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Abstract—Previous approaches to the problem of word frag-
ment detection in speech have focussed primarily on acoustic-
prosodic features [1], [2]. This paper proposes that the output
of a continuous Automatic Speech Recognition (ASR) system
can also be used to derive robust lexical features for the
task. We hypothesize that the confusion in the word lattice
generated by the ASR system can be exploited for detecting
word fragments. Two sets of lexical features are proposed -
one which is based on the word confusion, and the other based
on the pronunciation confusion between the word hypotheses
in the lattice. Classification experiments with a Support Vector
Machine (SVM) classifier show that these lexical features perform
better than the previously proposed acoustic-prosodic features
by around 5.20% (relative) on a corpus chosen from the DARPA
Transtac Iraqi-English (San Diego) corpus [3]. A combination
of both these feature sets improves the word fragment detection
accuracy by 11.50% relative to using just the acoustic-prosodic
features.

I. INTRODUCTION
Unrehearsed, conversational speech, is typically character-

ized by a notable presence of disfluencies such as word
fragments, filled pauses, hesitations and repeats. Levelt [4]
proposed what is now called the Repair Interval Model (RIM)
of disfluent speech. According to this model, disfluent speech
consists of three phases: reparandum, edit phase and alteration.
Reparandum refers to the region of the speech signal that
the speaker intends to replace. The edit phase denotes the
region between reparandum and alteration, and is usually
characterized by filled pauses (e.g. UM, AH etc.) or silence.
The alteration region signifies the resumption of fluency. The
point between the reparandum and the edit phase where the
speaker departs from fluency is called the interruption point.
Detection of disfluencies in speech has been the subject of
quite a few works in the past [5], [6], [7], [8], [9].
The focus of this paper is on the detection of word frag-

ments. Accurate and robust detection of word fragments is
important from many viewpoints. First, they constitute an
appreciable fraction of all disfluencies. As reported in [1],
around 17% of the disfluencies in the Switchboard corpus [10]
are word fragments. The knowledge of their location can hence
be used as part of disfluent speech detection. Second, since

word fragments are not explicitly part of the vocabulary of an
ASR system, they are invariably misrecognized as some other
word in the vocabulary. This significantly increases the Word
Error Rate (WER) of the system. Equipped with the knowledge
of the location of these word fragments, one can annotate the
ASR output for their presence, thus enabling better readability
and further processing of the output text.
One potential area of application could be in a Speech

to Speech (S2S) translation system. Modern day S2S sys-
tems [11] are mainly composed of an ASR, a Statistical
Machine Translation (SMT) unit and a Text To Speech (TTS)
synthesis system, organized in a pipeline. The disfluencies
need to be identified at the output of the ASR stage. Having
such a facility could arguably improve the performance of the
SMT and the overall S2S system in general. This will be one
of the focus areas of our subsequent work.
This paper is organized as follows. Section II gives an

overview of the acoustic-prosodic features reported in [1].
These features serve as a baseline for the proposed work.
In section III, we discuss the proposed word lattice-based
lexical features. Section IV explains the experimental setup
and provides the classification results. We conclude the paper
in Section V and provide directions for future work.

II. ACOUSTIC-PROSODIC FEATURES
The acoustic-prosodic characteristics of speech disfluency

have been well explained in [12]. The features proposed by Liu
in [1] utilize some of these attributes for the purpose of detect-
ing word fragments. These acoustic-prosodic features belong
to two broad categories: prosodic features and voice quality
measures. They are discussed in the following subsections.

A. Prosodic Features
The first set of prosodic features are based on the funda-

mental frequency (F0) of speech. These include the change
in the average F0 of a word as compared to the speaker’s
average value and the change in F0 value across a word
boundary. A third F0-based feature is the log ratio between
the minimum F0 before the word boundary and the maximum



value after the boundary. The second set of features is based
on the frame energy of the speech signal, and is computed in
a way similar to the F0-based features (excluding the log ratio
feature). The final set of prosodic features is based on duration.
This includes word duration, pause duration and duration of
the last phoneme of a word. These acoustic-prosodic features
are extracted after forced alignment of the speech transcript
with the audio using a trained ASR system.

B. Voice Quality Measures
Liu [1] proposes that in addition to the above prosodic

features, some measures which capture the quality of voice
are also important for the detection of word fragments. The
first of these measures is jitter, which quantitatively captures
the perturbation in the pitch period of the speaker. It has been
previously used to identify pathological speech [13], and is
defined in (1), where N denotes the number of intervals in the
point process and Ti is the time associated with the ith point.
This point process is generated by detecting the occurrence of
amplitude peaks of the glottal pulse train.

J =

∑N−1

i=2
|2Ti − Ti−1 − Ti+1|

∑N−1

i=2
Ti

(1)

The second set of voice quality measures is computed from
the spectral tilt, which is defined as the slope of the least
squares line fit to the spectral envelope of the speech frame.
It is measured in dB/octave, and has been shown to be a good
indicator of syllable stress and breathiness of the voice [1].
The maximum, minimum and mean of the spectral tilt over
all frames in a given word are used as voice quality features
for word fragment detection.
The final set of features is related to the Open Quotient

(OQ), which is defined as the fraction of the time in a glottal
cycle when the vocal folds are open. OQ has been shown
to be a good measure of the breathiness and creakiness of
speech [14]. Fant [15] proposed an approximation to the OQ
in the spectral domain as given in (2); H1 and H2 are the
amplitudes of the first and second harmonics of the speech
spectrum. Liu [1] approximates them by F0 and 2 ∗ F0
respectively, where F0 is the fundamental frequency. The
maximum, minimum and mean OQ over all voiced frames
in a word are used in the final voice quality features.

OQ =
1

5.5

{

log
(H1 − H2 + 6

0.27

)}

(2)

III. WORD LATTICE-BASED LEXICAL FEATURES
The acoustic-prosodic features proposed by Liu [1] aim to

capture the distinct characteristics in the speech signal near a
word fragment. Since a word fragment is not part of fluent
speech, it is rightly expected that various characteristics of
the speech signal such as the fundamental frequency (F0),
energy and jitter will deviate from their nominal values found
in fluent speech. However, there are additional features that
can be advantageously used to model word fragments. By
their very nature, word fragments can be viewed as “Out of

Vocabulary” (OOV) words in the context of conversational
speech recognition, and thus can be considered to distort the
underlying structure of the language as well. This distortion
can be captured by an ASR system, which not only takes the
acoustics into account, but also the structure of the language
by means of a language model. Hence, we hypothesize that
the output of an ASR system can help derive useful lexical
features to detect these word fragments. In particular, the idea
is to capture the degree of confusion of the ASR system at
every time instant (analysis frame).
The word lattice is a suitable form of ASR output for this

purpose. It is a directed acyclic graph which contains the
set of all possible word hypotheses corresponding to a given
(decoded) speech signal. The lattice consists of nodes corre-
sponding to the various hypothesized word boundaries, and
links containing the words with their acoustic and language
model scores. For computing the proposed lexical features,
word lattices have an advantage over N-best lists, since they
capture a much greater number of possible word hypotheses
corresponding to every time instant in the utterance. Two
types of lattice-based confusion features are proposed: word
confusion-based and pronunciation confusion-based. They are
described in the following subsections.

A. Word Confusion-based Features
Entropy provides a simple measure of the confusion be-

tween various word hypotheses at a given time instant in the
lattice. It is computed as given in (3), where M is the number
of unique word hypotheses in the lattice at the time instant of
interest and p̂(i) is the relative frequency of the ith word.

Entropy =
M
∑

i=1

p̂(i) log2

1

p̂(i)
(3)

Since a word fragment is an anomaly for the ASR sys-
tem both from the perspective of acoustics and language,
it is expected that the entropy of word hypotheses will be
higher during word fragments as compared to normal (non-
fragmented) words. This can be seen in Fig. 1, where roughly
65.4% of the non-fragmented words have a mean entropy of
less than 4, whereas around 69.2% of the word fragments have
a mean entropy above 4. It must be noted however that a high
Word Error Rate (WER) of the ASR system can reduce the
discrimination between the two classes based on entropy. This
is attributed to the general increase in the word confusion in
the lattice at all time instants, including for non-fragmented
words. Fig. 1 uses lattices from an English ASR system having
a WER of 40% on the classification corpus described in section
IV.A. One can expect the histogram for normal (full or non-
fragment) words to peak a lot more for an ASR system with
a lower WER. In addition to the mean, the minimum and
the maximum entropy of the hypotheses over all time instants
(frames) of a word are also used as features.
Two additional features which capture the word confusion

are the number of unique word hypotheses and the number of
occurrences per word hypothesis. Time instants during a word
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Fig. 1. Histograms of the mean entropy across the ASR output lattice of
the word hypotheses during word fragments and normal words. 211 samples
each of word fragments and normal words were taken from the San Diego
corpus [3].

fragment are expected to show a greater number of unique
word hypotheses, and fewer occurrences per word. Fig. 2
shows the histograms for the mean number of unique word
hypotheses for the two classes. In our experiments, around
69.2% of the full words have a mean number of unique word
hypotheses fewer than 25. On the other hand, roughly 60%
of the word fragments have more than 25 mean unique word
hypotheses.

B. Pronunciation Confusion-based Features
In addition to the statistics of the word hypotheses, it is also

necessary to take into account their pronunciation similarity.
For example, a specific frame in a lattice contains the word
hypotheses ACADEMIA, ACADEMIC, ACADEMICALLY,
ACADEMICS, ACADEMIES with counts 15, 30, 30, 9 and
16. The entropy for this frame will be 2.0125. But, we can
see that all these words have pronunciations that are very close
to one another, and thus signify less confusion as compared
to (for example) the following set of words: DEMOLISH,
DIATRIBE, ADMONISH, DIVIDE, TIME with identical
counts as the previous example. Hence, a measure of pronun-
ciation similarity between the various word hypotheses can
serve as a useful feature for word fragment detection.
We propose the use of Minimum Edit Distance (MED) or

Levenshtein distance [16] between the phonetic baseforms of
all pairs of word hypotheses as a measure of this similarity.
The MED between two strings is defined as the minimum
number of operations needed to transform one string into
another, where an operation could include an insertion, dele-
tion or substitution. The MED between two strings can be
computed using a bottom-up dynamic programming algo-
rithm [16]. We use a value of 1 for the insertion, deletion
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Fig. 2. Histograms of the mean number of unique word hypotheses across
the ASR output lattice during word fragments and normal words. 211 samples
each of word fragments and normal words were taken from the San Diego
corpus [3].

and substitution penalties during experiments.
As mentioned earlier, we compute the MED between the

baseforms of the two word hypotheses from a dictionary. At
every time instant, the average MED between all possible pairs
of word hypotheses is computed. Since there are invariably
multiple occurrences of each word hypotheses, the average
MED at this time instant can be thought of as a weighted sum
of the MED between all possible pairs of unique word hypoth-
esis. As in the case of other lexical features, the minimum,
maximum and average of this weighted MED is computed
over all the time instants (frames) in the word and used in
the final feature set. Fig. 3 shows the histograms of minimum
average MED over all frames belonging to word fragments
and normal words. Only 19.4% of the word fragments have a
minimum average MED less than 2, although the percentage
of such full words is around 40%. One can expect an even
higher percentage of normal words with minimum average
MED below such a threshold for an ASR with a low WER.

IV. EXPERIMENTS AND RESULTS

For generating the word lattices, an ASR system was trained
using Sphinx [17]. 15 hours of audio from the DARPA
Transtac Iraqi-English mediated interactions (San Diego cor-
pus) [3] were used to train tied-state triphone HMM acous-
tic models with 1000 senones and 32 component Gaussian
mixture models for every state. A trigram language model
was trained on a large corpus of conversational English
text [18] from the internet and other sources using the SRILM
toolkit [19]. The WER of this system on a test set of 1000
utterances (distinct from the training set) was 29%.
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Fig. 3. Histograms of the minimum average MED across the ASR output
lattice during word fragments and normal words. 211 samples each of word
fragments and normal words were taken from the San Diego corpus [3].

A. Classification Corpus

For conducting word fragment classification experiments, a
set of files from the San Diego corpus containing 211 word
fragments was extracted. It was noted that around 8.5% of the
total words in this dataset were marked as fragments. Unlike
the Switchboard corpus [10] used in [1], the dictionary for this
corpus did not include the word fragments. This represents a
more realistic situation in practice, since the word fragments
are typically not known a-priori. Hence, for creating the oracle
annotation for the classification corpus, the word fragments
were removed from the transcripts of these files, and they were
force aligned using the English ASR system. The resulting
word segmentation files were manually edited by listening to
the audio and marking the location of word fragments. It was
found out that the WER of the ASR system on this small set
of word fragment containing files was 40%. This high value
was obtained since these files were not part of the text used
to train the language model. The word fragments are OOV
words, which leads to greater misrecognition.

Finally, word lattices were generated for this test set. The
proposed lexical features were extracted from these lattices, as
explained previously. The total number of lexical features was
12. For comparison with, and to complement our feature set,
we also implemented the acoustic-prosodic features proposed
in [1]. For the F0-based features, the pitch extractor tool in [20]
was used. Praat [21] was used to extract the point process for
computing jitter. A total of 13 acoustic-prosodic features were
extracted. The final list of these features and the proposed
lexical features is given in Table I.

TABLE I
LIST OF ACOUSTIC-PROSODIC AND LEXICAL FEATURES

No. Acoustic-prosodic Lexical
1 Change in avg. F0 Min. no. unique hypotheses

from overall value
2 Change in F0 across Min. entropy

word boundary
3 Log ratio of min. F0 before Min. hypotheses per word

boundary to max. F0 after it
4. Change in avg. energy Min. avg. MED

from overall value
5 Change in energy Max. no. unique hypotheses

across word boundary
6 Jitter of the word Max. entropy
7 Max. spectral tilt Max. hypotheses per word
8 Min. spectral tilt Max. avg. MED
9 Mean spectral tilt Mean no. unique hypotheses
10 Change in energy slope Mean entropy

across word boundary
11 Max. OQ Mean hypotheses per word
12 Min. OQ Mean avg. MED
13 Mean OQ

B. Classification Experiments (without feature selection)

Since the number of normal words is very large as compared
to the number of word fragments (2268 vs. 211), a classifier
will get biased towards the majority class upon supervised
training. We adopt the same solution proposed by Liu [1], and
randomly downsample the set of normal words to 211. The
LibSVM [22] Support Vector Machine (SVM) [23] classifier
with a quadratic polynomial kernel was used for the experi-
ments in the Weka 3 [24] data mining software. The random
downsampling of normal words was repeated 10 times and the
results were averaged across all the resulting test sets. A 10-
fold cross validation was used for each of these 10 sets, with
a train-test set split of 90 − 10%. Table II gives the average
classification scores along with the standard deviation over
these 10 randomly downsampled sets. The proposed lexical
features outperform the acoustic-prosodic features by 5.20%
(relative). The combination of the two sets of features leads
to an improvement of 11.50% (relative) in the F measure over
the acoustic-prosodic features alone. It must be noted that the
classification scores of the three feature sets are significantly
above the chance level of 0.50. Fig. 4 shows the Receiver
Operating Characteristic (ROC) curves for these three sets
of features using the same classification setup. The areas
under the curve are 0.686, 0.728 and 0.773 for the acoustic-
prosodic, lexical and combined feature set respectively. It can
be observed that the combined feature set gives an appreciably
higher true positive rate than the acoustic-prosodic features for
all values of false positive rate.
By a simple concatenation of the two sets of features,

we obtain a 25-dimensional vector. In the section IV.C, we
discuss some feature selection experiments conducted on this
combined feature set.



TABLE II
RESULTS OF CLASSIFICATION EXPERIMENT WITH ALL THE ACOUSTIC-PROSODIC, LEXICAL AND COMBINED FEATURES.

Score Acoustic-prosodic Lexical Combined
(all 13) (all 12) (all 25)

Precision 0.637 ± 0.018 0.671 ± 0.020 0.709 ± 0.020

Recall 0.636 ± 0.018 0.671 ± 0.020 0.708 ± 0.020

F measure 0.635 ± 0.019 0.668 ± 0.020 0.708 ± 0.020

% Improvement over - 5.20% 11.50%

acoustic-prosodic features

TABLE III
TOP 10 FEATURES SELECTED BY THE SVM ATTRIBUTE EVALUATION METHOD

Rank Acoustic-prosodic Lexical Combined
1 Change in avg. energy Mean entropy Change in avg. energy

from overall value from overall value
2 Jitter Min. avg. MED Mean entropy

between hypotheses
3 Min. OQ Mean no. of Max. spectral tilt

unique hypotheses
4 Max. spectral tilt Min. entropy Jitter
5 Change in energy Min. no. of Min. avg. MED

across word boundary unique hypotheses between hypotheses
6 Change in F0 across Max. no. of Log ratio of min. F0 before

word boundary unique hypotheses boundary to max. after it
7 Mean OQ Max. avg. MED Min. OQ

between hypotheses
8 Change in energy slope Max. hypotheses Min. entropy

across word boundary per word
9 Log ratio of min. F0 before Mean avg. MED Min. no. of

boundary to max. after it between hypotheses unique hypotheses
10 Max. OQ Mean hypotheses Change in F0 across

per word word boundary

C. Feature Selection and Classification

The small size of the database and the high dimensionality
of the joint feature vector prompted us to conduct feature
selection experiments. An additional advantage of this ex-
periment is that it gives insights into the relative impor-
tance of each of the features for a classification task. The
SVM Attribute Evaluation (SVMAttributeEval) method
in Weka [24] was used with the Ranker search method for
this task. This method evaluates the importance of a feature by
using an SVM classifier [25]. Features are ranked according
to the square of the weight assigned to them by the SVM. The
top 10 features for the two sets separately and the combined
set are given in Table III. One can note that out of the top
10 features in the combined feature set, only 4 belong to
the lexical set. The higher performance of the top 10 lexical
features as compared to the acoustic-prosodic features in spite
of this can be attributed to a higher overall discrimination
ability of individual lexical features.
Classification experiments were conducted by varying the

number of top features selected from the combined set in a
similar setup as section IV.B. Fig 5 shows the variation in the
average F measure using the combined features after feature
selection with the number of features selected. We can observe
that for dimensionality greater than 12, the performance of the
combined feature set is significantly better than the average

value obtained using the entire set of acoustic-prosodic and
lexical features (taken separately). In addition, the effect
of the “curse of dimensionality” is not evident, since the
performance of the combined feature set is nearly constant
after a dimensionality of 12.

V. CONCLUSION

This paper presented ASR word lattice-based lexical fea-
tures for the problem of word fragment detection in conver-
sational speech. These features are based on the hypothesis
that the confusion inherent in the word lattices generated
by the ASR system can be exploited for detecting word
fragments. Two sets of lexical features were proposed. The
first one captures the word confusion between the various
hypotheses at a given time instant in the lattice. The second
set considers the confusion between the pronunciation of
word hypotheses. Classification experiments with an SVM
classifier show that these lexical features perform better than
the previously proposed acoustic-prosodic features by around
5.20%. Furthermore, a combination of both these feature sets
improves the word fragment detection accuracy by 11.50%
relative to the acoustic-prosodic features. It must be noted that
the ASR used to generate the word lattices had a WER of 40%
on the set of sentences containing word fragments. In spite of
this, the lexical features performed better than those based on
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acoustic-prosodic information. This highlights the robustness
of the proposed features.
Our future work will investigate a richer corpus in term of

acoustic variability. We will investigate the effect of regions of
low reliability audio due to external factors. Finally, we would
like to incorporate this work in a front end to a S2S system.
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