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Abstract 

Integrating a gradient-descent learning mechanism at the core 
of the graphical models upon which the Sigma cognitive 
architecture/system is built yields learning behaviors that span 
important forms of both procedural learning (e.g., action and 
reinforcement learning) and declarative learning (e.g., 
supervised and unsupervised concept formation), plus several 
additional forms of learning (e.g., distribution tracking and 
map learning) relevant to cognitive systems/modeling.  The 
core result presented here is this breadth of cognitive learning 
behaviors that is producible in this uniform manner. 

Keywords: Cognitive architecture, graphical models, 
learning, gradient descent. 
 

One of the key hypotheses investigated during Soar’s early 
years was that a simple learning mechanism – chunking – 
when integrated into an appropriate architecture could yield 
a general learning mechanism capable of acquiring the 
diversity of knowledge required by a cognitive system 
(Laird, Rosenbloom & Newell 1986).  Although this proved 
to be a bridge too far – with Soar later to incorporate 
additional reinforcement, episodic and semantic learning 
mechanisms (Laird, 2012) – much was learned in exploring 
this hypothesis over the years (Rosenbloom, 2006). 

Despite the limitations eventually evident in Soar, the 
drive towards general learning mechanisms in cognitive 
architectures/systems remains appealing.  To the extent it is 
feasible, it yields deeper and more elegant theories of 
intelligent behavior with broader scientific reach (Deutsch, 
2012).  Here we report results from a somewhat more 
modest such effort that, like Soar, is based on integrating a 
simple learning mechanism into an appropriate architecture; 
however, the particular mechanism here – a local, online 
variant of gradient descent – is quite different from 
chunking, and is integrated into a hybrid mixed architecture 
called Sigma (Σ).  The results are interestingly different 
from those obtained with chunking in Soar. 

Sigma is a nascent cognitive system – an integrated 
computational model of natural and/or artificial intelligent 
behavior – that is based on a novel cognitive architecture.  
Its development is driven by three general desiderata: grand 
unification (uniting the requisite cognitive and non-
cognitive aspects of embodied intelligent behavior); 
functional elegance (exhibiting a broad set of capabilities 
while remaining fundamentally simple and theoretically 
elegant); and sufficient efficiency (behaving rapidly enough 
for anticipated applications).  The results presented here 
predominantly concern functional elegance. 

Past work on Sigma, although mostly under the more 
generic name of a graphical cognitive architecture, has 
spanned memory, problem solving, decisions, mental 
imagery, perception, localization, and natural language.  
Learning is a more recent focus, with the first published 
work covering reinforcement learning (RL) (Rosenbloom, 
2012).  In compliance with functional elegance, the core 
results demonstrated RL in a 1D grid task without requiring 
the addition to the architecture of an explicit RL 
mechanism.  The results instead arose from gradient-descent 
learning, as investigated further here, plus Sigma’s overall 
generality in representation and processing. 

Even at this relatively early stage in the development of 
learning in Sigma, the RL work showed the acquisition, via 
a single simple learning mechanism, of reward functions, 
discounted future utilities, Q values and action models 
(although to learn action models an additional architectural 
change was needed to enable simultaneous representation of 
successive states in working memory). RL and action 
modeling are both classical forms of procedural learning, 
but the work also demonstrated forms of distribution 
tracking, of rewards and utilities.  Further investigation has 
shown that the same mechanism can also yield forms of 
declarative learning, including supervised and unsupervised 
concept formation, over both standard datasets and natural-
language subtasks such as word sense disambiguation 
(WSD) and part of speech (POS) tagging.  It can also yield 
other important learning behaviors, such as the intertwining 
of map learning with localization that is at the heart of 
simultaneous localization and mapping (SLAM). 

The primary claim in this article is not of a general 
learning mechanism in the sense originally sought with 
Soar, but that much can be learned about what is possible 
when a simple learning mechanism – in this case one based 
on local, online, gradient descent – is integrated deeply into 
an appropriate architecture (Sigma).  The focus is not on the 
details of the learning mechanism itself, nor on its accuracy 
– so we have largely eschewed traditional machine learning 
evaluations in this article – but on the breadth of learning 
this combination enables in a functionally elegant manner. 

After introducing Sigma and its gradient-descent learning 
mechanism, results will be presented for distribution 
tracking, including parts of what will ultimately form 
semantic (declarative) learning, plus action (procedural) 
learning and map learning.   Concept formation (declarative 
learning) will then be explored in more detail, and finally 
earlier results on RL (procedural learning) will briefly be 



 

reprised.  Although not new, the RL (and action learning) 
results provide key pieces of the overall breadth of learning.   

Sigma 
The Sigma cognitive system is constructed in layers, with 
the two most critical being: (1) a cognitive architecture that 
provides a language of predicates and conditionals; and (2) 
a graphical architecture beneath it that is based on graphical 
models (Koller & Friedman, 2009).  A predicate in the 
cognitive architecture is defined via a name and a set of 
typed arguments – as in Location(state:state 
x:location), where the Location predicate has a 
state argument whose type is state and an x argument 
whose type is location – with working memory (WM) 
containing predicate instantiations that embody the state of 
the system.  Long-term memory (LTM) is comprised of 
conditionals, each of which is defined via a set of predicate 
patterns and an optional function over pattern variables. 

Conditionals provide a deep combination of rule systems 
and probabilistic networks.  Conditions and actions are 
patterns that behave like the respective parts of rules, 
providing the forward momentum characteristic of 
procedural memory.  Condacts are patterns that support the 
bidirectional processing that is key to probabilistic 
reasoning, partial matching, constraint satisfaction and 
signal processing.  Functions specify relationships over 
conditional variables that may be hybrid (discrete and/or 
continuous) and mixed (probabilistic and/or symbolic). 

Figure 1, for example, defines a probabilistic transition 
function for how a robot’s actions affect its location in a 1D 
grid.  It comprises: a condition over Location (as defined 
above) that matches to the distribution in WM over the 
current location via (italicized) variables for the state and 
the current location; a condition over Selected that 
matches to the selected operator; a condact over the next 
location; and a uniform (pre-learning) function over the 8 
possible next locations (nx) that defines their probabilities 
given the current location (x) and operator (o).  The stars 
(*) denote that the constant .125 applies to the entire domain 
spanned by the three variables. 

Sigma’s core cognitive cycle consists of accessing LTM 
until quiescence and then: (1) deciding on changes to WM; 
and (2) learning changes to LTM.  Learning at present is 
limited to modifying the functions in conditionals, with no 
mechanisms yet incorporated for structure learning.  
Episodic learning extends temporally organized functions 
based on changes to WM.  Gradient-descent learning 
improves the alignment of functions to the system’s 
experience.  The focus in this article is on gradient descent. 

Beneath the cognitive architecture is the graphical 
architecture, which is built in particular from factor graphs 
– undirected bipartite graphs of factor and variable nodes – 
and the summary product message-passing algorithm 
(Kschischang, Frey & Loeliger, 2001).  At this layer the 
cognitive cycle maps to a graph-solution phase that 
supports LTM access, followed by a graph-modification 
phase that yields 
decisions and learning.  
Predicates and 
conditionals in the 
cognitive architecture 
compile down into 
factor (square) and 
variable (circle) nodes, 
plus links, at this layer 
(Figure 2).  Conditional 
compilation is based on 
a generalization of the 
Rete algorithm (Forgy, 
1982) that can handle 
conditions, actions and 
condacts – with 
unidirectional message 
passing implicated for 
the former two and 
bidirectional message 
passing for the latter – 
plus additional nodes 
for functions.  The 
alpha (discrimination) 
and beta (join) networks 
in Sigma are generalizations of those in Rete, with the 
gamma network added for functions. 

The contents of the WM and function nodes, plus all of 
the messages passed around in the graph, are themselves 
generalizations of Rete’s symbolic tokens.  In particular, 
they are piecewise-linear functions – rectilinear arrays of 
multidimensional regions each of which has its own linear 
function (Figure 3) – that can approximate arbitrary 
continuous functions and be restricted appropriately to yield 
both discrete and symbolic functions (Rosenbloom, 2011).  
Rete’s standard notions of constant tests and variables have 
also been generalized in Sigma.  Filters are piecewise-linear 
generalizations of constant tests.  Affines enable transforms 

over variables.  
Sigma’s gradient-

descent mechanism 
is implemented at 
this graphical layer.  
Based on ideas in 
(Russell, Binder, 
Koller & Kanazawa, 
1995) for Bayesian 
networks, a message 
into a factor node for 
a conditional 

CONDITIONAL Transition 
Conditions: Location(state:s x:x) 
           Selected(state:s operator:o) 
Condacts: Location*Next(state:s x:nx) 
   Function(x,o,nx): .125<* * *>  
 
Figure 1: Conditional for a 1D transition function. 

Figure 2: Factor graph for 
conditional with (left to right) 2 

conditions, 1 condact, and 2 
actions; plus a function (top). 

Figure 3: Bivariate function as a 
2D array of linear regions. 



 

function can be seen as providing feedback to that node 
from the rest of the graph that induces a local gradient for 
learning.  Although Sigma uses undirected rather than 
directed graphs, the directionality found in Bayesian 
networks can be found at factor nodes when one of the 
variables is distinguished as the child – indicated by the 
underscoring of nx in Figure 1 – that is conditionally 
dependent on the other parent variables.  We have also 
modified the original batch algorithm to learn incrementally 
(online) from each message as it arrives. 

Consider the abstracted factor graph in Figure 4, which 
shows just the key factor nodes for a (naïve Bayes) concept-
based semantic memory comprised of six predicates – for 
the concept and the five features (two of which are Boolean, 
and one each that is symbolic, discrete and continuous) – 
plus one conditional for the prior distribution on the concept 
and five conditionals for the conditional probabilities of the 
features given the concept (Rosenbloom, 2010).  Each 
predicate yields a WM node (lightly shaded) and each 
conditional yields a function node (dark).  These are 
connected via join nodes  (medium) in the beta network.  

Memory access occurs in this graph by message passing.  
Suppose evidence is provided, by specifying initial values in 
the corresponding WM nodes, that an object is alive and has 
four legs.  Messages from these two nodes are combined 
(via product) with the conditional probability distributions 
sent from the associated function nodes, and the feature 
variables are then summarized out (via integration) to yield 
messages concerning the concept.  At the concept’s join 
node, these messages are multiplied, along with the 
concept’s prior distribution (from its function node), to yield 
a posterior distribution over the concept.  In the case at 
hand, given the distributions provided, this yields a certainty 
(probability of 1) that the object is a dog.  This result 
bounces back along the bidirectional links, combining with 
the conditional probability distributions for the features at 
the join nodes to yield predicted distributions at the WM 
nodes for the unspecified features; in this case that the 
object weighs 67 lb. and is mobile and brown. 

Gradient-descent learning occurs after memory access has 
completed, based on the messages arriving at the function 
nodes rather than the WM nodes.  Consider a fully specified 
supervised training trial, in which values are provided for 
the concept and all five of the features.  Memory access 
yields the same kinds of messages just described, albeit with 
different contents; and the message that ultimately arrives 
back at a feature’s (or the concept’s) function node reflects a 
posterior distribution that is determined by the evidence in 
its WM node and the combined effect of what is in all of the 
other WM and function nodes. 

How this combined effect is computed depends on the 
conditionals that define the graph structures that connect the 
WM and function nodes.  The result is similar to that 
achieved via backpropagation in neural networks – where 
the structure of LTM both produces behavior and defines a 
set of dependencies for use in learning – but without a 
separate backpropagation phase, because the necessary 
messages are already provided by the bidirectionality of the 
summary product algorithm.  There is also an analogy to 
chunking in Soar, where the structure of LTM both drives 
performance and yields dependencies for use in learning, 
but again without a separate dependency analysis. 

Given the incoming message, Sigma first normalizes and 
smooths it before multiplying it by a learning rate parameter 
and adding the result to the existing function.  

Distribution Tracking 
The simplest form of learning supported in this manner is 
tracking the frequency with which different variable values 
are experienced over time.  Figure 5, for example, shows a 
conditional defined via one condact and a function 
(initialized to uniform) that enables learning a distribution 
over four categories, here drawn from {walker, table, dog, 
human}.  Given evidence, such as that the current category 
is table, messages proceed from WM to the function’s factor 
node that yield a bump in the function’s value for table.  
Without evidence, a uniform message occurs that leaves the 
function unchanged.  After sufficient evidence, the 
conditional function should approximate the external 
distribution.  For example, in a sample run with 10K 
examples, where the desired distribution over the four types 
was <.1, .2, .3, .4> and the actual distribution was  <.1005, 
.1989, .2972, .4034>, the learned distribution was <.1091 
.1985 .3027 .3897>. 

The astute reader may have guessed that this conditional 
is the same as the one already implicitly mentioned in the 
semantic memory example, and would be right.  Similar 
conditionals produce tracking of conditional probabilities, 
such as for alive given concept (Figure 6).  When applied to 
NL POS tagging for 425 words, such conditional-
probability learning predicts the most common tag for each 

Figure 4: Abstraction of semantic memory graph. 

CONDITIONAL Concept-Prior 
  Condacts: Concept(value:c) 
  Function(c): .25<*> 

Figure 5: Conditional for uniform category prior. 



 

word.  With a training set of 25,332 instances, this yields 
90.3% correct on a test set of 5,138 instances; the same 
correct percentage as achieved when the baseline 
conditional probabilities are computed outside of Sigma. 

As demonstrated in (Rosenbloom, 2012), this same form 
of learning is also capable of acquiring action models for a 
simulated mobile robot in a 1D grid task, given the more 
complex conditional in Figure 1.  Figure 7 shows another 
example from RL, for tracking projected future utilities of 
states.  What differs here of interest is that the evidence for 
learning, rather than coming directly from outside 
experience, is computed internally from learned functions; 
in particular, the reward and future utility predicted for the 
next state, with this all ultimately grounding out in evidence 
for rewards.  This ability to internally compute evidence for 
variables, and to use one learned function in computing the 
evidence for another, is one of the benefits of learning 
within a cognitive system/architecture.  

If the evidence is uncertain, learning must cope with 
distributions.  Because Sigma’s function representation is 
hybrid and mixed it is able to represent both discrete and 
continuous distributions.  The learning algorithm itself is 
based on the relationship between a factor function and a 
message, both of which are represented in this manner, so 
the generality needed for learning from distributions already 
exists.  Sigma can potentially handle anything from a single 
correct value to a uniform distribution that reflects a 
complete lack of knowledge, to arbitrary points in between.  

This generality is leveraged via the conditional in Figure 
7 to learn projected utilities, but it also enables, for example, 
learning a map that relates perceived objects to their 
locations in an uncertain world.  In earlier work, Sigma was 
shown capable of localizing a simulated robot in a discrete 
1D corridor (Chen et al., 2011).  But in that work the map 
was fixed and known ahead of time by the system.  In 
SLAM – where location evidence for map learning is 
computed from the perceived object and the map while the 
map is being learned – the map is initially set to a uniform 
distribution over the four perceptible objects {wall, door1, 
door2, none}, as in Figure 8, and then refined via 
experience. In an example run in a 1D corridor with objects 
assigned to six discrete locations as [wall door1 none none 
door2 wall] and noise in both object perception and the 
transition function – so that the simulated robot can neither 

be sure of where it is or what it is seeing – it first predicts 
the correct object in each location after 138 moves (Figure 
9, top).  However, performance is fragile at this point, with 
some of the decisions being close calls that may be 
(incorrectly) reversed by later learning.  After 1000 moves, 
the map is much crisper (Figure 9, bottom). 

Concept Formation 
Concept formation may occur in either a supervised or an 
unsupervised manner.  In supervised concept formation 
evidence is provided during training for both the features 
from which prediction is to occur and the result that is to be 
predicted.  The distribution tracking in the previous section 
demonstrates one form of supervised learning, where 
learned conditional probabilities enable the child to be 
predicted when the parent is known.  The focus of this 
section is instead on more general generative learning – 
where a full joint distribution is learned over the data – in 
the context of a naïve Bayes classifier; followed by an 
extension to unsupervised learning. 

CONDITIONAL Alive-Concept 
  Condacts: Concept(value:c) 
            Alive(value:a) 
  Function(c,a): .5<* *> 

Figure 6: Semantic memory conditional for uniform 
conditional probability of alive given category. 

CONDITIONAL Object-Location-Map 
   Conditions: Object(value:o) 
   Condacts:   Location(x:x) 
   Function(x,o): .25<* *> 

Figure 8: Map conditional for uniform probability of 
object given location in discrete 1D corridor. 

CONDITIONAL Future-Utility 
Condacts: Projected(x:x value:u) 
Function(x,u): .1<* *> 

Figure 7: Grid conditional for uniform future utility. 

Figure 9: Map learned based on noisy perception and 
action models after 138 and 1000 moves. 



 

The supervised classifier learns a prior distribution for the 
object category plus conditional distributions for object 
features given the category.  These are all learned in concert 
by distribution tracking; however, together they yield a 
classifier that is much more than just a tracked distribution.  
It can, for example, predict an object’s category from 
evidence for any subset of its features, and flip this back 
around to predict values for unspecified features.  Given that 
Sigma’s semantic memory was earlier defined in terms of 
just such a naïve Bayes classifier, this work effectively 
demonstrates how gradient descent yields a mechanism for 
learning (the nonstructural aspects of) semantic memory. 

Learning such naïve Bayes classifiers has so far proven 
adequate for sample datasets from the UCI ML repository 
and for basic conjunctive and disjunctive concepts.  It has 
also yielded a classifier for word sense disambiguation.    In 
preliminary experiments over the 30 most common words 
from the Senseval-3 database, with the same 449 examples 
used in both training and testing,1 the baseline classifier – 
for the most frequent word sense – achieves 71.9% correct.  
A learned naïve Bayes classifier that includes for each word 
to be disambiguated features for 50 commonly co-occurring 
words, and which receives evidence about those that do co-
occur in the example sentences, yields 76.8% correct.  An 
extended classifier with an added feature for the correct part 
of speech achieves 78.0%.  Over 746 examples for 6 words 
from the larger Semcor database, the baseline is 35% 
correct, a co-occurrence classifier yields 65.5% correct, and 
an extended classifier yields 70.4% correct. 

Less impressively, a learned naïve Bayes classifier for 
part of speech (POS) tagging, where features correspond to 
the word to be tagged and the words just before and after it, 
was no better than the baseline accuracy – 90.3% – of 
predicting the most common tag.  One simple alternative 
that did show improvement with respect to the baseline 
eliminated the prior on the tag and reversed the direction of 
the conditional distributions to be learned, yielding a direct 
tri-feature approach, and 92.8% correct over the test set. 

A bigger issue with the naïve Bayes approach is that, as 
with one-layer neural networks, it fails on exclusive or 
(XOR).  Gradient descent does support learning over hidden 
layers, since it applies to arbitrary Bayesian networks.  But, 
rather than explicitly introducing a hidden layer into 
supervised learning, we’ll shift instead to unsupervised 
learning, which implicitly introduces a hidden layer in the 
process of removing the overall focus on concept learning. 

Unsupervised learning uncovers regularities in data, often 
via similarity-based clustering of examples.  It can yield 
concept learning if the concept is added as a feature, even 
when it is not distinguished from the other features.  In 
Sigma, this does not require a different learning algorithm, 
or even learning a non-naïve-Bayes structure (except that 
there is no prior is eliminated).  What is different is that the 
category becomes a feature, while a dummy variable, whose 

                                                             
1 Because the results here focus on the breadth of learning 

behaviors rather than on learning accuracy per se, reusing training 
data during testing is not the problem it would be otherwise. 

domain size determines how many clusters are used, is 
added in the category position (Figure 10).  Neither a prior 
nor evidence is provided for this dummy variable.  The 
conditional probabilities are initialized with random rather 
than uniform distributions, so that the symmetry otherwise 
inherent across clusters can be broken during learning.  

This form of unsupervised learning falls within the same 
class of mechanisms as expectation maximization, but is not 
quite identical to it.  Evidence for feature values engenders 
distributions over the available clusters, which bounce back 
to yield expectations for the feature values.  Learning occurs 
for the conditional probabilities of features given clusters, in 
service of aligning expected and actual feature values.  
Although such unsupervised learning requires more training 
on problems for which supervised learning works, it has the 
benefit of being able to learn more complex data sets, such 
as ones that embody XOR.  In neural network terms, the 
dummy variable provides a hidden layer between the 
features and the category, with one hidden unit per cluster, 
making it possible to learn these more difficult functions.  
For XOR, after 30 passes over the four training examples, a 
correct unsupervised classifier is learned (Figure 11).  

Figure 10: Semantic memory graph for unsupervised 
learning. 

Figure 11: Learned conditional probabilities of x, y and z 
being true given the cluster C (in 0-4) for z = XOR(x, y). 



 

Reinforcement Learning 
Reinforcement learning in Sigma is covered in more depth 
in (Rosenbloom, 2012), but is worth revisiting briefly here 
because of how it exhibits more complex learning behaviors 
from gradient-descent over ten conditionals with four 
learned functions (including action models).  The reward is 
learned from external evidence via distribution tracking. 
Action model learning is based on the conditional in figure 
1.  The projected (discounted) future utility and the Q values 
are also learned in a direct manner, but based on internally 
computed evidence.  The conditional that is key to this 
consults the current location and operator, plus distributions 
over the reward and projected utilities for the (predicted) 
next state – all of which distributions are learned – in 
providing evidence for the Q values and the projected utility 
in the current state (Figure 12).  Affine transforms are used 
to add the projected utility to the actual reward (via 
translation) and to discount the result by .95 (via scaling).  

Conclusion and Future Work 
What makes this approach to learning particularly attractive 
architecturally is that it is: (1) local, depending only on the 
message back into a factor node to determine how to update 
the node’s function; (2) incremental – i.e., online – as is 
appropriate in a cognitive architecture/system; and (3) 
applicable to any function in the graph with a child variable. 
A simple learning mechanism can thus be integrated deeply, 
simply and pervasively into Sigma to yield a range of useful 
learning behaviors; including forms of procedural 
(reinforcement and action) and declarative (supervised and 
unsupervised concept) learning, and map learning (in the 
context of SLAM).  The approach works for both symbolic 
and numeric data, and for both discrete and continuous 
distributions; and it works across a range of application 
domains, from standard toy problems, to larger scale NL 
classifications, to (simulated) mobile robot problems. 

Still, much remains to be done.  First, a more 
sophisticated approach to learning continuous functions is 
required.  Such functions are currently learned in the same 
manner as discrete functions, without using summary 
parameters that would enable generalizing across domain 
elements.  Second, learning here involves two parameters – 
learning rate and smoothing threshold – but an architecture 
either must not have parameters, or it needs values that are 
usable everywhere or that can automatically be tuned to new 
problems.  Third, the algorithm needs to handle undirected 

factor functions; i.e., those without child variables.  Fourth, 
true structure learning is required.  Fifth, and finally, follow 
up is needed on how much further this approach can extend. 
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CONDITIONAL Backup 
 Conditions: Location(state:s x:x) 
             Selected(state:s operator:o) 
             Location*Next(state:s x:nx) 
             Reward(x:nx value:r) 
             Projected(x:nx value:p) 
 Actions: Q(x:x operator:o value:.95*(p+r)) 
          Projected(x:x value:.95*(p+r)) 

Fig. 12: Conditional for backing up rewards/utilities. 


