advancing rehabilitation,
training and exercise activities. Research in the area of VR and rehabilitation
suggests that VR game-based technology can be used effectively to improve motor
skill rehabilitation of a range of functional deficits (Boian et al. 2002; Chuang et al.
2002; Adamovich et al. 2004; Dvorkin et al. 2006; Fung et al. 2004; Fulk et al. 2005;
Fung et al. 2006; Subramanian et al. 2007; Holden et al. 1999; Merians et al. 2002,
2009; You et al. 2005; Jack et al. 2001; Mirelman et al. 2009). Virtual Reality has
also been integrated with robotics to provide motivation and feedback within
rehabilitation with robotic devices that control and/or assist the user to move (De
Mauro et al. 2011, 2012; Deutsch et al. 2004).

Part of the excitement in this area has grown from the well-known concept in
motor learning that by providing a stimulating environment in which to practice
repetitive, targeted movements with appropriate feedback can improve rehabili-
tation outcomes. Providing people with the opportunity to practice physical
exercises within a digital game simulation has the potential to motivate the user to
perform a higher number of repetitions in a more engaging environment (Rizzo
and Kim 2005). Virtual reality systems demand focus and attention because the
user is interacting within a situation that depends on their input. Game-based
interactions can motivate the user to move and provide the user with a sense of
achievement, even if they cannot perform that task in the ‘real world’. Researchers
have shown that the movements performed during VR rehabilitation can be similar
to those used in traditional therapy, however, this is dependent on the specific VR
system (Antonin et al. 2004).

The recent release of physically interactive video game systems has increased
the interest and accessibility of the use of VR technologies within the rehabilita-
tion setting. Some researchers have treated neurological impairments by imple-
menting off-the-shelf game consoles, such as the Sony Playstation�2 EyeToyTM

(Flynn et al. 2007; Rand et al. 2008) and Nintendo� WiiTM (Deutsch et al. 2008),
with promising results. The underlying motion-sensing and 3D graphic technol-
ogies that are used in these commercial game systems allow the user to engage in
entertaining motor games using gross body movements that are not bound by the
limits of a mouse, joystick or game-pad interface. Yet whilst these systems have
enjoyed wide adoption by millions of users and are generally stimulating and
entertaining, clinicians and patients cannot easily alter the hard coded stimulus
parameters of the game system as is needed to optimally rehabilitate precise motor
skills in a controlled, clinically relevant way (Lange et al. 2009). In addition to the
limited options for the systematic control of stimulus parameters needed to cus-
tomize interaction challenges to the needs of the user, these video games provide
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limited capacity for the recording of meaningful performance data (Lange et al.
2009, 2010). Therefore, while it is noted that these interactive video games are fun
and motivating, such out-of-the-box systems do not consistently meet the clinical
requirements for delivering precise motor interventions in a systematic fashion that
can be customized to the needs of a target user group. However, the potential does
exist that these systems can be creatively repurposed for useful rehabilitation
purposes.

Many researchers are beginning to explore the potential of the Microsoft Kinect
technology for rehabilitation. The solution to the challenge of using VR and video
games in rehabilitation can be approached in two different ways: (1) the use of a
middleware that allows tailored movements to be programmed so a patient can
play an existing game with individualized movements or (2) the development of
software specifically designed for the purpose of customized rehabilitation that is
compatible for use with off-the-shelf interactive and video game hardware. This
chapter will provide an overview of the tools that can be used to customize
existing games, provide a tutorial to allow the reader to begin to explore the use of
these tools, and provide a brief introduction to some of the tools that can be used to
develop specific rehabilitation software.

15.2 Advances in Low-Cost Tracking Technology

Recent advances in video game technology have made available a large number of
low-cost devices that can track the user’s motion. These range in capability from
handheld controllers that can be used for gesture-based control, such as the
Nintendo� WiimoteTM and the Playstation� MoveTM, to cameras that use com-
puter vision techniques to sense the user’s body poses such as the Playstation�

EyeToyTM and the Microsoft� KinectTM.
Depth-sensing cameras provide developers and clinicians with the most natural,

but also the most flexible way to interact with rehabilitation applications. The user
is not required to wear any markers, carry any additional devices or use specific
limbs to interact with a system. Full-body tracking provides the opportunity to
select any combination of gestures and limbs for interaction with a software
application. Such flexibility can be used to tailor the user interaction towards the
specific rehabilitation goals of the user (Lange et al. 2011a, b).

15.2.1 Depth-Sensing Frameworks

For the purpose of this chapter the Microsoft� KinectTM has been used to dem-
onstrate how depth-sensing cameras can be used with off-the-shelf computer
games and customized applications within a game engine such as Unity. The
Kinect was chosen because of its wide availability and the existing integration
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within several development tools that facilitate its use in rehabilitation. There are
multiple options for using the Kinect as an input device for games. Originally, the
Kinect was released as a peripheral for the Xbox360 gaming console. However,
Kinect-enabled games for the Xbox360 system do not give clinicians the freedom
to choose gestures and movements that fit the therapeutic goals of the patient.
Once the user input has been decided by the developer of the game, it cannot be
adapted easily to fit the needs of users with disabilities. Alternatively, the Kinect
can be used with a Windows PC through third-party software from OpenNI or the
Kinect for Windows Software Developers Kit (SDK). Both options provide more
freedom for leveraging the Kinect’s tracking capabilities to control games for the
purpose of rehabilitation and social reintegration of users with disabilities. The
Kinect for Windows SDK enables developers to access the Kinect’s data to
enhance existing or newly developed games with gesture control and full-body
tracking.

OpenNITM (DotNetNuke Corporation) is an industry-led not-for-profit organi-
zation promoting the standardization of natural interaction devices. OpenNI pro-
vides an open-source framework for developers to leverage these devices for their
own applications. The framework provides integration for the Microsoft� Ki-
nectTM camera, PrimeSense camera and Asus Xtion Pro camera through an API
for the sensor devices and an API for additional high-level middleware packages.

There are several other solutions for depth-tracking available that provide
similar features to OpenNI’s and Microsoft’s development kits. Omek’s Beckon
SDK (Omek Interactive, Israel) is a comprehensive development suite that sup-
ports any commercially available 3D camera. Omek also offers a range of tools to
enable developers to author gestures or integrate full-body tracking into the Unity
game engine. SoftKinetic’s iisu SDK (SoftKinetic, Belgium) offers a similar set of
comprehensive 3D gesture recognition tools that support a range of different
depth-sensing cameras. Lastly, PrimeSense offers a depth-sensing camera and
sensing framework NITE which can be used with the OpenNI framework. For each
of the available software suites it is important to consider which sensors are
supported, how gestures are detected and implemented, which distances to the
camera are leveraged (e.g. close-range tracking for hand-detection) and which
licensing options are available.

15.2.2 Flexible Action and Articulated Skeleton Toolkit
(FAAST)

FAAST (Institute for Creative Technologies, CA; Suma et al. 2011) is a mid-
dleware that facilitates the integration of full-body control with VR applications
and video games using OpenNI-compliant depth sensors (Fig. 15.1). It interfaces
directly with OpenNI/NITE or the Microsoft Kinect for Windows SDK to access
pose information and perform additional high-level gesture recognition for gen-
erating events based on the user’s movements.
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FAAST considers two broad categories of information from the sensor: actions
and articulated skeletons. Articulated skeletons consist of the positions and ori-
entations for each joint in a human figure and are useful for VR and video game
applications in allowing direct control of a virtual avatar through body movements.
FAAST retrieves these skeleton joints from the OpenNI/NITE or Kinect for
Windows SDK drivers and transmits them to the end-user application using the
Virtual Reality Peripheral Network (VRPN), a popular software package in the VR
community for interfacing with VR peripherals (Taylor et al. 2001). FAAST
includes a custom VRPN server that streams each joint’s skeleton data as a six
degree-of-freedom tracker, allowing applications to interface with the sensor as
they would with any other motion-tracking device.

FAAST enables these custom sensors to provide input to a wide range of
applications. It can be used to emulate keyboard and mouse input for standalone
PC applications as well as web-based games. Users can customize the key-bind-
ings and sensitivity for triggered actions at run-time, thus providing flexible input
that can easily be adjusted according to the individual user’s preferences and
therapeutic goals. Exemplarily, the same game can be played with different ges-
tures and ranges of motion to allow players with different levels of ability and
different therapy goals to play with or against each other. Figure 15.2 shows a
player using FAAST to control an online game with different sets of gestures.

15.2.3 MiddleVR

MiddleVR (IminVR, France) is a middleware that facilitates the integration of
virtual reality hardware in a wide range of applications. A standalone version of
MiddleVR and a Unity implementation are offered for developers to enhance user

Fig. 15.1 FAAST user interface
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interaction though VR hardware. MiddleVR can be utilized to display immersive
content with complex projection solutions such as Head-Mounted Displays,
Powerwalls, VR Walls, Workbenches, Holobenches, HoloStages, Caves and 3D
Televisions. Active and passive stereoscopic displays are supported. MiddleVR is
also able to integrate VR peripherals, enabling the user to interact with the virtual
world in a more natural way. For example, 3D trackers, haptic devices, joysticks,
3D mice, depth-sensing cameras and several other devices can be used to interact
with immersive virtual content. Most of these devices are supported through the
VRPN library. However, it is also possible to use other drivers to integrate devices
such as the Microsoft Kinect. This allows developers to use the VR peripherals to
perform actions in the 3D application instead of using traditional input devices.
For instance, the position and orientation of the viewport of a virtual scene can be
modified according to the measurements obtained from a 3D tracker installed on
the head of the user. This can be a meaningful interface when the users are
expected to orient themselves in the environment or observe a virtual scene or
object from different perspectives.

Alternatively, MiddleVR can be used to interact with virtual objects via
alternative input devices such as a haptic glove. Users can perform different
gestures to reach, pick up and release virtual items which can be a useful training
scenario for motor rehabilitation. Integration of the Microsoft Kinect depth camera
gives the developer the freedom to use any of the user’s tracked joints to interact
with a virtual environment.

MiddleVR is set up through a graphical configuration tool which allows the
developer to select the supported hardware and decide how the hardware input is
mapped to user actions. For example, the head position of the Microsoft Kinect can be
mapped to the position of the scene’s main camera, allowing the user to look around a
virtual scene naturally. In addition to the configuration tool MiddleVR also provides a
C# interface and a C++ API for direct integration in applications (Fig 15.3).

15.2.4 Unity

Unity (Unity Technologies, San Francisco, CA) is a development platform for
games and general 3D content that allows the developer to publish applications for

Fig. 15.2 Using FAAST to control a game (Suma et al. 2011)
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PC, Mac, mobile devices, web, Flash and gaming consoles (Wii, PS3, Xbox360).
As a so-called game engine it integrates a wide range of tools that can be used to
create interactive virtual environments. Unity’s toolset encompasses the rendering
of 3D models, animations, shading and lighting, input and output operations, user
interfaces, physics simulations, audio, network integration, scripting of game logic
and other features that are needed to develop games and interactive applications.
There are many free and paid online tutorials available to explain each of the
engine’s features in detail. Of particular importance is Unity’s ability to com-
municate with external applications via the use of plugins. This allows developers
to import data from the Kinect via OpenNI or the Kinect for Windows SDK into
Unity. The information can then be used within Unity to control virtual avatars,
trigger events or allow the user to interact with a virtual environment. Further,
external applications such as MiddleVR can act as a middleware to exchange data
between Unity and a wide range of sensors or display solutions.

15.3 Tutorial

15.3.1 Using FAAST to Define Gestures that can be Used
to Play Existing Games

The FAAST middleware can be used to define a range of gestures. These gestures
can be assigned to key strokes, such as the up, down, left and right arrows or the
space bar and ‘w’, ‘s’, ‘a’ and ‘d’ keys. A FAAST keyboard emulation feature can
be used so that the gestures assigned to the different keys can be used to play any
existing game that uses those keys. This provides an opportunity for clinicians to
assign customized gestures for their patients to play games that are engaging and
low-cost (or free) for therapeutic exercise. The following section will provide a
basic overview of how to define and save gestures.

Fig. 15.3 MiddleVR interface
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15.3.1.1 FAAST User Guide

In order to use FAAST, a Microsoft Kinect camera needs to be installed and
connected to the PC. Both versions of the Kinect sensor, the Xbox360 version and
the Kinect for Windows version, are supported. Further, Microsoft’s Kinect for
Windows SDK or OpenNI/NITE drivers are needed to use FAAST. The driver
packages can be downloaded and installed from the respective websites listed in
the reference list (Microsoft Kinect for Windows, FAAST). Once these driver
packages are installed, open FAAST by double clicking on the FAAST application
icon in the FAAST folder.

FAAST consists of three different windows: main window (Fig. 15.1a), viewer
window (Fig. 15.1b) and console window (Fig. 15.1c). The main window consists
of four tabs: the sensor tab, the server tab, the display tab and the gesture tab. The
sensor tab (Fig. 15.1a) allows the user to specify the installed drivers (Microsoft
SDK or OpenNI), the tracking mode (full-body or seated), and sensor angle and
provides several options to control tracking characteristics such as mirror mode
and smoothing parameters. The server tab (Fig. 15.4a) provides choices for the
tracked skeletons and the coordinate system in which the user’s joints are being
calculated. For any standard application in which only one user is tracked to
control an application, no changes of these options are required. The display tab
(Fig. 15.4b) allows the user to change the appearance of the FAAST viewer
window by switching between RGB image and depth image for foreground and
background of the tracked scene. It also provides options for changing the text size
of the console window and moving all FAAST windows as well as saving the
window configuration. The gesture tab (Fig. 15.4c) can be used to define gestures
by providing sets of input conditions and specifying the output of each gesture.

To add a gesture, click on ‘New gesture’ in the gesture tab. A new window will
open (Fig. 15.4d). Type a gesture name and define timings for input and output.
Timeouts are used to limit the frequency at which gestures can be recognized
(input timeout) or how often outputs are triggered when a gesture output is set to
continuous looping (e.g. pressing a mouse button 10 times per second while the
gesture is being maintained). Timeouts are displayed in seconds.

Once the new gesture is added, Input and Output conditions must be assigned to
the gesture. Input relates to the gesture that must be performed and Output is the
keyboard press, mouse-click or mouse movement that the gesture will be assigned

Fig. 15.4 FAAST interface: main window, viewer window and console window
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to within the game or interaction. Input and Output conditions can be defined by
clicking on each gesture’s input and output node (Fig. 15.5a) in the gesture tab and
selecting the ‘‘Add’’-button on the right-hand side of the window (Fig. 15.5b).
FAAST offers a wide variety of input constraints to define the user movement that
is expected to trigger an output action. Selecting a constraint type opens a new
window to add and define the parameters of a gesture (Fig. 15.5c). Exemplarily,
body constraints can be customized to detect any leaning, turning or jumping
movement in any direction and magnitude/distance. Multiple input and output
nodes can be combined to create more complex gesture sequences which have to
be satisfied before an action is triggered. Time constraints also provide the ability
for temporal sequences of inputs and outputs for even greater customizability of
the FAAST tool.

Gestures can be enabled and disabled separately to experiment with different
combinations of gestures. This can be especially helpful when individual gestures
are tested with patients with motor deficits. By sequentially combining different
gestures, the complexity of the user interface can be increased gradually.

All settings can be saved to the local hard drive by selecting the ‘‘Save’’ button
in the FAAST main window. Previously saved configurations can be loaded by
clicking the ‘‘Load’’ button and selecting the saved configurations file (file end-
ing.xml). Once all gestures have been defined and the Kinect has been successfully
started (‘‘Connect’’ button), pressing the ‘‘Start Emulator’’ button will enable
gesture recognition. The FAAST console window will display whenever defined
gestures are triggered and users enter or exit the scene. When a gesture is rec-
ognized the assigned output (e.g. keyboard or mouse button press) is triggered. The
output is sent to the currently active application. As such, FAAST can run
alongside standalone or web-based applications to provide the needed user input,
effectively replacing keyboard or mouse inputs. The gesture recognition can be
stopped by pressing the ‘‘Stop Emulator’’ button in the main window.

When defining gestures for existing applications the developer or clinician
needs to consider the number of gestures that are required to control all aspects of

Fig. 15.5 FAAST interface: defining gestures
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the game or application. Any application that requires a large number of key-
strokes or mouse commands will place high demands on the user to remember and
combine the assigned gestures. This problem becomes even more apparent with
motor-impaired patients who only have limited range of motion or limited control
over parts of their body. Furthermore, games that require precise timings of button
presses or use mouse movements as primary control scheme are difficult to master
with FAAST. Specific clinical considerations also include the goal of the inter-
action. The games and gestures must be chosen carefully so as to not encourage
sequences of movements that could be inappropriate or unsafe for the patient.

15.3.2 Using MiddleVR to Interact Within a Unity3D
Application

MiddleVR can be used to integrate VR input and display devices into existing
game development workflows. Developers can utilize VR hardware to make their
rehabilitation applications more engaging and customizable for the users. The
following section will provide a basic overview of how to configure MiddleVR
and a Microsoft Kinect within the game engine Unity in order to start developing
customized rehabilitation applications.

15.3.2.1 MiddleVR User Guide

Working with MiddleVR requires several configuration steps that will be descri-
bed in Sects. 15.3.2.1 and 15.3.2.2. For the purpose of this guide, MiddleVR’s
integration with the Unity game engine was used. The goal of this guide is to
control an avatar within Unity by mapping simple cubes to the location of each of
the Kinect’s joints.

Firstly, MiddleVR needs to be configured to specify input and output devices
that are used with the final application. The configuration is saved in a file (file
format.vrx) which is then used in conjunction with the actual application that is
being controlled by the user. The initial configuration process is performed in
MiddleVR’s main window. The window consists of the windows for ‘‘Devices’’,
‘‘3D Nodes’’, ‘‘Viewports’’ and ‘‘Cluster’’.

By default Middle VR has selected keyboard and mouse as input devices
(Fig. 15.6). To add or delete any device we will use the ‘‘+’’ and ‘‘-’’ buttons. In
the list of ‘‘3DTrackers’’: we have the option to select ‘‘Tracker Kinect (Microsoft
SDK)’’.

After defining all needed input devices we need to map the device input to
objects or actions in the application (Fig. 15.7). Through the 3D Nodes window
the user can define scene objects (i.e. nodes) to be controlled by the input of any
Kinect joint. Nodes are placed in a hierarchy with the ‘‘VRRootNode’’ (Fig. 15.7a)
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being the highest node in this hierarchy under which all other nodes are being
arranged. While creating mappings between user input and nodes one needs to be
aware that each created node will correspond to an object in the actual application.

For example, if the goal of the final application is to control the scene camera
through the Kinect’s head joint and to control two virtual hands by the Kinect’s
two hand joints, a total of five nodes are needed. The ‘‘VRRootNode’’ is at the very
top of the hierarchy, a ‘‘Kinect0.RootNode’’ (Fig. 15.7b) contains all remaining
nodes associated with the tracked skeleton of the active Kinect camera. Under-
neath the ‘‘Kinect0.RootNode’’ the three nodes for the user’s head and both hands
are placed. Each of these nodes needs to be assigned a Kinect joint that is con-
trolling the node’s position. The available Kinect joints can be selected in the
dropdown list ‘‘Tracker’’ (Fig. 15.7c). The name of each created node should
follow a consistent naming convention, because the node names and the objects

Fig. 15.6 MiddleVR: device selection interface

Fig. 15.7 MiddleVR: scene objects interface
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being controlled by the Kinect within the game engine Unity need to match. For
example, one of the ‘‘Kinect0.User0.Head_Node’’ in Fig. 15.8 is connected to the
Kinect tracker ‘‘Kinect0.User0.Head’’. When the application is set up within the
game engine Unity, the object being controlled by the Kinect’s head joint needs to
be named ‘‘Kinect0.User0.Head_Node’’.

MiddleVR also provides the option of controlling a camera to manipulate the
player’s view during the game. This can be achieved by creating a ‘‘camera’’
object instead of a node and linking it to the Kinect’s head joint. However, for the
purpose of this tutorial a default Unity camera will be used instead of a head-
tracked viewpoint.

Once all nodes and trackers have been configured, a configuration file is saved
to the local hard drive. This file contains the information of the nodes and trackers
which needs to be accessed from the application within Unity.

15.3.2.2 Unity3D User Guide

In order to import MiddleVR’s tracking information into Unity a downloadable
Unity-package is available on MiddleVR’s website (see reference list). After
launching Unity and creating a new scene (select ‘‘File—New Scene’’; Fig. 15.8a),
the MiddleVR package needs to be imported into Unity. This can be achieved by
clicking ‘‘Assets—Import Package—Custom Package’’.

• After selecting the previously downloaded Unity package (MiddleVR.unity-
package) and importing the asset, a new folder named ‘‘MiddleVR’’ will be
available in the Project View (Fig. 15.8b).

Fig. 15.8 Unity3D Main interface
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• The folder contains a so-called prefab named ‘‘VRManager’’. The ‘‘VRMan-
ager’’ needs to be dragged and dropped into the Hierarchy View (Fig. 15.8d).

• When clicking on the ‘‘VRManager’’ in the Hierarchy View, the properties of
the ‘‘VRManager’’ Script become available in the Inspector (Figs. 15.8c, 15.9).

• The ‘‘Config File’’ needs to be set to the location of the previously created
MiddleVR configuration file (Fig. 15.9).

• The Root Node needs to be set to the game object that contains all of the Kinect-
controlled objects. In this example the root node that contains all relevant
objects is the game object ‘‘Kinect’’ in the Hierarchy View (Fig. 15.8d).

• In order to control all objects correctly, game objects for each of the previously
created nodes are required. These game objects need to be placed underneath the
root node and renamed to the names we assigned to the nodes in MiddleVR.

• For this example, simple cubes or spheres are sufficient to simulate an avatar
(Select ‘‘Game Object—Create Other—Cube/Sphere’’ in Unity). In a complete
game each of these nodes could be part of a more sophisticated rigged character
that contains joints and limbs created in 3D modeling applications such as
Blender, Autodesk Max or Maya.

• Figure 15.8d shows a list of 20 cubes that correspond to 20 nodes representing
the whole skeleton that the Kinect is able to track. If the original configuration
within MiddleVR contains more or less nodes (e.g. only head and two hands as
previously described), the number of game objects in the hierarchy needs to be
adjusted accordingly.

• If all objects and scripts are set up, the play button in the top center of the Unity
application will attempt to run the application. If a Kinect is connected and the
Microsoft Kinect for Windows SDK is installed, the created cubes will follow
each joint of the tracked skeleton. The virtual avatar comes alive.

• In order to enable the avatar to interact with the virtual environment, a physics
simulation can detect whenever the avatar collides with virtual objects. For this
purpose physics components need to be added to each avatar game object. This
can be achieved by selecting each avatar object and adding a box collider (or

Fig. 15.9 Unity3D VR
manager properties
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sphere collider if spheres were selected as body parts, Fig. 15.8e ‘‘Component—
Physics—Box Collider/Sphere Collider’’).

• The example in Fig. 15.8 shows a stack of boxes in the scene view. For colli-
sions to take place, these boxes also need box colliders and a rigidbody. Rig-
idbody components (Fig. 15.8e ‘‘Component—Physics—Rigidbody’’) allow the
object to be affected by gravity.

• Once all objects are set up properly, the avatar can interact with the stack of
boxes by simply colliding with the placed objects.

• Be advised that attempting to punch or kick the stack of boxes can lead to
injuries as the player can easily collide with real-world obstacles while inter-
acting with the immersive virtual environment.

15.4 Conclusion

Many researchers are beginning to explore the potential of the Microsoft Kinect
technology for rehabilitation. This chapter provided an overview of the tools that
can be used to customize existing games or to develop games that use VR hard-
ware. Two potential examples for the development of rehabilitation applications
using the Kinect were outlined in this chapter: (1) the use of a middleware (FA-
AST) that allows tailored gestures to be programmed so a patient can play an
existing game with individualized movements and (2) the use of MiddleVR
middleware for the development of software specifically designed for customized
rehabilitation. The use of FAAST (or similar middleware applications mentioned
in this chapter) is perhaps more accessible and user-friendly for clinicians and non-
programmers to practice and use with patients in the clinical setting. However,
gestures and game choices must be given careful consideration in order to
maintain rehabilitation goals and avoid the risks of frustration or injury to the
patient. The development of specifically tailored rehabilitation applications using
low-cost hardware such as the Kinect requires more technical and programming
skills. While this chapter provided a brief introduction to some of the technical
components, the development of game-based rehabilitation applications is an
iterative process that requires the collaborative effort and involvement of clini-
cians, patients, designers, programmers and engineers.
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