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Abstract
While the general class of most scheduling prob-
lems is NP–hard in worst–case complexity, in
practice, for specific distributions of problems and
constraints, domain–specific solutions have been
shown to perform in much better than exponential
time.  Unfortunately, constructing such techniques
is a knowledge–intensive and time–consuming
process that requires a deep understanding of the
domain and the scheduler.  The goal of our work
is to develop techniques to allow for automated
learning of an effective domain–specific search
strategy given a general problem solver with a
flexible control architecture.  In this approach, a
learning system searches a space of possible con-
trol strategies, using statistics to evaluate perform-
ance over the expected problem distribution.  We
discuss an application of the approach to schedul-
ing satellite communications.  Using problem dis-
tributions based on actual mission requirements,
our approach identified strategies that both de-
crease the amount of CPU time required to pro-
duce schedules, and increase the percentage of
problems that are solvable within computational
resource limitations.

1 INTRODUCTION
General problem solving tasks like planning and scheduling
are inherently complex.  Nevertheless, in many practical sit-
uations these complex problems have reasonable solutions
(e.g. traveling salesman problem [Held70]).  Often we can
take advantage of the structure of a domain or the distribu-
tion of problems to formulate effective solutions to complex
problems.  Unfortunately, a system designer must devote
considerable expense to the performance aspects of an algo-
rithm.

In this article we investigate the use of a machine learning
approach to automatically improve a performance element
with respect to a specific domain and distribution of prob-
lems.  The performance element must be flexible, meaning
there are control decisions that effect search that may be re-

solved in alternative ways.  The overall learning problem
we are addressing can be specified as follows.  Given a flex-
ible performance element PE with control points CP1...CP-
n, where each control point CPi corresponds to a particular
control decision and for which there is a set of alternative
decision methods Mi,1...Mi,k,1 a control strategy is a selec-
tion of a specific method for every control point (e.g, STRAT
=  <M1,3,M2,6,M3,1,...>).  A control strategy determines the
overall behavior of the scheduler.  It may effect properties
like computational efficiency or the quality of its solutions.
Let PE(STRAT) be the problem solver operating under a
particular control strategy.  The function U(PE(STRAT), d)
is a real valued utility function that is a measure of the good-
ness of the behavior of the scheduler over problem d.  The
goal of learning can be expressed as:  given a problem distri-
bution D, find STRAT so as to maximize the expected utility
of PE.  Expected utility is defined formally as:

d D

U(PE(STRAT), d) probability(d)

For example, in a planning system such as PRODIGY [Min-
ton88], when planning to achieve a goal, control points
would be:  how to select an operator to use to achieve the
goal; how to select variable bindings to instantiate the oper-
ator; etc.  A method for the operator choice control point
might be a set of control rules to determine which operators
to use to achieve various goals plus a default operator choice
method.  A strategy would be a set of control rules and de-
fault methods for every control point (e.g., one for operator
choice, one for binding choice, etc.).  Utility might be de-
fined as a function of the time to construct a plan.

Our proposed solution to this learning problem, sometimes
called the utility problem [Minton88], is embodied in the
COMPOSER system.  COMPOSER can be characterized
as a hill-climbing search in the space of possible strategies.
The learning system alternately conjectures changes to the
current control strategy and statistically evaluates them to
determine how well they enhance expected utility.

1. Note that a method may consist of smaller elements so that a
method may be a set of control rules or a combination of heuristics.



In this paper we describe an application of the COMPOSER
framework to learning search strategies for an automated
scheduling technique in a NASA domain of space-craft
communication scheduling.  Two important aspects of this
evaluation are that the task and problem distribution are
based on a real-world situation, and the scheduling ap-
proach was developed independently of our learning work
[Bell92].  The implementation includes a novel approach
for improving learning efficiency.  The performance of the
system, along with previous results in artificial planning do-
mains [Gratch91, Gratch92], demonstrates COMPOSER’s
flexibility and its potential to identify beneficial knowledge
in practical learning problems.

2 COMPOSER
COMPOSER is a statistical approach to improving the ex-
pected utility of problem solving.  The overall approach is
one of generate and test hill-climbing.  Given an initial
problem solver, a transformation generator constructs a set
of possible transformations to the control strategy.  Each of
these changes is evaluated statistically over the expected
distribution of problems.  A transformation is adopted if it
increases the expected utility of solving problems over that
distribution.  The generator then constructs a set of transfor-
mations to this new strategy and so on.  For a complete de-
scription of the method see [Gratch92].  The algorithm is
summarized in the Appendix.

COMPOSER’s solution is applicable in cases where the fol-
lowing conditions apply.

1.  The control strategy space can be structured to facilitate
hill-climbing search.  In general, the space of such strategies
is so large as to make exhaustive search intractable.  COM-
POSER requires a transformation generator that structures
this space into a sequence search steps, with relatively few
transformations at each step.  In Section 3.4 we discuss
some techniques for incorporating domain specific infor-
mation into the structuring of the control strategy space.

2.  There is a large supply of representative training prob-
lems so that an adequate sampling of problems can be used
to estimate expected utility for various control strategies.

3.  Problems can be solved with a sufficiently low cost in re-
sources so that estimating expected utility is feasible.

4.  There is sufficient regularity in the domain such that the
cost of learning a good strategy can be amortized over the
gains in solving many problems.

COMPOSER can be seen as one of a class of statistical ap-
proaches to improving the expected utility of problem solv-
ing (see also [Greiner92, Laird92, Subramanian92].  The
principle drawback of these techniques is that they find only
local maxima, they may require many examples, and exam-
ples can be expensive to process.  Furthermore, their statis-
tical properties rest upon assumptions that may not hold in
practice.  Greiner and Jurisica demonstrate that, under very

weak assumptions, the number of examples, or sample com-
plexity, can be bounded by a polynomial function of the al-
lowable statistical error [Greiner92].  Weak assumptions
are a way of ensuring wide applicability.  Unfortunately, the
resulting bounds prove too large for most practical applica-
tions (see [Buntine89, Gratch92]).  COMPOSER embodies
stronger statistical assumptions suggested by the Central
Limit Theorem [Hogg78 pp. 192–195].  These stronger as-
sumptions drastically reduce the number of examples re-
quired to make statistical decisions, but they limit the appli-
cability of the approach.  In previous evaluations these
stronger assumptions have proved reasonable:  COMPOS-
ER’s assumptions produced sample complexities two to
three order of magnitudes less than the weak assumptions
adopted by Greiner and Jurisica, without compromising the
statistical error [Gratch92].  However these promising re-
sults have the drawback that they are based on artificial do-
mains and problem distributions.  The ultimate usefulness
of our approach depends on its behavior on real-world do-
mains, which this paper addresses.

3 THE DEEP SPACE NETWORK
We applied the COMPOSER approach to improving the
performance of a scheduler operating in the domain of
spacecraft communication scheduling.  The resulting sys-
tem is called DSN-COMPOSER.  The scheduling problem
is a complicated real world task that has proved challenging
to state-of-the-art scheduling techniques.  The problem is to
allocate communication requests between earth-orbiting
satellites and the three 26-meter antennas at Goldstone,
Canberra, and Madrid.  These antennas make up part of the
Deep Space Network (DSN) that is responsible for commu-
nication with earth-orbiting and inter-planetary spacecraft.
Each satellite has a set of constraints, called project require-
ments, that define its communication needs.  For example,
the Nimbus-7 satellite must have at least four 15-minute
communication slots per day, and these slots cannot be
greater than five hours apart.  Two factors complicate the
problem.  First, antennas are a limited resource – two satel-
lites cannot communicate with the same antenna at the same
time.  Second, satellites can only communicate with certain
antennas at certain times, depending on their orbits.
Scheduling is done on a weekly basis.   A weekly scheduling
problem is defined by three  elements: (1) the set of satellites
to be scheduled, (2) the constraints associated with each sat-
ellite, and (3) a set of time periods specifying all temporal
intervals when a satellite can legally communicate with an
antenna.  Two time periods conflict if they use the same an-
tenna and overlap in temporal extent.  A valid schedule
specifies a non-conflicting subset of all possible time peri-
ods where each project’s requirements are satisfied.

3.1 THE SCHEDULER SYSTEM
LR-26 is a heuristic approach to the scheduling problem
[Bell92] developed at the Jet Propulsion Laboratory.  It pro-
vides a good platform for learning as it can be modified easi-



ly to incorporate alternative heuristic strategies.  Further-
more, it uses an expert crafted control strategy that provide
a challenging base-line to judge learned knowledge.  There
is also significant motivation to improve the effectiveness
of the default control strategy.  If LR-26 is chosen to replace
the human scheduler, it will serve as one module in a larger
interactive system.  This system must make many repeated
calls to the scheduler to compare variants of each weekly
schedule.  For this reason, LR-26 must provided solutions
in a timely fashion.

Scheduling is formulated as a 0-1 integer programming
problem [Taha82].  This is a methodology for finding an as-
signment to integer variables that maximizes the value of an
objective function, subject to a set of linear constraints.  The
objective function characterizes the “value” of the solution.
Many constraint satisfaction problems (CSP) are easily cast
as integer programming problems [Mackworth92].  In the
DSN domain, time periods are treated as 0-1 integer vari-
ables (0 if the time period is excluded from the schedule or
1 if it is included), the objective is to maximize the number
of time periods in the schedule subject to the project require-
ments and temporal conflict constraints which are ex-
pressed as sets of linear inequalities.  Integer programming
is NP-hard, and the size of our scheduling problems makes
the conventional approach impractical:  a typical problem
has approximately 650 variables and 1300 constraints.
LR-26 embodies a heuristic approach called lagrangian re-
laxation [Fisher81].  Lagrangian relaxation requires identi-
fying a set of constraints that, if removed, make the problem
computationally easy.  These constraints are “relaxed,”
meaning they no longer act as constraints but instead
modify the objective function.  A relaxed objective function
is automatically generated such that satisfying relaxed con-
straints increases the value of the relaxed solution.  The re-
laxed problem is by definition easy to solve and often find-
ing the highest value relaxed solution solves the original
problem.  Furthermore, each relaxed constraint has a weight
associated with it when it is added to the objective function.
By systematically adjusting these weights and re-solving
the relaxed problem, a solution to the unrelaxed problem is
often efficiently discovered.  Even if the unrelaxed problem
cannot be solved in this manner, this weight adjustment
cycle can move the scheduler closer to a solution, allowing
the unrelaxed solution to be discovered with less search.
LR-26 relaxes inter-antenna constraints.  This representa-
tion facilitates an efficient implicit representation of tempo-
ral conflict constraints, which make up more than half of all
constraints in a typical problem.

LR-26 combines lagrangian relaxation with standard con-
straint satisfaction search techniques.  The scheduler per-
forms depth-first search through a space of partial sched-
ules.  A variable is assigned a value of in if the associated
time period is included in the partial schedule, out if it is ex-
cluded from the partial schedule.  The scheduler constructs
a complete schedule by incrementally extending the partial

schedule.  First it attempts to completely extend the sched-
ule using the lagrangian relaxation method.  If the relaxed
solution satisfies all constraints it is returned.  Otherwise, a
set of possible extensions to the partial schedule is created
and these are recursive explored.  Extensions are created by
choosing an unsatisfied constraint, identifying a set of un-
committed variables in the constraint, and assigning possi-
ble values to these variables.  The set of extensions are
placed on a stack to implement the depth-first search.  The
search continues until a solution is uncovered or a time-
bound is reached.  Currently the scheduler implements a ti-
me-bound of five CPU minutes.  Any problem not solved
within this bound is deemed unsolvable.
LR-26 can be viewed as a recursive application of four con-
trol decisions:  (1) decide on a lagrangian weight adjustment
scheme, terminating if a viable solution is found; otherwise
(2) choose an unsatisfied constraint, (3) determine a set of
extensions to the partial schedule that satisfy the constraint,
and (4) determine an order to explore these extensions.  The
scheduler embodies a heuristic method for each of these
control operations.  These operations provide natural points
at which to insert alternative learned methods.

3.2 PROBLEM DISTRIBUTION
We constructed a distribution of scheduling problems using
the requirements and time periods of satellites using the
deep space network.  Ideally, we would use the identical
problem distribution faced by the human experts in this do-
main.  Unfortunately, not all of this information is in elec-
tronic form and thus is difficult to present to the LR-26
scheduler.  There does, however, exist a large electronic da-
tabase of information for many of the projects in the deep
space network.  We used this database to construct a large
body of scheduling problems that are representative of, if
not identical to, the type of problems faced by the human
schedulers.  Problems are generated by randomly choosing
combinations of projects from the available data.  The re-
quirements and time periods represent the requirements and
time periods of actual projects.  The primary difference be-
tween these and actual problems lies in the particular com-
binations of projects that appear in the schedule.
We performed some initial evaluations of the LR-26 sched-
uler on these generated problems.  We observed that some
problems could not be solved by the scheduler using any of
several search control strategies even with large resource
bounds.  This is consistent with the observation that the
scheduling problem is inherently NP-Hard – there will be
some problems that cannot be efficiently solved, even with
good heuristics.  These problems tend to dilute any perform-
ance improvement that we might gain through learning.  For
our experiments we eliminated this complicating factor by
constructing our problem distribution without these un-
solved problems.  These problems were identified by solv-
ing each randomly generated problem multiple times using
about twenty different search strategies (the strategies were
identified during our pilot investigations).  If a problem



could not be solved by any of the strategies within the time
bound, it was not added to the experimental distribution.
For comparative purposes we include a secondary set of ex-
periments that incorporate these unsolved problems.  For a
complete description of how training examples are gener-
ated, see [Gratch93].

3.3 EXPECTED UTILITY

In the DSN application a chief concern is with the computa-
tional efficiency of the scheduler.  There is a strong need that
the scheduler return quickly on average.  This behavioral
preference can be expressed by a utility function related to
the computational effort required to solve a problem.  As the
effort to solve a problem increases, the utility of the problem
solver on that problem should decrease.  In this paper we
characterize this preference by making utility the negative
of the CPU time required by the scheduler on a problem.

3.4 HEURISTICS FOR LR-26
LR-26 combines lagrangian relaxation and constraint satis-
faction search techniques to increase scheduling efficiency.
Nevertheless, scheduling is still quite expensive.  While the
problems are of sufficient complexity that some search is
unavoidable, alternate search control methods can drasti-
cally impact the amount of search required, especially as
there is substantial repetition in this domain.  Many projects
use the antennas for many years, and their project require-
ments vary little across weeks.  Because possible slots for
specific antennas communicating with spacecraft are dic-
tated by spacecraft orbits, the space of potential communi-
cation slots also contains significant regularity.  This sug-
gests that heuristics can be crafted to exploit this regularity
to improve performance.
Many heuristics have been suggested to improve schedul-
ing efficiency.  Often these heuristics are stated as general
principles (e.g. “first instantiate variables that maximally
constraint the rest of the search space” [Dechter92]) and
there may be many ways to realize them in a particular
scheduler and domain.  Furthermore, there are almost cer-
tainly interactions between methods used at different con-
trol points that makes it difficult to construct a good overall
strategy.  These factors conspire to make manual develop-
ing and evaluation of heuristics a tedious, time consuming
task that requires significant knowledge about the domain
and scheduler.  As a result,  only a limited set of alternate
heuristics were considered in LR–26’s development.  We
formalized a much larger set for automatic consideration.
As described previously, there are four basic control points
in LR–26: a weight adjustment method, constraint selection
method, a method for constructing alternative solutions for
the constraint, and method for ordering these alternatives.
We allow for both a primary and secondary sort function to
order candidate constraints, so there are effectively five
control points.  A control strategy consists of a particular
heuristic method for each of the five control points.  For

LR–26 there are 4 alternative methods for the lagrangian
weight adjustment control point, 9 alternative methods for
each constraint selection sort (9 for the primary sort and 9
for the secondary sort – excluding the primary sort but in-
cluding the possibility of no secondary sort), 2 alternative
methods for constructing alternative solutions to a con-
straint, and 4 alternative methods for ordering alternative
solutions to a constraint.  Exhaustively searching the space
of possible control strategies is in general computationally
infeasible.  As there are roughly 4!9!9!2!4=2592 possible
strategies in the LR-26 control strategy search space, to ex-
haustively search the control strategy space, taking a signif-
icant number of examples per strategy (fifty) at a cost of 5
CPU minutes per problem would require approximately
450 CPU days.
Some example methods are as follows.  For the weight ad-
justment, methods perform adjustments at every search
node, perform only at root node, never perform adjust-
ments.  Methods for selecting constraints involve features
of the constraints and constraint graph.  Prefer the shortest
constraint (e.g. the one that mentions the fewest unbound
variables) and prefer the constraint that mentions the vari-
ables that temporally conflicts with the most other variables
are examples of constraint selection methods (recall vari-
ables correspond to time-periods).  For constructing alter-
native solutions, there were 2 methods: force the first vari-
able in the constraint into the schedule for one child and out
for the second child; and construct a child for each variable
in the constraint, forcing that variable into the schedule.  Ex-
amples of alternative ordering methods include preferring
high conflict variables and preferring low conflict vari-
ables2.  These heuristics can be viewed as variable ordering
heuristics from the CSP literature [Dechter92].
COMPOSER requires this search to be structured for hill-
climbing search.  A simple way to organize the search
through this strategy space would be to treat all control
points a equal and consider all single method changes to a
given control strategy.  This was the strategy in our PRODI-
GY implementation of COMPOSER [Gratch92].  Here, we
used our knowledge of the scheduler to take advantage of
interactions (or lack thereof) between control points to help
structure the search.  The intent of this organization is to re-
duce the branching factor in the control strategy search and
improve the expected utility of locally optimal solutions.
This approach led to a transformation generator that imple-
ments a layered search through the strategy space.  Each
control point is assigned to a level.  The control strategy
space is search by evaluating all combinations of methods at
a single level, adopting the best combinations, and then

2. This is a prime example of the difficulty of determining  good heu-
ristics.  Selecting high conflict variable has the benefit of rapidly forcing
many time-periods to be in or out of the schedule (e.g. reducing the num-
ber of steps to solution).  Selecting low conflict intervals advocates add-
ing those time-periods which cost little, and thus may satisfy constraints
without causing conflicts [Dechter92].



moving onto the next level.  The organization is shown be-
low:

Level 0:  weight adjustment
Level 1:  constructing alternatives
Level 2:  secondary constraint sort, child sort
Level 3:  primary constraint sort

The weight adjustment and alternative construction control
points were separated because they are relatively indepen-
dent from the other control points. While there is clearly
some interaction between weight search, alternative con-
struction, and the other control points, a good selection of
methods for pricing and alternative construction should
perform well across all constraint and child sorts.  The pri-
mary constraint sort was separated into another level be-
cause it was the sole control point that the implementor of
LR–26 had spent time experimenting and optimizing.
Thus, we believed that it was unlikely the default strategy
could be improved upon, and hence relegated to a separate
level.
Given this transformation generator, DSN-COMPOSER
hill-climbs across levels.  It first entertains weight adjust-
ment methods, then alternative construction methods, then
combinations of secondary constraint sort and child sort
methods, and finally primary constraint sort methods.  Each
choice is made given the previously adopted  methods.
Searching the structured space involves evaluating at most
4+2+9!4+9=51 strategies.
This leveled search can be viewed as the consequence of as-
serting certain types of relations between control points.  In-
dependence relations indicate cases in which the utility of
methods for one control point is roughly independent of the
methods used at other control points.  Dominance relations
indicate that the changes in utility from changing methods
for one control point are much larger than the changes in
utility for another control point.  Finally, inconsistency rela-
tions indicate when a method M1 for control point X is in-
consistent with method M2 for control point Y.  This means
that any strategy using these methods for these control
points need not be considered.

3.5 EXTRACTING UTILITY INFORMATION

To perform its evaluations, COMPOSER must be able to
determine, given a current control strategy, a transforma-
tion, and a problem, what improvement the transformations
provides over the current strategy on that problem.  How we
can extract this information depends intimately on the util-
ity function, the form of the transformations, and the extent
to which we can model the behavior of the problem solver.
In the best case we possess a detailed cost model of the prob-
lem solver that efficiently derives the ramification of pro-
posed modifications without actually solving the problem
(e.g. [Greiner89, Subramanian90]).  In the worst case we
can resort to brute-force simulation:  solve the problem with
and without the proposed modification and observe the dif-
ference in utility between the two solution attempts.  In the

former case the cost of processing an example is tied to the
efficiency of manipulating the model.  In the later case the
cost is tied to the efficiency of the problem solver and grows
linearly with the number of transformations we consider.

In the current context we found it necessary to use the later,
more costly, alternative.  Given m candidate transforma-
tions, DSN-COMPOSER solves each problem m+1 times;
once with the current control strategy and once using each
of the m transformations.  This allows us to generate the m
incremental utility values.  There are several issues that lead
us to this particular solution.  In particular we found that
other more efficient proposals for gathering statistics (see
[Gratch92, Greiner92]) were not appropriate to this prob-
lem.  We elaborate on this issue in Section 5.

4 EXPERIMENT AND RESULTS
DSN-COMPOSER should, with high probability, improve
the expected utility of the scheduler over the distribution of
problems.  This can be seen as two basic claims that can be
tested empirically.  First, DSN-COMPOSER should identi-
fy transformations that improve the expert strategy.  Sec-
ond, it should identify these transformations with the confi-
dence predicted by the statistical theory.  Besides testing
these claims, we are also interested in two secondary ques-
tions.  How quickly does the technique improves expected
utility (e.g., how many examples are required to make sta-
tistical inferences?).  Also, many problems are unsolvable
within five minutes with the expert strategy.  Can DSN-
COMPOSER improve the number of solvable problems? 

When DSN-COMPOSER learns a strategy, its behavior is
guided by a random selection of training examples accord-
ing to the problem distribution.  As a result of this random
factor, the system will exhibit different behavior on differ-
ent runs of the system.  On some runs the system may learn
high utility strategies.  On other runs the random examples
may poorly represent the distribution and the system may
adopt transformations with negative utility.  The typical be-
havior can be estimated from several runs of the system.

For the experiments a learning run consists of 300 randomly
selected training examples. The expected utility of all
learned strategies is assessed on an independent test set of
1000 test examples.  A measurement of learning rate is de-
termined by recording the strategy learned by DSN-COM-
POSER after every 20 examples.  Thus we can see the result
of learning with only twenty examples, only forty exam-
ples, etc.  To assess statistical error, we perform twenty runs
of the system on twenty distinct training sets. 

COMPOSER has two parameters.  The parameter  speci-
fies the acceptable level of statistical error.  This is the
chance that the technique will adopt a bad transformation or
reject a good one.  In DSN-COMPOSER this is set to a stan-
dard value of 5%.  COMPOSER bases each statistical infer-
ences on at least n0 examples.  In DSN-COMPOSER n0 is
set to the empirically determined value of fifteen.
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Figure 1.  Learning curves showing performance as a
function of the number of training examples and table
of experimental results.  Results are provided for orig-
inal distribution (Distribution 1) and the distribution
including unsolved problems (Distribution 2).
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Recall that we purposely excluded several inherently diffi-
cult scheduling problems from the problem distribution.
These problems, if added to the problem distribution,
should make learning more difficult as no strategy is likely
to provide a noticeable improvement within the five minute
resource bound.  Nevertheless, it is important to show that
DSN-COMPOSER does not require the elimination of
these problems.  To test this we created a new distribution
by incorporating these problems into the original distribu-
tion and repeated the experiments.  Results for both sets of
experiments are shown in Figure 1.  The original distribu-
tion is called Distribution 1 while the second is referred to
as Distribution 2.

The results support the two primary claims.  For Distribu-
tion 1, the system learned search control strategies that

yielded a significant improvement in performance.  It re-
duced the average time to solve a problem from 57 to 27 sec-
onds (a 53% improvement).  There is modest variance in the
expected utility of the strategies learned in the twenty trials.
The best of these strategies required only 12 seconds on av-
erage to solve a problem (an improvement of 78%).  The ob-
served statistical accuracy remained well within the theo-
retically predicted bound:  of 93 transformations adopted
across the twenty trials, only 3% decreased expected utility.
It took an average of 58 examples to adopt each transforma-
tion.  The human expert strategy was unable to solve 7% of
the scheduling problems within the resource bound.  One
strategy learned by the system reduced this number to 3%.

For Distribution 2, learned strategies reduced the average
solution time from 165 to 147 seconds (an 11% improve-
ment).  The best learned strategies required 160 seconds on
average to solve a problem (an improvement of 15%).  The
observed statistical accuracy did not significantly differ
from the theoretically predicted bound:  of 107 transforma-
tions were adopted across the trials, only 6% decreased ex-
pected utility.  The introduction of the difficult problems re-
sulted in higher variance in the distribution of incremental
utility values and this is reflected in a higher sample com-
plexity: an average of 108 examples to adopt each transfor-
mation.  Some improvement was noted on the supposedly
unsolvable problems.  One strategy learned by DSN-COM-
POSER increased the number of solvable problems from
51% to 59% (a 16% improvement).

Most of the learned improvement came from improved
methods for lagrangian weight adjustment, secondary con-
straint sorting, and child ordering.  The best learned strategy
performed no weight adjustment, preferred constraints that
contained time periods with high levels of temporal con-
flicts, and, among child nodes, prefer alternatives with few
temporal conflicts.  By avoiding the weight adjustment,
DSN-COMPOSER implies that there is no utility in using
lagrangian weights to improve the first relaxed solution.
One interpretation of the constraint and child methods is
that search should proceed by first identifying a highly con-
strained constraint, and then choose the least constrained
way of satisfying it.  It is interesting that this is consistent
with the general recommendations in the CSP literature
[Dechter92].

5 DISCUSSION

This paper evaluates COMPOSER on a real-world domain.
COMPOSER is grounded in a mathematical framework.
While the framework embodies statistical assumptions,
there is a theoretical support for these (the Central Limit
Theorem) and they enjoy wide acceptance in the statistical
community.  Admittedly, these statistical approaches have
not seen wide use within machine learning systems, so there
is some reason to be cautious about their applicability.
However, the current scheduling results and previous dem-
onstrations in artificial planning domains [Gratch92] pro-



vide growing support for the effectiveness and generality of
the COMPOSER framework.

An important aspect of statistical frameworks like COM-
POSER is their flexibility.  In our research we have applied
the technique to scheduling and planning tasks, in both
cases improving the average time to produce solutions.  Co-
hen and Greiner illustrate how such statistical frameworks
can apply to a wide variety of utility functions.  For exam-
ple, by choosing another utility function we could guide
DSN-COMPOSER towards influencing other aspects of
LR-26’s behavior such as increasing the amount of flexibil-
ity in the generated schedules.

Our experience in the scheduling domain uncovered several
aspects of COMPOSER that can be improved.  Its perform-
ance is tied to the transformations it is given and the expense
of processing examples.  Just as an inductive learning tech-
nique relies on good attributes, if COMPOSER is to be ef-
fective, there must exist good methods for the control points
that make up a strategy.  Because of the nature of hill-climb-
ing, even if a good strategy exists, there is no guarantee that
COMPOSER can find it.  One may have to consider careful-
ly how to explore the transformation space.

When it is available, knowledge such as dominance and in-
dependence can improve learning efficiency and mitigate
the effects of local maxima.  An important question is to
what extent this information influenced the expected utility
of the learned knowledge in the DSN domain.  We are cur-
rently performing a series of experiments to address this
question.  We are also interested in whether this type of in-
formation could assist learning in our earlier PRODIGY
implementation.  An obvious question is if such informa-
tion can be acquired automatically.  Another could help
overcome the problem of local maxima.  One strategy we
are investigating is to perform several learning trials, start-
ing the system at a differing random locations in the strategy
space.  This is similar to the training strategy for neural net-
work systems.

In the LR-26 domain the cost of processing each training ex-
ample grows linearly with the number of candidates at each
hill-climbing step.  While this is not bad from a complexity
standpoint, it is a pragmatic concern.  There have been a few
proposals to reduce the expense in gathering statistics.  In
[Gratch92] we exploited properties of the transformations
to gather statistics from a single solution attempt.  That sys-
tem relied on so-called “rejection rules” [Minton88] that
only avoid backtracking.  The same technique could not be
applied to “preference rules” that suggest novel search di-
rections.  Greiner and Jurisica [Greiner92] propose one
method for evaluating preference rules from a single solu-
tion attempt by maintaining upper and lower bounds on the
utility of the novel search paths.  In the LR-26 domain these
bounds are too weak to discriminate between alternative
search strategies because there is very little overlap between

the search spaces explored by alternative control strategies.
Presumably this could also occur in other domains.
Finally, an important issue is the notion of a shifting prob-
lem distribution.  COMPOSER assumes a stable distribu-
tion of problems.  In many domains this may not be an ap-
propriate assumption.  For example, there are properties in
the deep space network that produce distribution shifts:  old
satellites are deactivated, new satellites are launched, and
orbits change in a predictable pattern.  We ignored these fac-
tors in our experiments by combining all problems into a
single batch and choosing a random ordering.  One solution
to shifting distributions is to use a moving window of prob-
lems, periodically retraining the system with new problems
added to the front of the window and old problems removed
from the end.  Alternatively, it might be possible to predict
and exploit predictable shifts to guide its behavior.
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Appendix: COMPOSER Algorithm

Let PE denote a performance element.  COMPOSER takes
an initial element, PE0, and identifies a sequence, PE0, PE1,
... where each subsequent PE has, with probability 1 - ,
higher expected utility.  TRANSFORMS(PE) is a function
that takes a PE and returns a set of candidate changes.  AP-

PLY(t, PE) is a function that takes a transformation, t 
TRANSFORMS(PE), and a PE and returns a new PE’ that
is the result of transforming PE with t.  Let Uj(PE) denote
the utility of PE on problem j.  The change in utility that a
transformation provides for the jth problem, called the in-
cremental utility of a transformation, is denoted by U-
j(t|PE).  This is the difference in utility between solving the
problem with and without the transformation:  Uj(t|PE) =
Uj(APPLY(t, PE)) - Uj(PE).  COMPOSER finds a PE with
high expected utility by identifying transformations with
positive expected incremental utility.  The expected incre-
mental utility is estimated by averaging a sample of ran-
domly drawn incremental utility values.  Given a sample of
n values, the average of that sample is denoted by U-
n(t|PE).  The likely difference between the average and the
true expected incremental utility depends on the variance of
the distribution, estimated from a sample by the sample
variance S2

n(t|PE) , and the size of the sample, n.  COM-
POSER provides a statistical technique for determining
when sufficient examples have been gathered to decide,
with error , that the expected incremental utility of a trans-
formation is positive or negative. The algorithm is summa-
rized in Figure 2.3

3. This reflects three differences from [Gratch92].  The first is the
correction of a typo in the definition of (a) that appeared in that paper.
The second is superficial – TRANSFORM introduces all transforma-
tions at the beginning of a step, instead of incrementally.  While we still
allow the later, the former reflects the current implementation.  Finally,
we adopt the  term, recommended by [Greiner92].  The error at each
step is dependent on the cardinality of .  While  is overly conserva-
tive for most applications, we feel this is more reasonable than the over-
ly liberal previous approach of ignoring the cardinality of "

Let PE = PE0  = TRANSFORMS(PE)     j = 0     * = /(2| |)
While more examples and # do

t : Get Uj(t|PE)

where (a) =
a

–

1 2 exp – 0.5y2 dy = *significant = t : j n0 and
S2

j (t|PE)
( Uj(t|PE))2 < j

a2

= – t significant : Uj(t|PE) < 0

If t stopped : Uj(t|PE) > 0 Then

PE = Apply(x significant : y significant Uj(x|PE) > Uj(y|PE) , PE)

 = TRANSFORMS(PE)     j = 0     * = /(2| |)

j = j + 1

/* Gather statistics and find transformations that have reached significance */

/* Discard transformations that decrease expeced utility */

/* Adopt transformation that most increases expected utility */

Return (PE)
Figure 2: The COMPOSER algorithm


