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Abstract—In this paper, we introduce a new model
called Latent Mixture of Discriminative Experts which
can automatically learn the temporal relationship between
different modalities. Since, we train separate experts for
each modality, LMDE is capable of improving the pre-
diction performance even with limited amount of data.
For model interpretation, we present a sparse feature
ranking algorithm that exploits L1 regularization. An
empirical evaluation is provided on the task of listener
backchannel prediction (i.e head nod). We introduce a
new error evaluation metric called User-adaptive Pre-
diction Accuracy that takes into account the difference
in people’s backchannel responses. Our results confirm
the importance of combining five types of multimodal
features: lexical, syntactic structure, part-of-speech, visual
and prosody. Latent Mixture of Discriminative Experts
model outperforms previous approaches.

Index Terms—Multimodal integration, mixture of ex-
perts, backchannel feedback, multimodal prediction mod-
els, evaluation metric, sparse regularization

I. INTRODUCTION

Along with the advances in multimodal sys-
tems and interfaces (i.e. smartphones, Microsoft
Kinect), processing of multimodal information has
gained great attention by many researchers. One
of the main problems of multimodal information
processing includes effective and efficient fusion
of modalities from multiple resources. If integrated
carefully, different modalities can provide comple-
mentary information that improves the performance
of a system.

While earlier work focused on either feature or
decision fusion, new models have emerged that are
specifically designed for multimodal data. There
are several characteristics that a good fusion pro-
cess is desired to have. Among others, we discuss
three of the most important characteristics. First, a
good fusion process should be able to allow re-
weighting of noisy channels. In other words, it
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Fig. 1. Latent Mixture of Discriminative Experts: a new dynamic
model for multimodal fusion. In this graphical representation, xj

represents the jth multimodal observation, hj is a hidden state
assigned to xj , and yj the class label of xj . Gray circles are latent
variables. The micro dynamics and multimodal temporal relationships
are automatically learned by the hidden states hj during the learning
phase.

should be able to learn how confident each modality
is in achieving a defined task (such as audio-visual
speaker detection, human tracking, etc.). Second,
effective training should be possible, even with
limited amount of data. And third, fusion process
should be interpretable, therefore analysis of each
media should be made feasible.

In this paper we introduce a new model called
Latent Mixture of Discriminative Experts (LMDE),
which directly addresses these three issues. A graph-
ical representation of LMDE is given in Figure 1.
One of the main advantages of our computational
model is that it can automatically discover the
hidden structure among modalities and learn the
dynamic between them. Since a separate expert is
learned for each modality, effective training can be
purveyed even with limited amount of data. Further-
more, our learning process provides a ground for
better model interpretability. By analyzing each ex-
pert, the most important features in each modality–
relevant to the task– can be conceived. To enable
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efficient feature analysis, we propose a sparse fea-
ture ranking scheme based on L1 regularization
technique [1], [2], [3].

We present empirical evaluation on the task of
backchannel feedback prediction confirming the im-
portance of combining different types of multimodal
features. Backchannel feedbacks include nods and
para-verbals such as ”uh-huh” and ”mm-hmm” that
listeners produce as they are speaking. Predicting
when to give backchannel feedback is a good exam-
ple of complementary information, for which peo-
ple naturally integrate speech, gestures and higher
level linguistic features. Figure 2 shows an example
of backchannel prediction where a listener head
nod is more likely. These prediction models have
broad applicability, including the improvement of
nonverbal behavior recognition, the synthesis of
natural animations for robots and virtual humans,
the training of cultural-specific nonverbal behaviors,
and the diagnoses of social disorders (e.g., autism
spectrum disorder).

One last issue directly addressed in this paper is
the evaluation metric for our multimodal prediction
model. Listener feedback varies among people and
is often optional (listeners can always decide to
give feedback or not). Therefore, traditional error
measurements (i.e. recall, precision, f-score) may
not always be adequate to evaluate the performance
of a prediction model. In this paper, we propose a
new error measurement called User-adaptive Predic-
tion Accuracy (UPA) which takes into account the
differences in people’s nonverbal responses.

Our experiments are performed on a dataset of
45 storytelling dyadic interactions [4]1. We compare
our LMDE model with previous approaches based
on Conditional Random Fields (CRF) [5], Latent-
Dynamic CRFs [6], and CRF Mixture of Experts
(a.k.a Logarithmic Opinion Pools [7]), and a rule
based random predictor [8]. All the results are
validated by our User-adaptive Prediction Accuracy
as well as the traditional error measurements like
F1-score. We also provide an analysis of the most
important features for each modality and give an
intuition on why our intermediate fusion approach
improves prediction performance.

The rest of the paper is organized as follows. We
first present the related works in Section II. Then
we present our Latent Mixture of Discriminative

1Freely available at http://rapport.ict.usc.edu/
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Fig. 2. Example of multimodal prediction model: listener nonverbal
backchannel prediction based on speaker’s speech and visual gestures.
As the speaker says the word her, which is the end of the clause (her
is also the object of the verb bothering), and lowers the pitch while
looking back at the listener and eventually pausing, the listener is
then very likely to head nod (i.e., nonverbal backchannel).

Experts model in Section III, and sparse feature
ranking scheme in Section IV. We discuss the
challenges in multimodal prediction modeling and
describe our error computation metric in Section V.
Experimental setup is explained in Section VI,
Results and discussions are given in Section VII.
Finally, we conclude with future research directions
in Section VIII.

II. RELATED WORK

Multimodal information processing can be
achieved mainly in three levels: early, late and
intermediate [9]. Early fusion involves feature level
integration, which exploits the correlation among
all features [10], [11], [12]. McCowan et al. [13]
presented a multimodal approach for recognition
of group actions in meetings. In their experi-
ments, early integration gives significantly better
frame error rates than all approaches apart from
audio-visual Asynchronous Hidden Markov Model
system, which is used to model the interactions
between individuals. However, modeling temporal
synchrony/asynchrony among modalities is a hard
problem in early fusion, since features from differ-
ent modalities do not always happen at the same
time.

On the other hand, late fusion refers to decision
level integration, in which the decisions of individ-
ual modalities are fused together to have a final
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decision [14], [15], [16]. This level of integration is
usually more scalable than feature level integration,
since the decisions from multiple media are all in
the same format. Snoek et al. [17] compares early
fusion and late fusion for semantic concept learning
from multimodal video. In their experiments, late
fusion gives better performance for most concepts;
however it comes with a cost of increased learning
effort. For both early and late fusion, classifiers
are generic, which are also used for unimodal data
processing.

In this paper, we present a probabilistic model
(i.e. intermediate fusion) specifically designed for
multimodal fusion, where the integration is done
at the model level. Factorial Hidden Markov Mod-
els [18], Coupled Hidden Markov Models [18] and
Layered Hidden Markov Models (LHMMs) are ex-
amples of statistical models for intermediate fusion
of audio visual data. LHMMs was proposed in [19]
for modeling office activity from multiple sensory
channels. LHMMs can be seen as a cascade of
Hidden Markov Models, where each layer is trained
independently, and the results from a lower layer
are used as input to an upper layer. Barnard and
Odobez [20] use this framework in combination
with unsupervised clustering of the data for event
recognition in sports videos. Different than earlier
intermediate fusion techniques, our model depends
on discriminative models that can learn the dynamic
among different modalities.

Jordan et. al. [21] presented the Hierarchical Mix-
ture of Experts (HME) based on probabilistic splits
of the input space. HME models a mixture of com-
ponent distributions referred to as experts, where
the expert mixing ratios are set by gating functions.
Bishop et. al. [22] proposed a variant of this model
called Bayesian HME (BME) based on variational
inference. HME and BME are mainly used for solv-
ing static regression and classification problems. On
the other hand, we propose a discriminative model
for solving sequential patterns, where we predict
one label per time sample. Sminchisescu et. al. [23]
used the BME approach for discriminative inference
in continuous chain models. Similar to our LMDE
model, it can learn the mixing coefficients among
experts. In addition to this, LMDE exploits a latent
variable that allows multiple mixing coefficients. In
other words, each hidden state in our LMDE model
can represent a different set of mixing coefficients.

The application described in this paper integrates

multimodal cues from one person are used to predict
the social behavior of another participant. This type
of predictive models has been mostly studied in
the context of embodied conversational agents [24],
[25]. Several researchers have developed models
to predict when backchannel should happen. In
general, these results are difficult to compare as
they utilize different corpora and present varying
evaluation metrics. Ward and Tsukahara [8] propose
a unimodal approach where backchannels are as-
sociated with a region of low pitch lasting 110ms
during speech. Models were produced manually
through an analysis of English and Japanese conver-
sational data. Fujie et al. [26] use Hidden Markov
Models to perform head nod recognition. In their
paper, they combined head gesture detection with
prosodic low-level features from the same person
to determine strongly positive, weak positive and
negative responses to yes/no type utterances.

Maatman et al. [27] present a multimodal ap-
proach where Ward and Tsukhara’s prosodic al-
gorithm is combined with a simple method of
mimicking head nods. No formal evaluation of the
predictive accuracy of the approach was provided
but subsequent evaluations have demonstrated that
generated behaviors do improve subjective feelings
of rapport [28] and speech fluency [4]. Morency
et al. [29] showed that Conditional Random Field
models can be used to learn predictive features
of backchannel feedback. In their approach, mul-
timodal features are simply concatenated in one
large feature vector for the CRF model. They show
statistical improvement when compared to the rule-
based approach of Ward and Tsukahara [8]. Our
experiments described in Section VI compare with
this early fusion approach.

Feature selection refers to the task of finding
a subset of features that are most relevant to the
model, and provides a good representation of data.
It alleviates the problem of overfitting by elimi-
nating the noisy features. With only the relevant
features, a better understanding and analysis of
data is facilitated. A well known feature selec-
tion technique based on L1-regularization was ap-
plied for conditional random fields in robot tag
domain [3]. Based on the gradient-based feature
selection method (grafting) in [30], Vail et. al. [31]
proposed an incremental feature selection technique
for Maximum Entropy Modeling. For the task of
listener backchannel prediction, Morency et. [29]
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proposed a greedy approach where the first feature is
selected based on it’s performance on the task when
used individually. Then, new features are selected
incrementally based on their effect in the perfor-
mance when added to the first feature. Different than
this greedy approach, all features are present during
the selection process in our sparse feature ranking
scheme.

The three main contributions of this paper are:
• Latent Mixture of Discriminative Experts

model for multimodal data integration.
• A sparse feature ranking scheme for expert data

analysis.
• User-adaptive Prediction Accuracy for better

evaluation.

III. LATENT MIXTURE OF DISCRIMINATIVE
EXPERTS

The task of multimodal prediction involves ef-
fective and efficient fusion of information from
multiple sources. One of the desired characteristics
of good prediction model is that it should be able
learn the temporal relationships between modalities.
In this paper, we introduce a multimodal fusion al-
gorithm called Latent Mixture of Discriminative Ex-
perts (shown in Figure 1), that addresses important
challenges involved in multimodal data processing.
(1) The hidden states of LMDE can automatically
learn the hidden dynamic between modalities. (2)
By training separate experts, we improve the predic-
tion performance even with limited amount of data.
(3) LMDE provides interpretability of modalities,
which can be accomplished by expert analysis.

The task of our LMDE model is to learn a
mapping between a sequence of multimodal ob-
servations x = {x1, x2, ..., xm} and a sequence of
labels y = {y1, y2, ..., ym}. Each yj is a class label
for the j

th frame of a video sequence and is a
member of a set Y of possible class labels, for
example, Y = {backchannel,no feedback}.
Each frame observation xj is represented by a
feature vector ∈ Rd, for example, the prosodic
features at each sample. For each sequence, we also
assume a vector of “sub-structure” variables h =
{h1, h2, ..., hm}. These variables are not observed
in the training examples and will therefore form a
set of hidden variables in the model. Each hj is a
member of a set Hyj of possible hidden states for
the class label yj . H, the set of all possible hidden
states, is defined to be the union of all Hy sets.
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Fig. 3. An example of how the hidden variables of our LMDE model
can learn the temporal dynamics and asynchrony between modalities.

In the rest of this section, we first provide some
intuitions motivating our model; then present de-
tails of our LMDE model, explain how we learn
the model parameters and finally how inference is
performed.

A. Motivation
To illustrate how our LMDE can use its latent

variables to learn the hidden temporal relationship
between modalities, we present an example (shown
in Figure 3) based on the application of predicting
listener responses known as backchannel feedback.
In this scenario, the goal is to predict when a
listener is most likely to predict a head nod (i.e
the label yj+3) given the input features extracted
from the speaker actions. In our LMDE model, each
source of information (e.g. visual, lexical, auditory)
is modeled by an expert. In our example we have
two experts: pause/talking (orange) and low pitch
region in speech (green). Figure 3 shows the speaker
talking with low pitch at time j+1. We know from
literature [8] that listeners are more likely to give
a backchannel feedback (1) during a pause and (2)
shortly after a region of low pitch (usually around
700ms after the low pitch region). Our LMDE
model can easily learn this temporal asynchronous
relationship between speaker pause, speaker low
pitch region and listener response by using only two
hidden states per label (i.e. |H| = 2).

In Figure 3, the first two hidden states (light gray
circles) of each hidden variable hj are associated
with the label no feedback and the last two hidden
states (dark gray circles) are associated with the
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label backchannel. At time j, the speaker is talking
and none of the experts are active. Then, we see
low pitch region at time j + 1, which activates the
hidden state 2. At time j + 2, the speaker is still
talking but with no low pitch region. Remark that
since the second hidden state was activated at time
j + 1 by the low pitch region, the same hidden
state will stay active2. This is an example where the
LMDE model shows memory functionality through
its hidden variables hj

3. At time j + 3, the hidden
state 3 is activated due to a pause in speaker’s talk,
which triggers prediction of a listener backchannel
at that point in time. Then, at time j+4 the LMDE
model gets back to the hidden state 1 when the
speaker starts talking again. No head nod will be
predicted at time j + 5, even though the speaker
paused (because no low pitch region occurred ear-
lier). Another important aspect of the LMDE model
illustrated in Figure 9 of our experimental results
(see Section VII) is that the latent variables hj can
learn multiple mixtures of experts, with one set of
mixture weights per hidden state. More details on
the LMDE model and the latent variables are given
in the following subsections.

B. LMDE Model
Following Morency et al. [6], we define our

LMDE model as follows:

P (y | x, θ) =
�

h

P (y | h, x, θ)P (h | x, θ) (1)

where θ are model parameters learned during train-
ing.

To keep training and inference tractable, Morency
et al. [6] restrict the model to have disjoint sets of
hidden states Hyj associated with each class label.
Since sequences which have any hj /∈ Hyj will
by definition have P (y | h, x, θ) = 0, the latent
conditional model becomes:

P (y | x, θ) =
�

h:∀hj∈Hyj

P (h | x, θ). (2)

where
2This is possible because of the transition weights learned during

training of the LMDE model. See Section III-B
3The generative model HMM with multiple states per class could

also exhibit such memorization. However, our LMDE model is a
discriminative model that takes into account all other labels.

P (h| x, θ) =
exp

� �
l θl · Tl(h)+�
s θs · Ss(h, x)

�

Z(x’, θ)
, (3)

For convenience, we split θ into two parts: θl

parameters related to the transition between hidden
states, and θs parameters related to the relationships
between expert outputs and the hidden states hj . Z
is the partition function, and Tl(h, x’) is defined as
follows:

Tl(h) =
�

j

tl(hj−1, hj, j), (4)

where j corresponds to the frame index, and
tl(hj−1, hj, j) is the transition function. Each
tl(hj−1, hj, j) depends on pairs of hidden variables
in the model. Index l represent all possible transi-
tions between different hidden states.

What differentiates our LMDE model from the
original work of Morency et al. is the definition of
Ss(h, x):

Ss(h, x) =
�

j

ss(hj,φ(x, j)) (5)

where

φ(x, j) = [qj1qj2 ..qjα ..qj|e| ]. (6)

|e| is the total number of experts. Each
ss(hj,φ(x, j), j) is a state function that depends on
a single hidden variable hj and the expert output
vector φ(x, j). Total number of indices s is equal
to the number of experts |e| times the total number
of hidden states |H|. Each transition/state function
is associated with a value in the corresponding
model parameters (θl and θs), which can be seen
as a weight assigned to this function. For each
hidden state Hyj , there is a subset of |e| model
parameters in θs weighting the different expert out-
put. Therefore, using more than one hidden states
per label allows us to learn multiple mixture of
experts. Each qjα is the marginal probability of
expert α at frame j, and equals to Pα(yj = a|x,λα).
Each expert conditional distribution is defined by
Pα(y|x,λα) using the usual conditional random field
formulation:
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Pα(y| x,λα) =
exp (

�
k λα,k · Fα,k(y, x))
Zα(x,λα)

, (7)

where λα represent the model parameters of each
expert α. Fα,k is defined as

Fα,k(y, x) =
m�

j=1

fα,k(yj−1, yj, x, j),

and each feature function fα,k(yj−1, yj, x, j) is either
a state function sk(yj, x, j) or a transition function
tk(yj−1, yj, x, j). Each expert α contains a different
subset of state functions sk(y, x, j), defined in Sec-
tion VI-C.

C. Learning Model Parameters
Given a training set consisting of n labeled se-

quences (xi,yi) for i = 1...n, training is done in
a two step process. In the first step, we learn the
model parameters, λ∗

α, for each expert α by using
the following objective function from [32], [5]:

L(λα) =
n�

i=1

logPα(yi | xi,λα)−R(λα) (8)

The first term in Equation 8 is the conditional
log-likelihood of the training data. The second term
is a regularization term, which can be seen as
assuming a prior distribution over model parameter.
The two most commonly used priors are Gaussian
(L2 regularizer) and Exponential (L1 regularizer)
priors. In our experiments, we choose to use the
Gaussian prior since it consistently gives better
prediction results. In Section IV, this prior will
be replaced by an Exponential prior in our sparse
ranking algorithm.

A Gaussian prior assumes that each model pa-
rameter is drawn independently from a Gaussian
distribution and penalizes according to the weighted
square of the model parameters. It is defined as
follows:

R(λα) =
1

2σ2
||λα||

2 (9)

where σ
2 is the variance, i.e. P (λα) ∼

exp
�

1
2σ2 ||λα||

2
�
. A Gaussian prior provides smooth-

ing when the number of learned parameters is
very high compared to the size of available data.
Using a Gaussian prior results in a convex quadratic

optimization function that can be solved by standard
optimization techniques. The marginal probabilities
Pα(yj = a | x,λ∗

α), are computed using belief prop-
agation. In our experiments, we performed gradient
ascent using the BFGS optimization technique [33].

In the second step, we use the following objective
function to learn the optimal parameter θ∗:

L(θ) =
n�

i=1

logP (yi | xi,λα)−
1

2σ2
||θ||

2 (10)

The first term is the conditional log-likelihood of
the training data. The second term is the log of a
Gaussian prior with variance σ

2.
Similar to the first step, we use gradient ascent

with the BFGS optimization technique to search for
the optimal parameter values, θ∗.

D. Inference
Similar to parameter learning process, inference

is also achieved in two steps. Given a new test
sequence x, we first compute the marginal proba-
bilities Pα(yj = a| x,λα) for each expert. Secondly,
we estimate the most probable sequence of labels
y∗ that maximizes our LMDE model:

y∗ = argmax
y

�

h:∀hi∈Hyi

P (h | x, θ∗) (11)

where θ
∗ is the parameter values learned from

training. To estimate the label y∗j of frame j, we first
compute the marginal probabilities P (hj = a|x, θ∗)
for all possible hidden states H . Then, we sum the
marginal probabilities according to the disjoint sets
of hidden states Hyj . Finally, the label y∗j associated
with the optimal set is chosen.

IV. SPARSE FEATURE RANKING

One advantage of the LMDE model is that it can
be easily interpreted to see what was learned. In
this section, we present a feature ranking scheme
that allows us to find the subset of features that are
the most relevant to each expert.

Our feature ranking scheme relies on sparse reg-
ularization of LMDE model parameters λα. Using
a regularization term in the optimization function
during training can be seen as assuming a prior
distribution over the model parameter. In Section III,
a Gaussian prior(L2-regularizer) was preferred due
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Fig. 4. Example of sparse ranking using L1 regularization. As ρ
goes from higher to lower values, model parameters start to become
non-zero based on their relevance to the prediction model.

to better classification performance. But here, we
replace the L2-regularization term of Equation 8 by
an Exponential prior (L1-regularizer), which allows
us to better analyze the model. L1 regularization
results in sparse parameters vector in which many
of the parameters are exactly zero [34]. Therefore,
it has been widely used in different domains for the
purpose of feature selection [35], [3]. An Exponen-
tial prior penalizes according to the weighted L1

norm of the parameters and is defined as follows:

R(λα) = ρ � λα �1 (12)

where ρ > 0 and determines how much penalty
should be applied by the regularization term.
Larger values indicate larger penalty, thus producing
sparser parameter vector λα.

Figure 4 shows an example of how ρ effects
the model parameters. In this example, we trained
a single expert with 5 input features: EyeGazes,
POS:NN, utterance, POS:IN, and EnergyEdge (see
Section VI-C for details about feature representa-
tions). Figure 4 shows the effect of regularization
on model parameters λα. This regularization path
was created by starting with a high regulariza-
tion penalty ρ where all the parameters are zero
and then gradually reduce the regularization until
all the parameters have non-zero values. In this
path, if a parameter becomes non-zero in earlier
stages (i.e., large ρ), this signifies the input feature
associated with this parameter is important. Our
ranking scheme is based on this observation. We

rank the features in the order of them becoming
non-zero in the regularization path. For the example
shown in Figure 4, our algorithm will rank the
features as follows: (1) EyeGazes and POS:NN,
(2) EnergyEdge, (3) Utterance and POS:IN. The
pseudo code for our sparse feature ranking approach
is given in Algorithm 1.

Algorithm 1 Sparse Feature Ranking
ranked features = empty

for ρ = ∞ down to 0 do
train an expert CRF with L-1 regularization
factor ρ
for all nonzero feature params λα,k do

if λα,k is NOT in selected features then
ranked features = {ranked features,
fi,k}

end if
end for

end for
return ranked features

The regularization penalty ρ determines how
sparse the model should be. More than one of these
parameters may become non-zero at any given ρ

regularization factor. Therefore, our feature ranking
scheme allows more than one feature to have the
same rank, meaning that these features have equiv-
alent influence and they should be selected together.
Compared to other greedy methods [29], our sparse
feature ranking algorithm is non-greedy in the sense
that all features are present during selection process.
Also, our algorithm is much more efficient than
the greedy method, since the computational cost
of our algorithm is determined by the number of
regularization penalty values ρ used (which was
76 in our experiments). On the other hand, the
computational cost of the greedy approach increases
with the number of features (a total of 1629 features
are used in our experiments).

Using an L1-regularizer results non-differentiable
objective function. Therefore, we use Orthant-
Wise Limited-memory Quasi-Newton (owl-qn)
method [36] for training L1-regularized log-linear
models, which is an extension of L-BFGS optimiza-
tion technique.

V. LMDE FOR MULTIMODAL PREDICTION

LMDE is a generic approach designed to inte-
grate information from multiple modalities. In this
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section, we first provide a detailed discussion about
multimodal prediction, and more specifically about
backchannel prediction which is used as the main
task in our experiments. Then, we present the User-
adaptive Prediction Accuracy, a new evaluation met-
ric for prediction models.

A. Multimodal Prediction

Human face-to-face communication is a little like
a dance, in that participants continuously adjust their
behaviors based on verbal and nonverbal displays
and signals. A topic of central interest in modeling
such behaviors is the patterning of interlocutor ac-
tions and interactions, moment-by-moment, and one
of the key challenges is identifying the patterns that
best predict specific actions. Thus we are interested
in developing predictive models of communication
dynamics that integrate previous and current actions
from all interlocutors to anticipate the most likely
next actions of one or all interlocutors. Humans are
good at this: they have an amazing ability to predict,
at a micro-level, the actions of an interlocutor [37];
and we know that better predictions can correlate
with more empathy and better outcomes [38], [39].

Building computational models of such a pre-
dictive process involves dynamics and temporal
relationship between cues from different modali-
ties [40]. These different modalities contain comple-
mentary information essential to interpretation and
understanding of human behaviors [41]. Psycholin-
guistic studies also suggest that gesture and speech
come from a single underlying mental process,
and they are related both temporally and seman-
tically [42], [43], [44].

Among other behaviors, backchannel feedback
(the nods and paraverbals such as “uh-hu” and
“mm-hmm” that listeners produce as some is speak-
ing) has received considerable interest due to its
pervasiveness across languages and conversational
contexts. Several systems have been demonstrated
on the task of listener backchannel feedback pre-
diction [8], [27], [29]. Evaluation of results from a
backchannel prediction model is challenging, since
listener feedback varies between people and is of-
ten optional. While experiencing the same set of
environmental conditions, some people may choose
to give more frequent feedbacks, whereas some
others may choose to be less active and give seldom
feedbacks. Therefore, results from prediction tasks

Time (seconds) 
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L2 
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Fig. 5. A sample output sequence of listener feedback probabilities
(in blue). Red and green boxes indicate the responses from Listener1
and Listener2 respectively. The red and green lines indicate the
thresholds on the output probabilities that can correctly assign the
backchannel labels to the corresponding listener labels.

are expected to have lower accuracies as opposed
to recognition tasks where the data labels are well
established. This indicates the necessity of a new
error measurement, which can take into account
differences in human behaviors. We address this
issue in the next section.

B. User-adaptive Prediction Accuracy
The traditional way to evaluate prediction models

is usually to set a threshold on the output prob-
ability, so that final decision can be made (i.e.
backchannel or not). From these final predictions,
typical error metrics, such as F1-score, precision
and recall, can be measured. The same threshold
will be applied to all data sequences from different
people in the test set. However, people do not always
respond the same way to the same stimuli (e.g.
speaker’s actions). Some people may naturally give
a lot of feedback while others will give feedback
only when the speaker is directly requesting it. For
this reason, using the same threshold for evaluating
multiple listeners may not be representative of the
real predictive power of the learned model (e.g.
LMDE).

Let’s illustrate this problem with an example as
depicted in Figure 5. In this case, we have two
listeners listening to the same speaker, but react-
ing differently. Listener1 gave only 1 backchannel
feedback, while Listener2 was more actively nod-
ding his head and gave 5 backchannels. Figure 5
shows the output of our LMDE model (backchannel
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probabilities) as a continuous blue line and the
potential predictions (local maxima) are depicted
by the red stars. The question now is: can our
learned model correctly predict both listeners? As
shown in the figure, there is not one threshold
that can correctly predict both listeners’ behaviors.
However, given the right thresholds, this model can
correctly predict both listeners. So, what should be
the evaluation measure and the performance of the
model?

To address this issue, we propose a new error
measurement called User-adaptive Prediction Ac-
curacy (UPA). The main intuition behind UPA is
that we will ask our prediction model to give us
the ni-best predictions, where ni is the number of
times that a particular listeneri gave a backchannel.
Following this intuition, UPA is defined as:

UPA =
1

L

N�

i

P (ni)

ni/li
(13)

where i is the listener id, N is the total number
of listeners in the test data, ni is the number of
backchannels listeneri provided during a dyadic
interaction, and li is the length of the interac-
tion i. Therefore, the denominator term coveys the
backchannel frequency of listeneri. L is the total
length of all interactions with all the listeners. P (ni)
is a function that compares the ni-best predictions
from our LMDE model output to the ground truth
backchannel labels from listeneri. The function
P (ni) returns the number of correctly predicted
listener backchannels. Predictions from our LMDE
model are ranked by their probability output.

UPA gives us a measure of the prediction qual-
ity while adapting to people’s different levels of
backchannel responses. Consider the case where
two different listeners gave the same amount of
backchannel during their interactions, and the du-
ration of first interaction with one of the listeners
is much longer than the duration of second inter-
action with the other listener. One would expect
more noise (i.e. peaks) in the output probabilities
of the first interaction corresponding to possible
backchannel opportunities that the actual listener
had missed. Therefore, a model that can correctly
find the true backchannel opportunities even if the
listener rarely provides backchannel should be given
a higher weight. Therefore, we introduce li weight-
ing in Equation 13 to capture these differences in

listener’s responses. Our UPA performance measure,
by removing the performance variance due to the
variability in amount of backchanneling, is a more
reliable performance measure than standard mea-
sures like precision, recall and F-measure.

VI. EXPERIMENTAL SETUP

As mentioned in the previous section, we evaluate
our LMDE on the multimodal task of predicting
listener nonverbal backchannel. In this section, we
first describe our dataset, backchannel annotation
technique and multimodal speaker features. Then,
we explain the baseline models used for comparison
in our tests, and the experimental setup.

A. Dataset
We are using the RAPPORT dataset 4 from [4],

which contains 45 dyadic interactions between a
speaker and a listener. Data is drawn from a study of
face-to-face narrative discourse (“quasi-monologic”
storytelling). In this dataset, participants in groups
of two were told they were participating in a study
to evaluate a communicative technology. Subjects
were randomly assigned the role of speaker and
listener. The speaker viewed a short segment of a
video clip taken from the Edge Training Systems,
Inc. Sexual Harassment Awareness video. After the
speaker finished viewing the video, the listener was
led back into the computer room, where the speaker
was instructed to retell the stories portrayed in the
clips to the listener. The listener was asked to not
talk during the story retelling. Elicited stories were
approximately two minutes in length on average.
Participants sat approximately 8 feet apart. All video
sequences were manually transcribed and manually
annotated to determine the ground truth backchan-
nels. The next section describes our annotation
procedure.

B. Backchannel Annotations
In our experiments, we focus on visual backchan-

nels: head nods. A head nod gesture starts when
the person starts moving his/her head vertically.

4This dataset has also been used in [29] in which 50 interactions
were reported. In that study, the only visual cue exploited is the
speaker eye gaze. We have extracted more visual cues (smiles, eye
brows) from the speaker videos and omitted the sequences for which
the speaker videos were not completely annotated.
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y1 y2 y3 y4 yn

x1 x2 x3 x4 xn

y1 y2 y3 y4 yn

Expert

x1 x2 x3 x4 xn

y1 y2 y3 y4 yn h1 h2 h3 h4 hn

y1 y2 y3 y4 yn

x1 x2 x3 x4 xn

LDCRF   Early  FusionCRF   Early  Fusion CRF  Mixture  of  Experts
(a) (b) (c)

Fig. 6. Baseline Models: a) Conditional Random Fields (CRF), b) Latent Dynamic Conditional Random Fields(LDCRF), c) CRF Mixture

of Experts (no latent variable)

The head nod gesture ends when the person stops
moving or when a new head nod is started. A new
head nod starts if the amplitude of the current head
cycle is higher than the previous head cycle. Some
listeners’ responses may be longer than others al-
though they all correspond to one single respond. In
our data, annotators found a total of 666 head nods.
The duration of these nods varied from 0.16 seconds
to 7.73 seconds. Mean and standard deviation of
backchannel durations are 1.6 and 1.2 respectively.
The minimum number of head nods given by one
listener during one interaction is 1, the maximum is
47, mean and standard deviations are 14.8 and 10.9
respectively.

Following Ward and Tsukahara’s [8] original
work on backchannel prediction, we train our
LMDE model to predict only the start time of
the backchannel start cue (i.e. head nod). Follow-
ing again Ward and Tsukahara [8], we define the
backchannel duration as a window of 1.0 seconds
centered around the start time of the backchannel.
A backchannel cue will be correctly predicted if at
least one prediction of our LMDE model happens
during this 1.0 seconds duration. All models tested
in this paper use this same testing backchannel
duration of 1.0 seconds. During the training of
our LMDE prediction model, we will vary the
backchannel duration to see which one is optimal.
The Section VII-B describes these results, where we
find the optimal training backchannel duration to be
0.5 seconds.

C. Multimodal Features and Experts
This section describes the different multimodal

features used to create our five experts.

PROSODY Prosody refers to the rhythm, pitch and
intonation of speech. Several studies have demon-
strated that listener feedback is correlated with a

speaker’s prosody [45], [8], [46]. For example,
Ward and Tsukahara [8] show that short listener
backchannels (listener utterances like “ok” or “uh-
huh” given during a speaker’s utterance) are asso-
ciated with a lowering of pitch over some inter-
val. Listener feedback often follows speaker pauses
or filled pauses such as “um” (see [46]). Using
openSMILE [47] toolbox, we extract the follow-
ing prosodic features, including standard linguistic
annotations and the prosodic features suggested by
Ward and Tsukhara:

• downslopes in pitch continuing for at least
40ms

• regions of pitch lower than the 26th percentile
continuing for at least 110ms (i.e., lowness)

• drop or rise in energy of speech (i.e., energy
edge)

• fast drop or rise in energy of speech (i.e.,
energy fast edge)

• vowel volume (i.e., vowels are usually spoken
softer)

• pause in speech (i.e., no speech)

VISUAL GESTURES Gestures performed by the
speaker are often correlated with listener feed-
back [48]. Eye gaze, in particular, has often been
implicated as eliciting listener feedback. Thus, we
manually annotate the following contextual features:

• speaker looking at listener (eye gaze)
• speaker not looking at listener (˜ eye gaze)
• smiling
• moving eyebrows up
• moving eyebrows down

LEXICAL Some studies have suggested an associa-
tion between lexical features and listener feedback
[46]. Using the transcriptions, we included all indi-
vidual words (i.e., unigrams) spoken by the speaker
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during the interactions.

PART-OF-SPEECH TAGS In [46], combination of
pause duration and a statistical part-of-speech lan-
guage model is shown to achieve the best per-
formance for placing backchannels. Following this
work, we use a CRF part-of-speech (POS) tagger to
automatically assign a part of speech label to each
word. We also include these part-of-speech tags (e.g.
noun, verb, etc.) in our experiments.

SYNTACTIC STRUCTURE Finally, we attempt to
capture syntactic information that may provide rele-
vant cues by extracting three types of features from
a syntactic dependency structure corresponding to
the utterance. The syntactic structure is produced
automatically using a data-driven left-to-right shift-
reduce dependency parser [49], trained POS on
dependency trees extracted from the Switchboard
section of the Penn Treebank [50], converted to
dependency trees using the Penn2Malt tool5. The
three syntactic features are:

• Grammatical function for each word (e.g. sub-
ject, object, etc.), taken directly from the de-
pendency labels produced by the parser

• Part-of-speech of the syntactic head of each
word, taken from the dependency links pro-
duced by the parser

• Distance and direction from each word to its
syntactic head, computed from the dependency
links produced by the parser

Although our current method for extracting these
features requires that the entire utterance be avail-
able for processing, this provides us with a first
step towards integrating information about syntactic
structure in multimodal prediction models. Many
of these features could in principle be computed
incrementally with only a slight degradation in
accuracy, with the exception of features that require
dependency links where a word’s syntactic head
is to the right of the word itself. We leave an
investigation that examines only syntactic features
that can be produced incrementally in real time as
future work.

D. Baseline Models

INDIVIDUAL EXPERTS Our first baseline model
5http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html

consists of a set of CRF chain models, each trained
with different set of multimodal features (as de-
scribed in the previous section). In other words, only
visual, prosodic, lexical or syntactic features are
used to train a single CRF expert. (See Figure 6a).

MULTIMODAL CLASSIFIERS (EARLY FUSION)
Our second baseline consists of two models: CRF
and LDCRF [6]. To train these models, we con-
catenate all multimodal features (lexical, syntactic,
prosodic and visual) in one input vector. Graphical
representation of these baseline models are given in
Figure 6-(a) and Figure 6-(b).

CRF MIXTURE OF EXPERTS To show the impor-
tance of latent variable in our LMDE model, we
trained a CRF-based mixture of discriminative ex-
perts. A graphical representation of a CRF Mixture
of experts is given in Figure 6. This model is similar
to the Logarithmic Opinion Pool (LOP) CRF sug-
gested by Smith et al. [7], in the sense that they both
factor the CRF distribution into a weighted product
of individual expert CRF distributions. However, the
main difference between LOP and CRF Mixture of
Experts model is in the definition of optimization
functions. Similar to our LMDE model, training of
CRF Mixture of Experts is performed in two steps:
Expert models are learned in the first step, and the
second level CRF model parameters are learned in
the second step.

PAUSE-RANDOM CLASSIFIER Our last baseline
model is a random backchannel generator, which
randomly generates backchannels whenever some
pre-defined conditions in the speech is purveyed.
These conditions include pauses that come after at
least 700 milliseconds of speech and absence of
backchannel feedback within the preceeding 800
milliseconds. This random classifier has also been
used by Ward and Tsukahara [8] for comparison.

E. Methodology

We performed held-out testing by randomly se-
lecting a subset of 11 interactions (out of 45) for the
test set. The training set contains the remaining 34
dyadic interactions. All models in this paper were
evaluated with the same training and test sets. Vali-
dation of all model parameters (regularization term
and number of hidden states) was performed using a
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0.1

0.2

0.3
LMDE
Prosodic Expert
Visual Expert
Lexical Expert
POS Expert
Syntactic Expert

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 7. Comparison of individual experts with our LMDE model.
Top: Recall (x-axis) v.s. Precision (y-axis) values for different
threshold values. Bottom: Precision, Recall, F1 and UPA scores of
corresponding models for selected amount of backchannel.

3-fold cross-validation strategy on the training set.
The regularization term was validated with values
10k, k = −1..3. Two different number of hidden
states were tested for the LMDE models: 2, and 3
(note that LMDE with 1 hidden state is equivalent to
Mixture of CRF Experts model). In our experiments,
the optimum number of hidden states was 2 when
duration of backchannel labels was set to 0.5, and 3
when duration of backchannel labels was set to 1.0
or 1.5.

The performance is measured by using UPA
(described in Section V-B) as well as more con-
ventional metrics: precision, recall, and F-measure.
Precision is the probability that predicted backchan-
nels correspond to actual listener behavior. Recall
is the probability that a backchannel produced by a
listener in our test set was predicted by the model.
We use the same weight for both precision and
recall, so-called F1, which is the weighted harmonic
mean of precision and recall. F1 scores for each
sequence is calculated first, then the final F1 result
is computed by averaging these sequence scores.

During testing, we find all the ”peaks” (i.e.,
local maxima) from marginal probabilities P (yj =
a| x, θ). When computing UPA, the final predictions
are selected from these peaks so that the number
of model predictions are equal to the number of

Recall
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

LMDE
Early CRF
Early LDCRF
Mixture CRF

0.2

0.3

Fig. 8. Comparison of our LMDE model with previously pub-
lished approaches for multimodal prediction. Top: Recall (x-axis)
v.s. Precision (y-axis) values for different threshold values. Bottom:
Precision, Recall, F1 and UPA scores of corresponding models for
selected amount of backchannel.

listener backchannels in the test sequence. For the
f1-score, the prediction model needs to decide on
a specific threshold (i.e., amount of backchannel)
for the marginal probabilities for all users. The
value of this threshold is automatically set during
validation. Since we are predicting the start time
of a backchannel, an actual listener backchannel is
correctly predicted if at least one model prediction
happen within the 1 second interval window around
the start time of the listener backchannel.

The training of all CRFs and LDCRFs were done
using the hCRF library6. The LMDE model was
implemented in Matlab based on the hCRF library.
The input observations were computed at 30 frames
per second. Given the continuous labeling nature
of our LMDE model, prediction outputs were also
computed at 30Hz.

VII. RESULTS

In this section we present the results of our
empirical evaluation. We designed our experiments
so to test different characteristics of the LMDE
model. First, we present our quantitative results
that evaluate: (1) integration of multiple sources of
information, (2) late fusion approach and (3) latent

6http://sourceforge.net/projects/hrcf/
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variable which models the hidden dynamic between
experts. Then, we present qualitative analysis related
to: (1) the output probabilities from individual ex-
perts and the LMDE model, (2) the most relevant
features in early and late fusion models, (3) model
robustness and (4) UPA analysis.

A. Comparative Results

INDIVIDUAL EXPERTS We trained one individual
expert for each feature types: visual, prosodic, lex-
ical and syntactic features (both part-of speech and
syntactic structure). Precision, recall, F1, and UPA
values for each individual expert and our LMDE
model are shown in Figure 7 (Bottom) 7. Even
though the experts may not perform well individ-
ually, they can bring important information once
merged together. Recall-precision curve in Figure 7
(Top) shows that our LMDE model was able to take
advantage of the complementary information from
each expert.

LATE FUSION We compare our approach with
two early fusion models: CRF and LDCRF (see
Figure 6). Figure 8 summarize the results. The
CRF model learns direct weights between input
features and the gesture labels. The LDCRF is able
to model more complex dynamics between input
features with the latent variable. We can see that our
LMDE model outperforms both early fusion model
because of its late fusion approach.

When merging the features together in an early
manner, the noise from one modality may hide or
suppress the features from a different modality. By
training separate experts for each different modality,
we are able to reduce the effect of this noise,
therefore learn models that can generalize better to
new multimodal data.

LATENT VARIABLE The CRF Mixture of Ex-
perts [7] directly merges the expert outputs while
our LMDE model uses a latent variable to model
the hidden dynamic between experts (see Figure 6-
(c)). This comparison (summarized in Figure 8) is
important since it shows the effect of the latent
variable in our LMDE model.

7While calculating these values, we first find the peaks from
marginal probabilities for possible prediction points. However, there
is no guarantee that a peak will appear during all ground truth
backchannel regions. Therefore, we cannot get higher recall values
for some of the experts, i.e. Visual Expert.

TABLE II
PERFORMANCES OF INDIVIDUAL EXPERT MODELS TRAINED BY
USING ONLY THE TOP 5 FEATURES SELECTED BY OUR FEATURE
RANKING ALGORITHM. THE LAST TWO ROWS REPRESENT THE
LMDE MODELS USING THE EXPERT MODELS TRAINED WITH

ONLY 5 FEATURES SELECTED BY EITHER BY A GREEDY
METHOD [29] OR OUR SPARE FEATURE RANKING SCHEME.

Expert Precision Recall f1 upa
Prosodic5 0.1463 0.5645 0.2324 0.1545
Visual5 0.1457 0.2671 0.1886 0.1558
Lexical5 0.1059 0.1706 0.1307 0.1471
POS5 0.1522 0.5602 0.2394 0.1409
Syntactic5 0.0995 0.5626 0.1691 0.1302
Greedy5 0.2007 0.3241 0.2479 0.2585
LMDE5 0.1914 0.5306 0.2814 0.2331

B. Analysis Results

EXPERT ANALYSIS Our first analysis looks at
speaker features that are the most relevant to listener
feedback prediction. This analysis is performed by
applying our sparse feature ranking algorithm de-
scribed in Section IV to each expert separately.
Top 5 features for our five experts are listed in
Table I 8. First interesting results are the two fea-
tures appearing in Prosodic Expert and one feature
appearing in Visual Expert: pause, low pitch and
eye gaze. These features have also been identified
in previous work [8], [29] as important cues for
backchannelling. Similarly, um feature in Lexical
Expert can be considered as a filler pause and
reasonable cue for backchannel prediction. Visual
Expert selects nod as the second-best feature, which
can be associated with mirroring effect. This sug-
gests that our experts are learning relevant features.

To confirm that these selected features are rel-
evant to the L2 trained models, we trained new
experts and LMDE models using the top 5 features
of each expert selected by our sparse feature ranking
algorithm. In other words, for each expert, we
trained a new CRF model by using only the top
5 features selected for that expert. Performance of
these new expert models are listed in Table II. It is

8Utterence indicates when the user is talking. POS:NN indicates
singular noun, POS:PRP indicates personal pronoun, POS:VBG in-
dicates verb, POS:UH indicates interjection and POS:NNS indicates
plural noun. DIRDIST:L1 and L2 describe the distance and direction
from the head node in the parse tree (i.e. left within distance
1). LABEL:PMOD and LABEL:SUB indicate a proposition and a
subject modifier respectively. HEADPOS:VBZ indicatea verb head
node.
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TABLE I
TOP 5 FEATURES FROM RANKED LIST OF FEATURES FOR EACH LISTENER EXPERT.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
(Prosodic) (Visual) (Lexical) (POS) (Syntactic)
Utterence ˜ EyeGaze she POS:NN DIRDIST:L1
Pause Nod um POS:PRP HEADPOS:VBZ
Vowel Volume EyeBrows Up that POS:VBG LABEL:PMOD
Energy Edge EyeBrows Down he POS:UH DIRDIST:L2
Low Pitch EyeGaze women POS:NNS LABEL:SUB

interesting to see that using only five features can
achieve performance as good as when using all the
features. We see some increase in both f1 and upa
values for POS and Syntactic experts when 5 fea-
tures used. We believe that this is due to noise when
all features are used. For comparison, we trained a
new LMDE model using these new expert models.
The performance of this model, which we refer to
as LMDE5, is given in Table II. LMDE5 achieves
a higher f1 value than all individual experts, and
a very similar upa value as the original LMDE
(remark that all the features were present while
training the expert models in the original LMDE).

We also compared our sparse feature ranking
algorithm to the greedy feature selection method
presented in [29]. For this purpose, we used this
greedy method to select 5 features for each expert,
and learned expert models trained with these 5
features. Then, these expert models are used to
learn an LMDE model, referred to as Greedy5.
The results are shown in Table II. LMDE5 and
Greedy5 achieved similar performance. However,
our sparse ranking scheme is a much faster algo-
rithm than the greedy method. The computational
cost of the greedy algorithm increases with the
number of features, whereas the computational cost
of our spare ranking scheme is determined by the
number of regularization penalty values ρ (76 in our
experiments).

LMDE MODEL ANALYSIS Our second analysis
focuses on the multimodal integration which hap-
pens at the latent variable level in our LMDE model,
Figure 9 shows the output probabilities for all five
individual experts as well as our model. The strength
of the latent variable is to enable different weighting
of the experts at different point in time.

In the sequence depicted in Figure 9, the actual

Time

62s 65s 69s 72s

Looking  at  listener Looking  at  listener

Fig. 9. Output probabilities from LMDE and individual experts for
two different sub-sequences. The gray areas in the graph correspond
to ground truth backchannel feedbacks of the listener.

listener gave backchannel feedback 3 times (around
62s, 64s and 71s), which are indicated by the gray
areas. As we analyze the outputs from different
experts, we see that the Lexical and POS experts
were able to learn the backchannel opportunity for
the first backchannel feedback at 62s. These two
experts are highly weighted (by one of the hidden
state) during this part of the sequence. All the
experts except the Visual Experts assigned a high
chance of backchannel around 65.5s, where there is
no listener feedback. The Visual Expert was highly
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TABLE IV
PERFORMACES OF BASELINE MODELS AND OUR LMDE MODEL AS WE INCREASE THE DURATION OF BACKCHANNEL LABELS DURING

TRAINING.

Training Backchannel Duration
0.5 1.0 1.5

f1 upa f1 upa f1 upa
LMDE 0.3026 0.2640 0.2774 0.2439 0.2751 0.2291
Early CRF 0.2512 0.1615 0.2384 0.1916 0.2397 0.1764
Early LDCRF 0.1638 0.0788 0.1856 0.0669 0.1648 0.0496
Mixture CRF 0.2430 0.2027 0.2245 0.1834 0.2037 0.1576

TABLE III
NUMBER OF BACKCHANNEL FEEDBACKS PROVIDED BY EACH OF

THE 11 LISTENERS IN OUR TEST SET AND THEIR CORRESPONDING
UPA, PRECISION, RECALL AND F1 SCORE.

num of upa Precision Recall f1
feedbacks
1 0.000 0.031 1.000 0.061
1 0.000 0.050 1.000 0.095
2 0.000 0.031 0.500 0.059
4 0.000 0.077 0.500 0.133
5 0.200 0.091 0.600 0.158
8 0.375 0.104 0.625 0.178
16 0.562 0.282 0.687 0.400
21 0.238 0.269 0.333 0.298
23 0.478 0.433 0.565 0.491
25 0.320 0.286 0.720 0.409
40 0.500 0.528 0.475 0.500

weighted during this time, so that the influence
of all other experts was reduced in the LMDE
output. This difference of weighting shows that a
different hidden state is active during this part of
the sequence.

MODEL ROBUSTNESS As mentioned in Sec-
tion VI-B, one of the hyper-parameter of our LMDE
prediction model is the duration of backchannel
cues used during training. To analyze sensitivity
of our model to backchannel duration, we varied
the duration from 500 seconds to 1500 seconds,
and retrained our LMDE model and the baseline
models. F1 and UPA values are given in Table IV.
We observe a drop in the LMDE performance as
we increase the duration. This was true for most of
the other models, which suggests that it is better
to train prediction models with more focused labels
(i.e. narrow backchannel duration). It should also

be noted that LMDE outperforms all other baseline
models for all different durations.

UPA ANALYSIS
In our earlier experiments (see Figure 7, we have

seen that the Visual and Lexical experts seem to
perform about the same based on their F1 values
(0.1914 and 0.1943), but their UPA values are quite
different (0.1558 and 0.1131). Looking at their F1

results, we would expect these two experts to have
very similar Recall-Precision curves. However, their
recall-precision curves in Figure 7 indicate that the
Visual Expert is a better model than the Lexical
Expert, which is already confirmed by our UPA
measure. We can see another such example between
the POS and Syntactic Experts. The F1 values
indicate that POS Expert (0.1866) is a better model
than the Syntactic Expert(0.1395). On the other
hand, their UPA values(0.1122 and 0.1252) tell that
these are similar models, which is also confirmed
by their Precision-Recall curves in Figure 7. These
observations suggest that our UPA measurement is
a more representative measure than the F1 score.

To analyze the variability among listeners, we
have listed in Table III the individual test per-
formances and the number of backchannel feed-
back provided by each listener. One interesting
conclusion derived from this result is that there is
some correlation with the number of feedbacks and
upa, precision, and f1 values. As the number of
backchannels increase, these values increase as well.

VIII. CONCLUSION

In this paper, we addressed three main issues
involved in building predictive models of human
communicative behaviors. First, we introduced a
new model called Latent Mixture of Discriminative
Experts (LMDE) for multimodal data integration.
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Many of the interactions between speech and ges-
ture happen at the sub-gesture or sub-word level.
LMDE learns automatically the temporal relation-
ship between different modalities. Since, we train
separate experts for each modality, LMDE is capa-
ble of improving the prediction performance even
with limited amount of data.

We evaluated our model on the task of nonverbal
feedback prediction (e.g., head nod). Our exper-
iments confirm the importance of combining the
five types of multimodal features: lexical, syntactic
structure, POS, visual, and prosody. An important
advantage of using our LMDE model is that it en-
ables easy interpretability of individual experts. As
a second contribution, we have presented a sparse
feature ranking scheme based on L1 regularization
technique. Our third contribution is a new metric
called User-adaptive Prediction Accuracy (UPA).
This metric is particularly designed for evaluating
prediction models, and we plan to apply it to other
prediction models as well. LMDE is a generic model
that can be applied to a wide range of problems. In
the future, we want to apply it for other multimodal
prediction tasks.
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