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bstract

The dynamic use of voice qualities in spoken language can reveal useful information on a speakers attitude, mood and affective
tates. This information may be very desirable for a range of, both input and output, speech technology applications. However, voice
uality annotation of speech signals may frequently produce far from consistent labeling. Groups of annotators may disagree on the
erceived voice quality, but whom should one trust or is the truth somewhere in between? The current study looks first to describe a
oice quality feature set that is suitable for differentiating voice qualities on a tense to breathy dimension. Further, the study looks to
nclude these features as inputs to a fuzzy-input fuzzy-output support vector machine (F2SVM) algorithm, which is in turn capable
f softly categorizing voice quality recordings. The F2SVM is compared in a thorough analysis to standard crisp approaches and
hows promising results, while outperforming for example standard support vector machines with the sole difference being that the
2SVM approach receives fuzzy label information during training. Overall, it is possible to achieve accuracies of around 90% for
oth speaker dependent (cross validation) and speaker independent (leave one speaker out validation) experiments. Additionally, the
pproach using F2SVM performs at an accuracy of 82% for a cross corpus experiment (i.e. training and testing on entirely different
ecording conditions) in a frame-wise analysis and of around 97% after temporally integrating over full sentences. Furthermore, the
utput of fuzzy measures gave performances close to that of human annotators.

2012 Elsevier Ltd. All rights reserved.
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. Introduction

The term voice quality refers to the timbre or coloring of a speaker’s voice. It includes but is not limited to what

s perceived by the listener as pitch and loudness. For an individual speaker their voice quality is composed of longer
erm settings of the vocal system combined with dynamic shifts in the system for communicative purposes (Laver,
979; Mackenzie Beck, 2005).
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In spoken communication voice quality is used in certain languages for contrastive linguistic function (e.g., in
Gujarati the words meaning ‘twelve’ and ‘outside’ , and ‘last year’ and ‘early morning’ are
contrasted solely on the presence or absence of breathiness in the vowels (Ladefoged and Maddieson, 1996)). A
speaker’s voice quality is also an important feature of paralinguistic signaling in speech and can provide the listener
with information pertaining to the speaker’s affective state (Gobl, 2003; Campbell, 2007). The use of breathiness
has been studied in connection with politeness particularly among male speakers of Japanese (Ito, 2004). Breathy
voice has also been generally observed in association with intimacy and familiarity (Laver, 1980). Tense voice on the
other hand has been reported in more active affective states, e.g., anger and happiness (Gobl and Ní Chasaide, 2003;
Yanushevskaya et al., 2005).

The use of voice qualities is also a tool used by speakers for managing spoken discourse. A study on Finnish
interactive speech provided evidence of creaky voice qualities being consistently used by Finnish speakers for turn-
yielding functions, in contrast with glottal stops which were frequently used for turn-holding (Ogden, 2001).

From the above examples it can be seen that voice quality can provide useful insights into the intentions and mood
of the speaker, and indeed voice quality features have also been utilized in order to improve emotion classification
(Lugger and Yang, 2008). It follows that robust characterization of voice qualities may be desirable for both input
(e.g., recognition) and output (e.g., synthesis) ends of speech technology applications. Voice quality descriptions have
been included in various speech synthesis systems in order to provide platforms for more expressive synthesis (see
e.g., Campbell, 2004; Raito et al., 2008; Cabral et al., 2008). In terms of speech recognition systems robust parameters
describing the speaker’s voice quality would help determine the intention of the spoken utterance which may be
ambiguous if only the linguistic elements are detected.

It follows that the purpose of this study is to put forward a framework for identifying voice qualities from speech
utilizing robust acoustic features on a tense to breathy continuum. Furthermore we propose the use of a classification
approach which is capable of leveraging the disagreement on the part of annotators as a source of information in the
classification.

From a speech production point of view it is the mode of phonation, or manner in which the vocal folds vibrate,
that is largely responsible for producing what is perceived as a person’s voice quality (Laver, 1980). This is what some
have called the narrower view of voice quality (Laver, 1980; Mackenzie Beck, 2005) and indeed for voice qualities
on the breathy to tense dimension (i.e. those investigated in the current work), phonation plays a primary role (Laver,
1980). However, it is in fact the settings of the entire vocal apparatus that affect a person’s voice quality and for some
voice qualities (e.g., whisper) there may be no vocal fold vibration and, hence, phonation does not contribute to the
perceived vocal timbre.

Nevertheless, as the phonation mode is critical for producing breathy to tense voice qualities it seems intuitive to
exploit acoustic features derived from the voice source (i.e. the residual signal from inverse filtering the speech signal
with an estimate of the vocal tract transfer function). It has been shown in previous studies that developing feature
sets separately for both the voice source and vocal tract filter components can provide better modeling of speech
(Krishnamurthy and Childers, 1986). Further, although some voice quality measurements can be made directly from
the speech waveform (e.g., Hillenbrand et al., 1994; Ishi et al., 2008) voice source-based feature sets have been shown
to be crucial in the fine-grained modeling of an array of voice quality types (Gobl and Ní Chasaide, 1992).

To separate the voice source component from the speech signal, we need to remove the impact of the vocal tract
from the signal. For this, researchers usually apply knowledge from the acoustic theory of speech production (Fant,
1960). The theory, which provides a simplified model of the speech production process regards the speech signal S(z)
(in the z-domain), as the end result of a linear combination of the glottal flow, G(z), with the vocal tract filter, V(z), and
lip radiation L(z) (see Eq. (1)):

S(z) = G(z)V (z)L(z) (1)
The vocal tract filter can be described using an all-pole model by considering it to be a combined set of lossless
tubes1 (Markel and Gray, 1982). If such an all-pole vocal tract model can be derived this can facilitate the design of an
all-zero filter to be used for removing the effect of the vocal tract from the speech signal. The lip radiation component is

1 Of course this is a simplification and does not properly model certain aspects of the vocal tract system, for instance the presence of zeros in nasal
regions.
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ypically modeled as a first order differentiator, however, as it can be convenient to work with the differentiated glottal
ow signal (G′(z) in Eq. (2)) no further compensation needs be applied. Indeed in the present work we will refer to the
ifferentiated glottal flow signal as the voice source signal:

G′(z) = S(z)

V (z)
(2)

However, as neither the glottal flow nor the vocal tract components are directly observable and as both components
ary dynamically in running speech the decomposition of speech into vocal tract filter and voice source is known to
e problematic. Algorithms have been developed to separate the vocal tract influence from the speech signal using a
ariety of approaches (e.g., closed-phase methods (Alku et al., 2009), phase based methods (Drugman et al., 2009),
terative methods (Alku et al., 1992)). Despite the attention this problem has received from the research community it
s yet to be considered a solved problem and most methods produce incomplete formant cancellation when analyzing
unning speech and non-modal voice qualities.

Given an estimate of the voice source, the signal can then be parameterized in order to describe the perceptually
mportant aspects of the source pulses. Indeed many of the acoustic features used in the present study (see Section 2)
re used to characterize these important aspects.

Next we address the issue of hidden ground truths. The annotation of breathy to tense voice qualities can be difficult
nd annotators need to rely on their own subjective perception of the utterance. As a result it is likely that annotators
ay disagree somewhat on the voice quality label of a given speech segment. Mixed voice qualities could be present

n the speech signal and a gradual answer may be necessary as opposed to a discrete label. Therefore, we elaborate
ethods for handling this sort of fuzzy labeling in the present work. The fuzzy-input fuzzy-output support vector
achine (F2SVM) introduced in (Thiel et al., 2007; Borasca et al., 2006; Thiel, 2009) is an ideal candidate for this type

f task receiving a fuzzy membership label as input with the features for training and producing fuzzy memberships2

s output. We compare the performance of this F2SVM in manifold experiments with standard methods, that receive
risp3 targets and produce crisp outputs, in our studies.

The usefulness of the F2SVM for the classification of emotion from speech and facial expressions using fuzzy
eacher signals has already been shown in (Thiel et al., 2007; Thiel, 2009) where they outperformed standard support
ector machines (SVMs) that relied on crisp labels. The accuracy gain was solely achieved by introducing fuzzy labels
s teacher signals, as in the present work. This study further extends the experiments of (Thiel et al., 2007; Thiel, 2009)
y fitting the fuzzy output of the F2SVM to the mixed labels of human annotators. We then evaluate the results using
uzzy measures such as the D1 distance measure presented in this work. The D1 measure is adapted from the well
nown S1 similarity measure introduced by (Dubois and Prade, 1980). We chose this measure for this study, as it is
ne of the most common to compare fuzzy labels, e.g., in multiple classifier systems, where groups or ensembles of
lassifiers (e.g., SVM) are combined using fusion schemes to collaboratively predict certain targets (Kuncheva, 2004).

Although there has been considerable research done on describing the acoustic and physiological characteristics of
oice qualities (see e.g., Gobl and Ní Chasaide, 1992; Hillenbrand and Houde, 1996; Childers and Lee, 1991; Blomgren
t al., 1998) there has been far less work done on automatic classification of voice qualities using combinations of
eatures. The main work in this area has been done in the domain of pathological voice types. Some comparable work,
owever, was conducted in Wester (1998). Hidden Markov models (HMMs) and a regression approach were employed
o categorize speech signals that were generally of a longer duration than the signals in this study. The task was to

atch the annotated degree (from 0 to 4) on three voice quality scales, namely breathiness, roughness and deviance.
ccuracies of about 50% within each of the three scales could be achieved in the study. However, the speech material
sed was mainly pathological voices which weakens its comparability with the present study.

A further study involving voice quality classification of non-pathological voices was conducted in Lugger et al.
2008). The study looked at the use of HMMs for representing voice quality contours and compared results with K-

eans classification. Results showed crisp classification accuracy of 39% for modal, 57% for breathy, 77% for creaky

nd 61% for rough voice qualities.

2 Interpretable in two ways: first degree of membership to different classes at the same time or as probabilities for single classes. For further
nformation please refer to Sections 3 and 6.

3 Crisp in this context means that annotations of samples or predictions of classifiers only support one class at a time, in contrast to fuzzy or soft
nnotations, which can support multiple classes at the same time to different degrees.
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Table 1
Summary of features used as inputs to the F2SVM classification algorithm.

Feature Measured from:

f0 Speech signal
Ra, Rk, Rg. EE Voice source estimate
Raf, Rkf, Rgf. EEf Voice source estimate
NAQ Voice source estimate
�H1,2 Voice source estimate
OQG, GOG, SKG, RCG Voice source estimate

Peak slope Speech signal

1.1. Research hypothesis

We hypothesize that the extracted feature set representing the voice source (see Section 2) is suitable and robust
enough for the classification of voice qualities. Additionally, we hypothesize that the sometimes ambiguous and mixed
opinions provided by human expert annotators are indeed valuable and classification results can be improved by
utilizing all the available information. We further show that the fuzzy classification approach presented in this paper
provides a robust classifier that is even suitable for unseen speakers and novel recording conditions. This paper also
compares the fuzzy predictions of the classifier with human opinions using a fuzzy distance measure and shows that
the approach reaches human baseline performance.

These research hypothesis are targeted in multiple experiments including comparisons to standard classification
approaches in cross validation, leave one speaker out, and cross corpus (i.e. training on one corpus testing on the other)
experiments with crisp as well as fuzzy prediction evaluations.

1.2. Organization

The remainder of the paper is organized as follows: In Section 2 the utilized voice quality features for the classification
experiments are introduced. Section 3 then derives fuzzy-input fuzzy-output support vector machines (F2SVMs) from
standard support vector machines (SVMs), explains the algorithm to find the separating hyperplanes, and introduces a
fuzzy measure (D1) to evaluate the results. Along with the introduction of the speech dataset used, Section 4 introduces
the annotations by experts, which are later used as targets for the fuzzy classification experiments. In Section 5 the
results for the manifold experiments are reported and discussed in Section 6. Finally, Sections 7 and 8 conclude and
provide an outlook for future work.

2. Voice quality features

We selected voice quality features for the current study which have been previously shown to be useful for discrim-
inating breathy, modal and tense voice qualities. The features described below in Sections 2.1–2.6 describe aspects
of the voice source signal, which is derived using automatic iterative inverse filtering (see below). Automatic inverse
filtering, however, can frequently produce estimates of the voice source signal that contain uncanceled formant oscil-
lations that would clearly impact on the proceeding analysis (Walker and Murphy, 2007). Some voice quality features
can be measured without inverse filtering, such as the peak slope feature described in Section 2.7. A summary of the
features used as inputs to the classification method is shown in Table 1.

2.1. Pre-processing (f0)

For the speech segments analyzed in the current study initial f0 values are extracted using the f0 tracker which is
available in the ESPS/waves+ software package. Glottal closure instants (GCIs) are then located using the method

described in Goncharoff and Gries (1998), which identifies peaks in the filtered energy contour of the speech signal
for identifying GCI candidates. A dynamic programming algorithm is then used to find the path of peaks that produce
maximum energy. Note that for the methods used in the present work GCI detection is not critical. Using the GCIs
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Fig. 1. A single cycle of an example synthetic LF model pulse of glottal flow (top) and differentiated glottal flow (bottom).

he speech signal is then automatically inverse filtered using the pitch synchronous iterative automatic inverse filtering
PSIAIF) method described in Alku et al. (1992).

This iterative inverse filtering method first applies a first-order high pass filter, estimated by LPC analysis, to roughly
ompensate for the roll-off in the voice source signal in order to help approximate the vocal tract filter response using
PC. The method then removes this vocal tract approximation from the speech segment yielding an approximation
f the voice source signal. The speech signal is then inverse filtered using the filter coefficients obtained from LPC
nalysis of the residual.

This residual signal is then inverse filtered from the speech segment allowing improved estimation of the vocal tract
requency response. Finally, the speech signal is inverse filtered using the LPC coefficients derived from this vocal
ract estimate giving the methods estimation of the voice source signal.

The features described in Sections 2.2–2.6 can then be measured on the output signal from this method.

.2. LF model parameters from time domain estimation methods (Ra,Rk,Rg,EE)

The most commonly used acoustic voice source model is the Liljencrants–Fant (LF) model (Fant et al., 1985) (see
ig. 1). It is a five parameter (including f0, and assuming Tc = T0) model of differentiated glottal flow. The model has

wo segments. The first segment, the open phase, is a sinusoid function that increases exponentially:

U ′
g(t) = E0e

αt sin(ωgt) for to ≤ t ≤ te (3)

here to denotes the starting point of the glottal cycle, te the point of the maximum excitation, ωg = π/Tp, with Tp = tp − t0
he time of glottal flow increase, α, which is responsible for the rate of amplitude increase, is solved implicitly, and

E0 = − EE

eαTe sin(ωgTe)
(4)

The second segment, which models the return phase, is an exponential function:

U ′
g(t) = −EE

εTa

(e−ε(t−te) − e−εTb ) for te < t < tc (5)

here tc is assumed to be 1/f0 (such a simplification is frequently used in the literature, see e.g., Gobl and Chasaide,

003), the length of the glottal cycle, Tb = tc − te, and where ε is solved iteratively following Ta. The Newton–Raphson
ethod is used for solving ε, α and E0 and a thorough description of the calculations is given in Gobl (2003).
The pulse shape of the LF model can be characterized using an amplitude parameter, EE (which is the negative

mplitude corresponding to the main excitation), and three time based parameters Ra, Rk and Rg (see Eqs. (6)–(8)).
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Fig. 2. Schematic overview of the algorithm for LF model parameter extraction in the frequency domain as described in Kane et al. (2010).

These parameters have been shown to be suitable for characterizing a range of voice qualities including breathiness
and tenseness (Gobl, 1989):

Rg = 1

2Tp · f0
(6)

Rk = Te − Tp

Tp

(7)

Ra = Ta · f0 (8)

Given an estimate of the voice source signal the model parameters can be derived by fitting the model to each of
the voice source pulses. This can be done automatically by applying the algorithm used in Strik et al. (1993), however,
other methods also exist for doing this in the time domain (e.g., Li et al., 2011). Though this approach is used in several
software packages (e.g., Airas, 2008; Kreiman et al., 2006) the parameters have been shown to lack robustness in the
presence of noise (Alku et al., 2002; Kane et al., 2010). The parameters are also sensitive to low frequency phase
distortion which is commonly introduced even in high quality recording systems (Walker and Murphy, 2007).

2.3. LF model parameters from frequency domain methods (Raf,Rkf,Rgf,EEf)

An alternative approach for mapping from frequency domain measurements to time domain LF model parameters
has been developed which has built on previous work initially described in Kane et al. (2010). Fig. 2 shows a schematic
overview of the approach.

The subscript f, in Raf,Rkf,Rgf,EEf, is used to denote that these parameters are derived from frequency domain
measures. The method involves using the amplitudes of the first eight harmonics (H1, . . ., H8) from the voice source
spectrum, as well as the local f0 value, as inputs to a feed forward neural network (see Figs. 2 and 3 ), previously trained
on a large volume of LF model configurations and their spectral information, in order to derive the four parameters
Raf, Rkf, Rgf, and EEf. Harmonic amplitudes are measured from the narrowband spectrum, obtained by fast Fourier
transform (FFT) carried out on Hamming windowed, GCI centered frame, of length three times the local pitch period
(note that this procedure is used for all narrowband spectral analysis carried out in this study). The three shaping
parameters Raf, Rkf, and Rgf are learned jointly in one neural network, as they are interdependent. EEf is trained
separately in an additional neural network, as seen in Fig. 3.

For the ANN training and weight estimation, we first created a dataset, which involved generating a large number
of LF model pulses and recording both the parameters used for generating each pulse as well as the corresponding
spectral information. f0 was used as the control parameter with f0 ∈ [50, 600]. For each of the f0 values 1000 LF model
pulses were generated, each time randomly choosing values for each of the four other LF model parameters. Parameter
value selection was also subject to certain restrictions stated in Gobl (2003) for biological and model plausibility.
After standard back-propagation training, the neural networks produce precise predictions of the parameters, with
correlation coefficients R between predictions and target values (of the artificially generated parameters) > 0.9 and very
low mean absolute errors (mae) (Raf, Rkf, and Rgf network: R = 0.958, mae = 0.029; EEf network: R = 0.981, mae =
0.012).
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ig. 3. The first eight harmonics [H1, . . ., H8] are used as input for two separate networks approximating the four parameters Raf, Rkf, Rgf, and
Ef. As the parameters Raf, Rkf, and Rgf are not independent and influence each other a joint network is trained. EEf is trained separately.

This approach was developed in order to improve the robustness of the extracted parameters to the presence of noise
nd phase distortion. A schematic overview of the processes involved in the extraction of the LF model parameters
rom the frequency domain is seen in Fig. 2.

.4. Normalized amplitude quotient (NAQ)

The normalized amplitude quotient (NAQ) parameter was introduced as a global voice source parameter capable of
ifferentiating breathy to tense voice qualities (Alku et al., 2002) and is closely related to the Rd parameter described
n Fant et al. (1995). It is calculated using:

NAQ = fac · f0

dpeak

(9)

here fac is the maximum amplitude of the glottal flow, dpeak is the maximum negative amplitude of the differentiated
lottal flow.

Although NAQ is closely related to Rd, it is subtly, but nevertheless significantly different. NAQ is a direct measure
f the glottal flow and glottal flow derivative, whereas Rd is a measure derived from a fitted LF model pulse. As fitting
n LF model pulse ultimately involves compromising modeling of some features of the voice source pulse more than
thers its value is not necessarily proportional to Rd. Indeed it is the amplitude features of the voice source pulse that
re frequently poorly modeled when conducting model fitting.

NAQ, as an amplitude based parameter, was shown to be more robust to noise disturbances than parameters based
n time instant measurements and has, as a result, been used in the analysis of conversational speech (Campbell and

okhtari, 2003), which is frequently noisy. The parameter, however, may not be as effective as a voice quality indicator
hen a speaker is using a wide f0 range (Gobl and Chasaide, 2003).
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2.5. �H1,2

The difference in amplitude levels (in dB) between the first two harmonics of the narrowband voice source spectrum
(�H1,2) is thought to be a rough correlate of the open quotient parameter (Henrich et al., 2001) and hence useful at
discriminating breathy to tense voice qualities (Airas and Alku, 2007). The first two harmonics, however, are also
affected by the asymmetry of the glottal pulse, but to a lesser degree. The narrowband spectrum is obtained by using
three-pulse length sections, centered on a GCI and using a Hamming window.

2.6. Voice quality spectral gradients (OQG, GOG, SKG, RCG)

Lugger and Yang (2006) described a set of spectral gradient parameters for characterizing voice qualities from voice
source signals which built on work presented in Stevens and Hanson (1994):

• Open quotient gradient (OQG):

OQG = Ĥ1 − Ĥ2

f0
(10)

• Glottal opening gradient (GOG):

GOG = Ĥ1 − A1p

F1p − f0
(11)

• Skewness gradient (SKG):

SKG = Ĥ1 − A2p

F2p − f0
(12)

• Rate of closure gradient (RCG):

RCG = Ĥ1 − A3p

F3p − f0
(13)

As in Lugger and Yang (2006), F1p, F2p and F3p are frequencies of the harmonics nearest the first three formants. A1p,
A2p and A3p are the amplitudes at F1p, F2p and F3p. Harmonic amplitudes Ĥ1 and Ĥ2 are measured from the voice
source spectrum (note that the -symbol is used to denote that the harmonic measurements are made from the estimated
voice source signal). Formants are derived using the get formants script available in the SNACK toolkit.

The parameters were stated by the authors to be strongly correlated with typical glottal pulse shape parameters.
The parameters have been shown to be useful in the classification of voice qualities, gender and emotion (Lugger and
Yang, 2006). They have also been shown to be reasonably robust even with the presence of noise disturbances (Lugger
et al., 2006).

2.7. Peak slope

The final parameter included in this work is based on features derived following wavelet based decomposition of
the speech signal (Kane and Gobl, 2011). It was observed in Sturmel et al. (2009) that although only one or two of the
waveforms derived using wavelet-based analysis, relating to high frequencies, were required for finding glottal closure
instants (GCIs) in modal voice qualities. However, for breathier voice qualities the smoother GCIs require aspects of
the decomposition were required. Based on these observations a measurement was designed to identify GCIs from
glottal pulses with different glottal closure characteristics and hence differentiate between breathy and modal, and

perhaps also tense voice qualities. The following equation is used for decomposing the speech signal:

g(t) = − cos(2πfnt) · exp

(
− t2

2τ2

)
, (14)
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ig. 4. Peak amplitudes, from signals with different center frequencies, with regression lines for an /o/ vowel produced by a male speaker in breathy,
odal and tense voice qualities.

here the speech signal s(t) is convolved with g(t/si), and si = 2i and i = 0, 1, 2, . . ., 5. This essentially is the application
f an octave-band filter bank with the center frequencies being: 8 kHz, 4 kHz, 2 kHz, 1 kHz, 500 Hz and 250 Hz. Then
he local maximum is measured at each of the signals obtained from the decomposition and a regression line is fit to
hese peaks. In Fig. 4, it can be seen that for an /o/ vowel produced by a male speaker in breathy, modal and tense
oice qualities the slope of the regression line is clearly different. Hence, the peak slope parameter is simply the slope
oefficient of the regression line. In the original publication (Kane and Gobl, 2011) this was carried out on individual
hone segments. In the current study it is carried out on the frame level following wavelet-based decomposition of the
ntire speech signal. A frame length of 32 ms and shift of 10 ms is then used, together with rectangular windowing.

. Fuzzy-input fuzzy-output support vector machines

Support vector machines (SVMs) have become one of the most popular classifiers in many different machine
earning or pattern recognition applications (Bennett and Campbell, 2000). The principle idea is to find a hyperplane
hat maximizes the margin to the two linearly separable classes. In the case of non linearly separable classes the data
re projected into a higher dimensional space using a kernel function. It is suspected that in a higher dimensional space
separating hyperplane is found easier than in a lower dimensional space (Schölkopf and Smola, 2001). The so-called

upport vectors are the nodes supporting the hyperplane. The main idea of a two dimensional SVM problem is seen in
ig. 5, where two classes are linearly separated by a hyperplane. The advantage over common multi layer perceptrons is

hat the SVM finds the hyperplane with the maximally wide margin as opposed to any hyperplane capable of separating
he classes, which in turn is expected to have several advantages in particular generalization capabilities.

However, in many cases the task is to separate more than two classes. For these applications extended architectures
ike one-against-one SVM, one-against-all SVM or tree structured SVM (Schwenker, 2001) have been developed for
he classification of crisp or hard labeled data (Kahsay et al., 2005). These extended architectures result in different
omputationally expensive decision and training algorithms.

While dealing with naturalistic data, like voice qualities or user states in natural recordings, however, labels or
ategories might not be clear or crisp at all, but rather subjective to the perception of the annotator. Since the ground
ruth or the correct class might be unknown or fuzzy, the so-called fuzzy SVM (FSVM) assigning memberships to
everal classes to single observations have been developed by (Lin and Wang, 2002) and (Huang and Liu, 2002).

hough, the output of those FSVM is still crisp and no fuzzy output is generated. Therefore, so-called fuzzy-input

uzzy-output SVM (F2SVM) capable of receiving soft labeled data and producing soft outputs with memberships
ssigned over multiple classes have been developed (Thiel et al., 2007; Borasca et al., 2006; Thiel, 2009). For the
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Fig. 5. A schematic view of a linearly separable two dimensional classification task. Class 1 is represented by shaded circles whereas class 2 is
represented with shaded rectangles. The support vectors necessary for the representation of the hyperplane (solid line) are marked with a wider
circle.

proper combination of the decisions of the single SVM in the case of a multi-class one-against-one SVM (three classes
in the present study) a fuzzy output is more flexible than a binary output. Consider, for instance, that all three binary
one-against-one SVM (i.e. in this study: breathy vs. modal; tense vs. modal; breathy vs. tense) disagree; a sound class
estimate cannot be made for the given input based on these disagreeing predictions. In case of fuzzy classifier output,
at least for real-valued output, such a tie-situation is unlikely. Further, as in the present study fuzzy outputs sometimes
are a more suitable fit to the target application.

3.1. Training and retrieval

In order to emphasize on the differences and extensions in the F2SVM approach the standard SVM training shall
be introduced in the following.

3.1.1. Simple support vector machines
Starting from the typical two class problem a set M of training samples (xμ, lμ) may be defined as follows:

M = {(xμ, lμ)|xμ ∈ R
n, lμ ∈ {−1, +1}, ∀μ = 1, . . . , |M|} (15)

where xμ denote the samples from the input space R
n and lμ the target labels. Using these target labels as a category

to divide set M into two subsets, the optimal separating hyperplane is determined by the vector w ∈ R
n and the bias

b ∈ R fulfilling the separation constraints:

lμ(wT xμ + b) ≥ 1, ∀μ = 1, . . . , |M|, (16)

and the maximal margin condition (Bishop, 2006):

θ(w) = ||w||2
2

→ min . (17)

In order to solve this quadratic optimization problem so-called Lagrange multipliers αμ ≥ 0 are introduced, with one
multiplier for each constraint, yielding the following Lagrangian function:
L(w, b, α) = ||w||2
2

−
|M|∑
μ=1

αμ{lμ(wT xμ + b) − 1} (18)
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he dual form of this quadratic optimization problem defined through

W(α) =
|M|∑
μ=1

αμ − 1

2

|M|∑
ν=1

|M|∑
μ=1

αναμlνlμxT
ν xμ (19)

ubject to the following constraints:

|M|∑
μ=1

αμlμ = 0 and αμ ≥ 0, ∀n = 1, . . . , |M| (20)

an be solved using standard optimization methods.
In real world problems a separating hyperplane might not be found at all times. Therefore, we can reformulate the

ptimization problem given in (17) by introducing so-called slack variables ξμ allowing a data point to be between
he hyperplane and the margin (0 ≤ ξμ < 1) or even on the wrong side of the hyperplane (ξμ > 1). The reformulated
ptimization problem is now (Bishop, 2006):

θ(w, ξ) = ||w||2
2

+ C

|M|∑
μ=1

ξμ → min, (21)

ith the soft constraints:

lμ(wT xμ + b) ≥ 1 − ξμ, ξμ ≥ 0, ∀μ = 1, . . . , |M|, (22)

ith a free parameter C > 0 regulating the amount of allowed errors by punishing them with an increased value of C.

.1.2. Fuzzy-input fuzzy-output support vector machines
In the following the extensions necessary for the F2SVM approach will be introduced. First of all it is necessary to

efine membership values m+
μ (the membership to the positive class) and m−

μ (the membership to the negative class)
or observation xμ, which are now integrated to the optimization problem with slack variables:

θ(w, ξ+, ξ−) = ||w||2
2

+ C

|M|∑
μ=1

(ξ+
μ m+

μ + ξ−
μ m−

μ ) → min (23)

ubject to the following constraints:

wT xμ + b ≥ 1 − ξ+
μ , with ξ+

μ ≥ 0, ∀μ = 1, . . . , |M| (24)

nd

wT xμ + b ≥ −1 + ξ−
μ , with ξ−

μ ≥ 0, ∀μ = 1, . . . , |M| (25)

his adaptation to the optimization problem doubles the storage complexity, as opposed to the standard SVM opti-
ization, since each data point xμ belongs to both classes (to a certain extent), whereas in the standard SVM case it

an only belong to one, and therefore increases the runtime during training.
With the help of these four constraints we now can reformulate the optimization problem to the Lagrangian function

(w, b, ξ+, ξ−, α+, α−, β+, β−), by introducing the Lagrangian multipliers α+, α−, β+, β−:

L(w, b, ξ+, ξ−, α+, α−, β+, β−) = ||w||2
2

+ C

|M|∑
μ=1

(ξ+
μ m+

μ + ξ−
μ m−

μ ) −
|M|∑
μ=1

α+
μ ((wT xμ + b) − 1 + ξ+

μ )
+
|M|∑
μ=1

α−
μ ((wT xμ + b) + 1 − ξ−

μ ) −
|M|∑
μ=1

β+
μξ+

μ −
|M|∑
μ=1

β−
μξ−

μ (26)
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This Lagrangian function can now be transformed into the dual representation by eliminating w, b, ξ+, and ξ− by
inserting the partial derivatives ∂L/∂w, ∂L/∂b, ∂L/∂ξ+

μ , and ∂L/∂ξ−
μ and setting them equal to zero. Finally, leading to

the Lagrangian requiring maximization:

W(α) =
|M|∑
μ=1

α+
μ +

|M|∑
μ=1

α−
μ − 1

2

|M|∑
ν=1

|M|∑
μ=1

(α+
ν − α−

ν )(α+
μ − α−

μ )xT
ν xμ (27)

with α+
μ, α−

μ ≥ 0, ∀μ = 1, . . ., |M| and subject to

|M|∑
μ=1

(α+
μ − α−

μ ) = 0 (28)

and

0 ≤ α+
μ ≤ Cm+

μ, 0 ≤ α−
μ ≤ Cm−

μ (29)

Further, we get the Karush–Kuhn–Tucker conditions (∀μ = 1, . . ., |M|) (Thiel et al., 2007):

α+
μ ((wT xμ + b) − 1 + ξ+

μ ) = 0 (30)

and

α−
μ ((wT xμ + b) + 1 − ξ−

μ ) = 0 (31)

Therefore, the samples xμ with (α+
μ − α−

μ ) /= 0 are the support vectors defining the decision function:

y(x) = sign

⎛
⎝ |M|∑

μ=1

(α+
μ − α−

μ )xT xμ + b

⎞
⎠ . (32)

In order to extend this fuzzy approach to a multi-class approach in which we do have a set of samples:

M =
⎧⎨
⎩(xμ, lμ)|xμ ∈ R

n, lμ ∈ R
k, with

k∑
j=1

lμ,j = 1, ∀μ = 1, . . . , |M|
⎫⎬
⎭ (33)

where lμ,j indicates the grade of membership of sample xμ to class j and k is the total number of classes. Note that a
crisp classification problem is simply a special case of the fuzzy one with all lμ,j = 0 except for one lμ,j∗ = 1, where j*

denotes the target class. In order to solve the fuzzy multi-class problem we train k(k − 1)/2 SVM Si,j in the one-against-
one paradigm for each possible pair of classes i and j. The sample set for each of the SVM to be trained is constructed
as follows (Thiel et al., 2007), analogously the standard SVM can be extended to solve a multi-class problem:

Mi,j = {(xμ, m+
μ,i)|m+

μ,i = lμ,i} ∪ {(xμ, m−
μ,j)|m−

μ,j = lμ,j} (34)

Now suppose we have trained all of the one-vs.-one SVM we can construct a fuzzy output vector as follows:

1. Given a previously unseen sample z ∈ R
n and trained SVM Si,j, ∀i, j = 1, . . ., k.
2. Compute distances di,j(z) ∈ R for each class using all Si,j to the respective hyperplanes.
3. Transform those distances di,j(z) using a logistic function f(di,j) = 1/1 + exp(− Adi,j), with A ∈ R and subject to

optimization if required. A common fixed value is A = 2.
4. Finally a pairwise coupling as in Thiel et al. (2009) and Thiel (2009) is employed to receive the final fuzzy labels

ỹ(z) ∈ R
k one dimension for each of the k classes and with

∑k
i=1ỹi(z) = 1.
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.2. Fuzzy distance measure

In order to be able to compare the combined annotator opinion4 oz ∈ R
k, with

∑k
i=1oz,i = 1, where oz,i denotes the

nnotator assigned membership to class i for any sample z and the fuzzy output of the F2SVM ỹ(z), it is important to
tilize a measure capturing the similarity or distance between oz and ỹ(z). To achieve this, we employed the so-called
1 measure, commonly used for fuzzy classifier fusion (Kuncheva et al., 2001; Kuncheva, 2001):

S1(x, y) =
∑L

i=1 min(xi, yi)∑L
i=1 max(xi, yi)

∈ [0, 1], (35)

apturing the similarity between x and y in this study, or the D1 distance defined as

D1(x, y) = 1 − S1(x, y) ∈ [0, 1], (36)

hich is a pseudo metric sufficing the following properties:

Non-negativity: D1(x, y) ≥ 0, ∀x, y.
Identity of indiscernibles: D1(x, y) = 0 ⇔ x = y.
Symmetry: D1(x, y) = D1(y, x).

Furthermore, the following properties hold:

Maximal distance: D1(x, y) = 1 ⇔ ∀ i : xi = 0 ∨ yi = 0.
Minimal distance: D1(x, y) = 0 ⇔ x = y.

In order to get a feel for the distance D1 consider the following examples:

x = [1, 0, 0], y = [1, 0, 0]:

D1(x, y) = 1 − 1 + 0 + 0

1 + 0 + 0
= 0

x = [1, 0, 0], y = [0, 1, 0]:

D1(x, y) = 1 − 0 + 0 + 0

1 + 1 + 0
= 1

x = [0.5, 0.5, 0], y = [0, 0.5, 0.5]:

D1(x, y) = 1 − 0 + 0.5 + 0

0.5 + 0.5 + 0.5
= 2

3

x = [0.1, 0.9, 0], y = [0, 0.9, 0.1]:
D1(x, y) = 1 − 0 + 0.9 + 0

0.1 + 0.9 + 0.1
= 2

11

4 The combined annotator opinion is the fuzzy target. In this study it has been derived following the algorithm in Fig. 7.
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• x = [0.4, 0.2, 0.4], y = [0.3, 0.1, 0.6]:

D1(x, y) = 1 − 0.3 + 0.1 + 0.4

0.4 + 0.2 + 0.6
= 1

3

As it might become obvious from the above examples crisp decisions as in the first two examples might result in
the optimum (i.e. zero) or worst value (i.e. one) for the distance. Whereas, the distribution of membership values over
all the classes might not result in the optimum but in measures above the minimum. As it should be shown in the last
examples fitting trends in membership assignment result in values well above zero, but also far from one. Therefore,
we would expect values of around 0.33 to be an indication of a close overall match between the fuzzy prediction and
the target values in the results of the classification experiments using this fuzzy measure.

4. Evaluation

4.1. Speech data

There is a distinctive lack of widely available speech data with voice quality annotation. Further, as voice quality
annotation schemes differ and as the annotator’s interpretation of voice quality labels may not be consistent, it is
difficult to combine multiple smaller data collections to form larger resources for evaluation and analysis.

4.1.1. Finnish vowel dataset
The speech data for this study comes from the recordings used in Airas and Alku (2007) and was provided to us

by the authors. The original data were speech recordings of 6 female and 5 male speakers aged between 18 and 48
years (with a mean of 30). The speakers were asked to produce eight Finnish vowels /ɑ e i o u y æ ø/ using breathy,
normal and tense phonation types. Participants were trained with producing the voice qualities before recording. While
conducting the recording speakers were asked to repeat the utterance with stronger emphasis on the voice quality when
it was necessary. Each utterance was repeated three times resulting in 792 speech segments.

The speech was recorded using a unidirectional Sennheiser electret microphone with a preamp (LD MPA10e Dual
Channel Microphone Preamplifier) and a digital audio recorder (iRiver iHP-140). Audio was digitized at 44.1 kHz.
The impulse response of the recording system was obtained using a maximum length sequences (MLS) method (Rife
and Vanderkooy, 1989). Analysis of the impulse response reveals a very flat amplitude response down to the very
low frequencies, e.g., frequencies 60–100 Hz show a 0.026 dB variance in the amplitude response and frequencies
20–60 Hz show a variance of 0.768 dB. The phase response of the recording system is linear down to well below the
lowest f0 values. However, slight phase non-linearity in the very low frequencies was compensated for by convolving
recorded signals with this impulse response time reversed.

4.1.2. Sentence dataset
Also, included in the current study were 10 sonorant-only (all voiced) sentences, produced in three voice qualities

(breathy, modal and tense) by one male speaker (i.e. 30 sentences in total). The utterances were produced in a semi-
anechoic room and audio was captured using high quality recording equipment (a B&K 4191 free-field microphone
and a B&K 7749 pre-amplifier). Audio was digitized at 44.1 kHz (using a Lynx-two sound card) and then downsampled
to 16 kHz. Sentences were then manually annotated on the phoneme level (446 phoneme segments in total).

The speaker is active in voice quality research and produced the sentences repeatedly until it was deemed that the
voice quality had been successfully maintained throughout the entire sentence. This process required several iterations
of re-recording. The sentences were then listened to independently by another researcher also experienced in voice

quality research as well as with Laver’s labeling scheme. She confirmed that the sentences were produced consistently
using three discrete voice qualities and that these voice qualities corresponded to Laver’s description of breathy, modal
and tense. She did comment, however, that the perceptual distance of the breathy sentences compared to the modal
sentences was greater than the tense sentences compared to the modal sentences. Following this process we are confident
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hat the sentences do indeed correspond to the voice quality labels and that they are suitable for use in the current
tudy.5

.2. Expert voice quality label assessment

For the purpose of the current study we required three independent sets of voice qualities to be used for the analysis.
he initial labeling of the speech samples (i.e. breathy, normal and tense) was deemed inappropriate as a person’s

normal’ voice quality could, for instance, be intrinsically breathy or tense and, hence, this would result in three
verlapping sets of voice qualities. Instead we opted to use a voice quality labeling system based on Laver’s framework
Laver, 1980). The label ‘modal’, which replaced ‘normal’, under Laver’s framework has particular physiological and
coustic attributes which means that not every speaker’s ‘normal’ voice quality would be considered ‘modal’.

In order to decide on the new labeling, listening tests were conducted with three participants. All participants were
xperienced in voice quality research and were also familiar with Laver’s labeling framework (Laver, 1980). The
articipants were required to rate the speech samples on a forced choice five point scale (see Table 6). The scale gave
he option of choosing breathy/modal and modal/tense as well as the three individual labels. This allowed participants
o indicate their uncertainty over the voice quality label if elements of the two voice qualities were perceived. Say,
or instance, if breathiness was only weakly perceived (perhaps a weak sensation of aspiration noise) the option
reathy/modal could be chosen. Note that there is an assumption here that the voice qualities breathy, modal and tense
ie on a continuum. Such an assumption has also be made in previous studies (e.g., Gobl and Ní Chasaide, 2003). Other
tudies (e.g., Edmondson et al., 2001) have reported on the possibility for the voice quality compound breathy-tense,
owever, such a voice quality was deemed not to be contained within the current datasets.

Samples were presented to the participants in a randomized order, resulting in an inter-rater agreement of κ = 0.526.
criteria was defined based on the numerical values of the participants ratings in order to determine whether samples
ere to be considered ‘included’ or ‘excluded’. If the mean rating for the given sample was more than 0.75 (in
umerical scores) away from its original voice quality label then the sample was considered ‘excluded’. Samples were
lso excluded if the standard deviation of its rating were more than 1, as this demonstrated disagreement on the part of
he participants on the labeling to be used. This resulted in 314 of the 792 total samples being considered ‘excluded’,
ith 478 being allocated the class ‘included’. For the subset ‘included’, an inter-rater agreement of κ = 0.717 is reached.
his subset contains no samples for which the maximum annotator opinion, i.e. the voice quality that received the
ost support from the experts, diverges from the actual intended label, rendering a fair comparison between the crisp

nd fuzzy-input approaches. To be precise, the distribution of classes in the reduced dataset included 170 breathy (i.e.
5.5%), 170 modal (i.e. 35.5%), and 138 tense (i.e. 29.0%) samples respectively, which is an almost even distribution
f samples. In the second part of the experiments described in Section 5.3 the whole set of 792 samples was used.

. Experiments and results

In the following we have listed the results of the manifold recognition experiments (11 overall) that we conducted,
able 2 lists all the conducted experiments, the used data and targets. A schematic overview of the experimental setup is
hown in Fig. 6. Basically, there is one major distinction separating the experiments into two groups, namely the crisp
lassification experiments, for benchmarking and comparison to standard methods, and the fuzzy output experiments,
ith the target to match the mixed votes of the annotators. For the crisp experiments we chose the reduced dataset,6 by

xcluding the samples for which the annotators did not clearly choose the targeted voice quality as described in Section
.2. The standard methods of choice for comparison were naive Bayes classifier (NB), giving a rough baseline, and
tandard crisp support vector machines (SVMs) utilizing the same radial basis function (RBF) kernel as the fuzzy-input

uzzy-output support vector machines (F2SVMs). Both SVM types utilize the one-against-one multi-class paradigm.
or all the experiments we conduct a z-score transformation of the features based on the data within the respective

raining sets before classification.

5 The sound files of the 30 sentences used in the current study are included in the paper submission.
6 Set only includes samples for which the intended voice quality coincides with the maximum membership assignment by the annotators.
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Table 2
List of the 11 experiments conducted with their respective training and test dataset, as well as the targets, and methods.

Experiment Train data Test data Train targets Test targets Method

Crisp classification experiments: Sections 5.1 and 5.2
Cross validation Vowels Vowels Actual label Actual label Naive Bayes
(90 %/10 % split) Standard SVM

F2SVM
Leave one speaker out Vowels Vowels Actual label Actual label Naive Bayes
(10/1 speaker split) Standard SVM

F2SVM
Cross corpus Vowels Sentence data Actual label Actual label Naive Bayes

Standard SVM
F2SVM

Fuzzy classification experiments: Section 5.3
Cross validation Vowels Vowels Membership Membership F2SVM
Leave one speaker out Vowels Vowels Membership Membership F2SVM

Table 3
Error (in %) comparison of Naive Bayes (NB), standard SVM and crisp F2SVM outputs for cross validation (10-fold) and leave one speaker out
experiments.

Cross validation Leave out one speaker

Err. (%) Std. Err. (%) Std.

Naive Bayes 21.54** 6.58 23.94** 10.35
SVM 16.09* 4.59 18.33* 6.99
F2SVM 12.14 3.11 13.88 3.89

The error (Err.) and standard deviation (Std.) are calculated by comparing to the true label. The experiments were conducted on the reduced dataset.
* Significant differences to the best performing approach F2SVM in paired t-tests with p < 0.05.

** Significant differences to the best performing approach F2SVM in paired t-tests with p < 0.01.
Fig. 6. Schematic system overview, including data preprocessing (i.e. inverse filtering), feature extraction, and classification.

Furthermore, for both groups an additional experiment partition criterium exists: 10-fold cross validation experi-

ments as well as leave one speaker out experiments were conducted. In the former we randomized the dataset and
split it into 10 training and test sets, plus one validation fold for parameter optimization. The leave one speaker out
experiment, in order to verify generalization abilities of the approaches over different speakers within the Finnish
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ig. 7. Pseudocode snippet explaining the assignment of membership values to the recordings. x denotes a recording, mx the membership assignment
or x, e an expert, and e(x) the opinion of expert e on sample x. nexp is the number of available experts. The final membership assignment with

mx = 1 is returned.

owel set data, was executed as follows: for each fold one of the eleven speakers was left out of the training set and
as solely used for testing.
Additionally, the generalization ability of all three methods, i.e. NB, SVM, and F2SVM, is compared in a cross

orpus experiment using the sentence dataset introduced in Section 4.1. In the cross corpus experiment we train the
lassifier utilizing the data from one dataset and test it in an entirely new setting with data from another corpus. This
ype of experiment poses a considerable challenge to the classifier as strong generalization capabilities are required.

For the F2SVM experiments it was necessary to generate fuzzy inputs resembling the degree of membership of each
ample towards the three voice qualities. For each of the recordings these membership values were calculated using
he labels mentioned in Table 6, as indicated by all the experts, and following the pseudo algorithm shown in Fig. 7.
hese newly calculated values were then used as the teacher signal for the F2SVM in the experiments. In Fig. 8 the
ssigned memberships for each of the voice qualities as calculated are visualized using box plots.

.1. Crisp classification experiments

In Table 3 the error rates of all of the crisp classification experiments are listed. It is clearly visible that in all the
xperiments the F2SVM outperforms the other baseline approaches. For the cross validation experiments using all the
vailable speakers 12.14% error (standard deviation σ = 3.11) was achieved, and only a slight decrease was observed
hile leaving one speaker out (13.88% error; σ = 3.89). The standard SVM, receiving the actual label as target in
raining, produced 16.09% error (σ = 4.59) in the cross validation and 18.33% (σ = 6.99) in leave one speaker out. Both
imes the F2SVM outperforms the standard SVM statistically significantly in paired t-tests (cross validation p = 0.02;
eave one speaker out p = 0.04). The baseline performance of the naive Bayes classifier results in errors slightly over

able 4
omparison of confusion matrices using Naive Bayes, standard SVM and F2SVM approaches for crisp cross validation (10-fold) experiments with
ll speakers.

Naive Bayes SVM F2SVM

Breathy Modal Tense Breathy Modal Tense Breathy Modal Tense

reathy 0.87 0.13 0.00 0.89 0.10 0.01 0.90 0.10 0.00
odal 0.19 0.65 0.16 0.13 0.78 0.09 0.08 0.85 0.06

ense 0.01 0.14 0.85 0.03 0.12 0.85 0.00 0.12 0.88

umbers are hit rates and lines sum up to one for each confusion matrix modulo rounding errors.
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Fig. 8. Distribution of the memberships for the reduced vowel dataset as assigned by the annotators following the membership assignment algorithm
in Fig. 7. The top row resembles the membership assignments for all speakers, the middle row for male speakers and the bottom row for female
speakers. The letters denote the voice quality by the starting letter, i.e. B . . .breathy, M . . .modal, and T . . .tense. The center line denotes the median
and the box is limited by the third and first quartile. Whiskers include the furthest outlying points that are not yet outliers, i.e. more than about 2.5
times the standard deviation, away from the median. Outliers marked as crosses are further away from the median.

Table 5
Comparison of confusion matrices using Naive Bayes, standard SVM and F2SVM approaches for crisp leave one speaker out experiments with all
speakers (eleven speakers).

Naive Bayes SVM F2SVM

Breathy Modal Tense Breathy Modal Tense Breathy Modal Tense

Breathy 0.86 0.14 0.00 0.85 0.13 0.02 0.88 0.11 0.01
Modal 0.20 0.62 0.18 0.13 0.78 0.09 0.09 0.83 0.08

Tense 0.01 0.14 0.84 0.06 0.13 0.81 0.01 0.11 0.88

Numbers are hit rates and lines sum up to one for each confusion matrix modulo rounding errors.

20% for both the cross validation and the leave one speaker out experiment. Both times the naive Bayes classifier is
strongly outperformed by the F2SVM with significant differences (cross validation p < 0.001; leave one speaker out

p = 0.008). No statistically significant difference between the standard SVM and the naive Bayes classifier was found.

The confusion matrices of these experiments can be seen in Table 4 (cross validation experiment) and Table 5 (leave
one speaker out experiment). All approaches result in very similar confusion matrices where almost no confusion

Table 6
Possible voice quality labels to be given to speech samples by expert judges (left column) and their numerical value (right column).

Voice quality Number given

Breathy 1
Breathy/modal 2
Modal 3
Modal/tense 4
Tense 5
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ne speaker out experiments (bottom row). The letters denote the voice quality by the starting letter, i.e. B . . .breathy, M . . .modal, and T . . .tense.
alues are in accuracy rate and error bars are given over the single folds of the validation.

etween breathy and tense voice qualities are present. For the F2SVM and the naive Bayes classifier these errors are
ot reported in the cross validation experiments, further, in the leave one speaker out experiment they do not exceed 1%.
n the standard SVM case breathy is confused with tense in 6% of the cases for the leave one speaker out experiment
only 3% in the cross validation experiment). The errors of the naive Bayes between neighboring voice qualities are,
owever, more frequent than in the other approaches. The confusions of the F2SVM are further visualized in Fig. 9
nd show strong resemblance of the human performance and distribution of labels shown in Fig. 8.

.2. Cross corpus experiments

In order to further check the generalization ability of the approach a cross corpus experiment was conducted. All
he mentioned methods, i.e. naive Bayes, standard SVM, and F2SVM, were trained on the Finnish vowel set data
nd tested on the sentence dataset. The errors in % are listed in Table 7 comprising the errors on a frame-wise basis
ncluding vowels and consonants and the errors achieved after integrating the decisions of the approaches over the
hole sentences, which were recorded in a constant voice quality. The temporally integrated decisions of the classifiers

re computed by aggregating the frame-wise decisions over the full length of the sentence. It is seen, that the F2SVM
pproach (frame-wise error 17.66%; sentence level 3.33%) again outperforms the other two reference approaches
learly. The two perform around 30% error for all cases. In the case of the sentence level integration of the decision

he F2SVM only mistakes one breathy sentence as a modal sentence.

The confusion matrices for the approaches on the frame level are shown in Table 8. It is seen that the reference
pproaches perform poorly for breathy and modal voice qualities, whereas they hardly ever confuse the tense quality.
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Table 7
Error (in %) comparison of Naive Bayes, standard SVM and F2SVM outputs for cross corpus experiments with frame-wise error rates as well as
temporally integrated errors over full sentence length.

Frame-wise Temporally integrated

Naive Bayes 29.53 30.00
SVM 33.33 30.00
F2SVM 17.66 3.33

The classifiers are trained on the Finnish vowel set data and tested on the sentence data (compare Section 4.1). The error is calculated by comparing
the classifiers’ output to the target label of the sentences.

Table 8
Comparison of confusion matrices using Naive Bayes, standard SVM and F2SVM approaches for cross corpus experiments. The classifiers are
trained on the Finnish vowel set data and tested on the sentence data (compare Section 4.1). Numbers are hit rates and lines sum up to one for each
confusion matrix modulo rounding errors.

Naive Bayes SVM F2SVM

Breathy Modal Tense Breathy Modal Tense Breathy Modal Tense

Breathy 0.65 0.35 0.00 0.56 0.43 0.01 0.96 0.04 0.00
Modal 0.03 0.57 0.40 0.02 0.54 0.44 0.12 0.73 0.15

Tense 0.00 0.11 0.89 0.00 0.10 0.90 0.01 0.18 0.80

In contrast to that the F2SVM performs best with respect to the breathy voice quality. Confusions of breathy and tense
are again very rare.

5.3. Fuzzy classification experiments

We conducted a second type of experiments in which we did not target high accuracy rates as in the experiments
reported in Sections 5.1 and 5.2 and, but sufficiently low D1 measures as described in Section 3.2. The D1 distance
measure indicates if the classifier’s fuzzy output is close to the fuzzy annotation as assigned by the expert annotators. For
the fuzzy classification experiments we utilized the full dataset available and the targets were the assigned memberships
of the annotators to each of the samples as explained in Fig. 7. Since the standard SVM and naive Bayes approaches
do not yield fuzzy outputs that are comparable to the F2SVM results we decided to utilize the actual crisp label of a
recording as well as the combined annotator opinion as a benchmark.

If the actual label of a recording x was breathy the fuzzy memberships mx = {1, 0, 0}. This is then compared to the
classification output as well as the annotator opinions using the distance measure D1 introduced in Eq. 36. In Table 9
the full set of mean D1 measures for the experiments is listed. The top line compares the perception of the annotators to

2
the classification of the F SVM. The next one compares the classification with the actual target label of the recording.
Finally the perception of the annotators is compared to the target labels, as a baseline. It is seen that the baseline
outperforms the F2SVM in all the cases, as expected. However, the mean D1 measures for the classification are quite

Table 9
D1 distance measures and standard deviations (Std.) for fuzzy F2SVM outputs for cross validation (10-fold; X-Val) and leave one speaker out
(LOSO) experiments and comparative values as baseline.

X-Val LOSO

D1 Std. D1 Std.

Classification vs. perception 0.3884 0.0288 0.3877 0.0260
Classification vs. target 0.5022 0.0320 0.5026 0.0325
Target vs. perception 0.3709 0.0256 0.3709 0.0496

No sample from the dataset was excluded for the experiments. Classification denotes the output of the F2SVM, whereas perception denotes the
memberships assigned according to the annotator opinions. Further, target stands for the actual label of the recording.
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Table 10
Comparison of confusion matrices using the F2SVM approach for cross validation (10-fold) and leave one speaker out experiments with all speakers.

Cross validation Leave out one speaker

Breathy Modal Tense Breathy Modal Tense

Breathy 0.87 0.10 0.03 0.85 0.12 0.03
Modal 0.21 0.60 0.19 0.14 0.66 0.19
Tense 0.04 0.21 0.75 0.03 0.21 0.77
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umbers are hit rates and lines sum up to one for each confusion matrix modulo rounding errors. The maximum likelihood of the fuzzy output of
he F2SVM is compared to the maximum likelihood of the merged annotator opinion. Further, no sample has been removed from the dataset.

lose to the human performance and there is no statistically significant difference found utilizing a t-test over the 10
olds of the cross validation and the leave one out speaker folds, respectively.

As an additional benchmark, we included the confusion matrices of the experiments by hardening the output of the
lassifier as well as the annotator opinion, i.e. the maximum of the assigned memberships resembles the crisp label
ax ỹ(z) (compare ỹ(z) in Section 3.1.2). These matrices are found in Table 10. Since all of the samples available in

he dataset were taken into consideration in these experiments the results show less accuracy, but the error types stay
he same: Confusions involving modal are still responsible for the majority of the errors.

. Discussion of statistical evaluation

The most striking result drawn from the experiments is the capability of the F2SVM to classify the voice qualities
ore accurately than a standard SVM with the same features as input and kernel function (RBF kernel), in the crisp

lassification experiments shown in Table 3. Therefore, it seems quite obvious that there is some information present
n the fuzzy targets during training that improves the generalization capabilities of the classifier. As these experiments
ere conducted on the reduced dataset with an inter-rater agreement of κ = 0.717 the training of all approaches was

onducted on a set for which the maximum of the annotators’ membership assignments always coincides with the
ctual target label, in order to render a fair comparison.

Furthermore, the underlying model employed during expert annotation, described in Section 4.2, allowing the
nnotator to assign a label between breathy and modal (the value 2 in Table 6) and a value between modal and tense
the value 4 in Table 6) is supported by the classification results shown in Section 5. This conclusion can be drawn since
ll the classifiers, comprising naive Bayes, standard SVM, and F2SVM, confuse neighboring classes more often than
he two extreme classes, breathy and tense. This statement is underlined by almost all the confusion matrices found
n the paper. Furthermore, human perception results as shown in Fig. 8 show similar confusions due to the increased
ssignment of memberships to modal in the breathy and tense cases, as seen in the results shown in Fig. 9 for the
2SVM.

Overall, the approach is apparently stable over untrained speakers and generalizes well. This, however, is not only
he case for the fuzzy approach but also for the two baseline approaches, indicating that the features are representing the
oice qualities quite well and are quite independent of the speakers (compare leave one speaker out results in Table 3).

The generalization capabilities of the approaches were further compared in a cross corpus experiment. The classifiers
ere trained using the features extracted from the Finnish vowel set data and tested on the features of the sentence
ata, including features corresponding to voiced-consonants and vowels alike. The F2SVM clearly outperformed the
eference approaches, with an overall accuracy of around 82% for the frame-wise decisions and for the single voice
ualities breathy (96% accuracy) and modal (73% accuracy). The standard approaches recognized the voice quality
ense with a higher accuracy of about 90%, however, the accuracies for the other two voice qualities were much lower
see Table 8). Further, after integrating the decisions over the whole sentences the accuracy rose up to more than 95%,
eaning that only one out of the thirty sentences was confused. Whereas this result is encouraging, it needs to be stated

hat in natural recordings it is not expected that the voice quality of a speaker is constant over a full sentence as in the

nvestigated corpus, nor are the boundaries of the voice quality known beforehand.

The interpretation of the fuzzy experimental results as reported in Section 5.3 is not as straightforward as for the
risp classification results. The output ỹ(x) ∈ R (with

∑k
i=1ỹi(x) = 1) of the F2SVM can be interpreted basically in

wo ways: the values ỹi(x) may be interpreted as degree of membership to class i ∈ {1, . . ., k}, allowing for mixed
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states of two or more voice qualities at the same time. Further, they can be interpreted in a probabilistic manner, where
the values ỹi(x) denote the probability of x belonging to class i. And therefore we can interpret i∗ = argmaxiỹi(x) as
the crisp and most probable decision of the F2SVM. In Section 5 we list results for both interpretations, we however
believe that the degree of membership interpretation is more suitable for the current study, but it is harder to interpret
in terms of accuracy and therefore we included both.

First for the degree of membership interpretation, it can be observed, that human performance is not quite reached.
While comparing the distance of the actual class labels towards the expert annotations, with the one for the automatic
classification towards the expert annotations, the former always outperforms the latter with respect to the D1 measure.
However, the values are not that much higher as seen in Table 9, and no significant difference was found between the
observed D1 measures.

By interpreting the results as probabilities for one class, we can gain another set of confusion matrices, that makes it
a bit easier to quantify the error, however, it does not support the idea of mixed voice qualities being present to different
degrees. The confusion matrices found in Table 10 show similar results as in the crisp classification experiments, but
less accuracy, which is of course due to the additional samples used in the experiment.7 The matrices are filled by
comparing the most probable F2SVM output to the most probable expert opinion. An accuracy of around 74% was
achieved in the cross validation experiment. For the leave one speaker out experiments (all speakers) 76% accuracy
was achieved.

7. Conclusion

In the present study we investigated the capability of F2SVM to classify voice quality samples from a vowel corpus,
as well as in a cross corpus study using data taken from full sentences. The results in Section 5 show relatively
high accuracy rates for the proposed F2SVM approach in comparison to the standard approaches in many of the
experiments including cross validation and leave one speaker out validation conditions as well as when comparing
crisp and fuzzy measures. Additionally, it has shown strong generalization capabilities in cross corpus analysis and
leave one speaker out experiments. The proposed method outperformed its competitors (standard SVM, and naive
Bayes) in crisp classification experiments clearly, by only utilizing the information present in fuzzy labels during
training. This is a very encouraging result supporting the importance of fuzzy treatment of voice quality data and
annotations. The results are very promising for future work including the extension of the approach to running speech
and more naturalistic data.

Additionally the fuzzy outputs are advantageous, if the classifier is used in a larger architecture, where voice quality
classification is only one of many predictions that are spatiotemporally integrated, such as it is proposed in Scherer
et al. (2012). The information that is passed from layer to layer in the overall architecture is often error prone and
early crisp decisions can often not be compensated for in later stages, whereas in fuzzy predictions all the information
retains. It could be shown that classifiers relying on fuzzy outputs significantly outperform those, that combine early
crisp decisions (Scherer et al., 2012).

One of the shortcomings of the present study is, that we only considered acted voice quality samples. However, we
believe the findings here help pave the way to improved voice quality analysis in realistic speech data by considering
fuzzy classification. The analysis of the sentence corpus is a first step into that direction and it seemingly worked very
well.

When considering realistic data recorded outside ideal laboratory conditions the voice quality ground truth will
again not be known. Therefore, expert ratings, that lead to fuzzy labels and mixed categories, are required to assess
the quality of an automatic and robust voice quality classifier. Realistic data further requires alternative measures for
the assessment of accuracy, which is why we introduced the D1 measure to determine the distance of a fuzzy result
towards a fuzzy target.
Unfortunately, the results here using the D1 measure are not easily comparable with other studies or indeed with
other classifiers in the present study. We chose the D1 distance measure as it reflects the full distance between two fuzzy
labels (i.e. the prediction and the target) and as it is an adaptation of the widely used S1 similarity measure (Kuncheva,

7 No sample of the 792 was excluded according to the criteria in Section 4.2 for all the fuzzy experiments.
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004). We hope that future research involving the classification of data with fuzzy ground truths (e.g., voice qualities
nd affective states) will utilize a measure of this nature which would facilitate the comparability of similar results.

. Future work

Evidence has been provided in the present study, that the utilized features and classification methods are suitable
or voice quality analysis and classification. One specific direction of our research is to define an optimal voice quality
eature set (initially for breathy to tense voice qualities) following formal robustness testing as well as automatic
eature selection experiments. Further, we wish to develop a separate feature set suited to a different dimension of
oice quality (i.e. harshness, creakiness) and apply a similar classification approach. We then wish to migrate this
pproach (both in terms of acoustic features and classification method) to the analysis of more authentic productions
f voice qualities recorded in naturalistic settings. A longer term goal would be to apply voice quality characterization
o speech technology input and output applications in order to be able to adapt more naturalistically to the interacting
sers and their affective states.
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