

MRE: A Study on Evolutionary Language
Understanding

Donghui Feng, Eduard Hovy

Information Sciences Institute, University of Southern California, 4676 Admiralty Way,
Marina Del Rey, CA 90292, U. S. A
{donghui, hovy}@isi.edu

Abstract. The lack of well-annotated data is always one of the biggest
problems for most training-based dialogue systems. Without enough training
data, it’s almost impossible for a trainable system to work. In this paper, we
explore the evolutionary language understanding approach to build a natural
language understanding machine in a virtual human training project. We build
the initial training data with a finite state machine. The language understanding
system is trained based on the automated data first and is improved as more and
more real data come in, which is proved by the experimental results.

1 Introduction

The lack of well-annotated data is always one of the biggest problems for most
training-based dialogue systems. Typically a successful trainable system requires lots
of annotated data for training. Without enough training data, it’s almost impossible
for a trainable system to work. However, most dialogue systems suffer from the lack
of enough well-annotated data. In the dialogue system, one of most challenging
problems is: how can we build a language understanding machine to handle
unexpected new sentences as input while starting with very little or even no real data?

In this paper, we explore the evolutionary approach to build a spoken language
understanding system in a virtual human training project to overcome the problem of
data sparseness. The approach presented in this paper has been realized in the
research project, Mission Rehearsal Exercise (MRE). The goal of MRE is to provide
an immersive learning environment in which trainees experience the sights, sounds
and circumstances they will encounter in real-world scenarios [1]. Figure 1 gives the
pipeline of the whole procedure. The language processing part plays the role to
support the communication between trainees and computers. Audio signals are first
transformed into natural language sentences by speech recognition. Sentence
interpretation is used to “understand” the plain text string recognized by ASR
(Automatic Speech Recognition) and extract semantic information for subsequent
processing such as dialogue management and action planning. This paper focuses on
the construction of the language understanding part.

For the evolutionary approach, we start with only a story script and based on this
we build the initial training data with a finite state machine. The language
understanding system is trained with the automated data first and is improved as more
and more data come in, which is proved by the experimental results.

Figure 1. MRE pipeline

The rest of this paper is organized as follows: In Section 2, we discuss the related
work. Section 3 describes the semantic representation for natural language
understanding. The details of the language understanding model are given in Section
4. Section 5 explores the evolution experimental results of our system. And the paper
is concluded with Section 6.

2 Related Work

For natural language understanding, traditional systems first perform syntactic parsing
before semantic analysis. Charniak [2] and Collins [3] applied statistical parsers for
syntactic parsing to get the dependence tree of the sentence. Miller et al. [4] gave a
hidden understanding model for finite state concept network and meaning trees. The
system reported by Schwartz et al. [5] divided the procedure of language
understanding into three stages, namely, semantic parsing, semantic classification and
discourse modeling. Some understanding tasks were transformed into the problems of
machine translation [6] [7]. Our approach is to use the power of the statistical
approach to obtain automatic adaptability.

On the other hand, some of the state-of-the-art dialogue systems reduce this to the
problem of type classification like HMIHY from AT&T [8]. In these systems the final
category is represented by a single value. However, in our domain, the result is a
cascading semantic frame, which makes the problem of understanding much more
complex and difficult.

For the problem of data collection, most dialogue systems suffer from the lack of
enough well-annotated training data, especially for frame semantics of language
understanding [9]. Some previous applications relied on making annotations of the
training data manually, which is both time and effort-consuming. Gildea and Jurafsky
[10] reported their work in the project, FrameNet, to build a statistically based
semantic classifier. However, their database has not yet approach the magnitude of
resource available for other NLP tasks. Fleischman et al. [11] in their work used
maximum entropy models to overcome the problem of data sparsity. Some other

works have also tried to overcome this with feature-based understanding [7].
Sampson [12] explained the idea of evolutionary language understanding in his book.

In our work, for the same reason and ease of the annotation of training set, we
explore the evolutionary language understanding approach. First, we propose to use
finite state machine to generate and annotate the training set efficiently. A finite state
machine is built to generate and annotate all the anticipated cases as training materials
and a traversing algorithm can produce all the training cases. Later the language
understanding model is gradually improved as more and more real data come in. We
describe the shallow semantic representation first in next section.

3 Semantic Representation

The task of spoken language understanding in our project is to interpret a recognized
English sentence into a shallow semantic frame. In our domain our topmost semantic
information frame is defined as follows:

Figure 2. Topmost information frame

Here <semantic-object> may be one of three types: question, action, or
proposition. Question refers to requests for information; action refers to orders and
suggestions except requests, and all the rest fall into the category of proposition. The
definitions of the second-level and third-level semantic frame are given in Figure 3.

<question> := (^type question
 ^q-slot <prop-slot-name>
 ^prop <proposition>)

<action> := (^type action-type
 ^name <event-name>
 ^<prop-slot-name> <val>)

<proposition> := <state> | <event>
 | <relation>

<state> := (^type state
 ^object-id ID
 ^polarity <pol>

…)
<event> := (^type event-type

 ^name <event-name>
 ^<prop-slot-name> <val>

…)
<relation> := (^type relation

 ^relation <rel-name>
 ^arg1 <semantic-object>

 ^arg2 <semantic-object>)

Figure 3. Second-level and third-level information frame

In Figure 4, we give an example of information frame for the English sentence
“who is not critically hurt?”. However, we can not directly learn nested knowledge
from input sentences and cascading frames. Therefore we use prefix strings to
represent the cascading level of each slot-value pair. The case frame in Figure 4 can
be re-represented as shown. Each of them is called a meaning item and is identified
by the statistical classifier separately. Reversely the set of flattened meaning items can
be composed and restored to a normal cascading frame.

<i-form> := (^mood <mood>
^sem <semantic-object>)

Input Sentence:
who is not critically hurt?

Output Information Frame:
(<i> ^mood interrogative

 ^sem <t0>)
(<t0> ^type question

 ^q-slot agent
 ^prop <t1>)

(<t1> ^type event-type
 ^time present
 ^polarity negative
 ^degree critical-injuries
 ^attribute health-status

 ^value health-bad)

<i> ^mood interrogative
<i> ^sem <t0>
<i> <t0> ^type question
<i> <t0> ^q-slot agent
<i> <t0> ^prop <t1>
<i> <t0> <t1> ^type event-type
<i> <t0> <t1> ^time present
<i> <t0> <t1> ^polarity negative
<i> <t0> <t1> ^degree critical-injuries
<i> <t0> <t1> ^attribute health-status
<i> <t0> <t1> ^value health-bad

Figure 4. Example of interpretation and re-representation to handle nesting

4 Language Understanding Model

We adopt Naïve Bayes classification as our learning mechanism. To prepare the
initial training data, we use finite state machine to obtain result case frames in the
domain and transform to flattened meaning item set.

4.1 Naïve Bayes Classifier

Given a string of English words, say, an English sentence, our goal is to extract all of
their most possible meanings as represented in the frames. We express this probability
as P(M|W). Here, W refers to the words and M refers to the meanings. With Bayes’
law, we have Formula 4.1.

P(W)
 P(M) * M)|P(Wmaxarg W)|P(Mmaxarg

MM
(4.1)

In this domain, P(W) can be viewed as a constant. Thus (4.1) changes to (4.2) as
follows:

P(M)*M)|P(WmaxargW)|P(Mmaxarg
MM

(4.2)

Formula 4.2 is composed of two meaningful parts, with P(M) to determine what
meanings to express and P(W|M) to determine what words to use in order to express
the specific meaning [4]. We name P(M) the meaning model and P(W|M) the word
model and discuss them in the following sections.

4.2 Meaning Model

The meaning model, P(M), refers to the probability that each meaning occurs in the
corpus. Here, meanings are represented by meaning items including both slot-value
pair and hierarchy information.

Let C(mi) be the number of times meaning item mi appears in the training set, P(M)
is computed as follows:

n

j 1
j

i
i

)C(m

)C(m)P(m

(4.3)

All the values can be acquired by counting the meaning items of all the case frames
in the training set. Table 1 shows some example entries of the trained meaning model.

Table 1. Example entries of meaning model

mi P(mi)
<i> ^mood interrogative 0.06130325
<i> <t0> ^type question 0.06130325
<i> <t0> <t1> ^type state 0.04613755
<i> <t0> ^q-slot polarity 0.04521792

4.3 Word Model

In Naïve Bayes classification, P(W|M) stands for the probability of words occurring
with specific meanings. The specific meanings refer to meaning items including both
slot-value pair and level information.

We introduce language model into our system. Let C(wj|mi) be the number of times
word wj appears under meaning item mi; C(wj-1wj|mi) the number of times word
sequence wj-1wj appears under meaning item mi; C(wj-2wj-1wj|mi) the number of times
word sequence wj-2wj-1wj appears under meaning item mi, we can obtain the
probability as follows:

)|(

)|(
)|(

ik

ij
ij

mwC

mwC
mwP

(4.4)

)|(

)|(
),|(

1

1
1

ij

ijj
jij

mwC

mwwC
wmwP

(4.5)

)|(

)|(
),|(

12

12
12

ijj

ijjj
jjij

mwwC

mwwwC
wwmwP

(4.6)

Formulas 4.4, 4.5, and 4.6 give the probabilities of the word under given meaning
items for unigram, bigram and trigram respectively. All the parameters in the
formulas can be acquired by counting the mappings between words and meaning
items in the training set. Although they are three different language models, they can
be stored in a single table. Figure 5 gives some example entries of the trained word
model.

Figure 5. Example entries of word model

As Figure 5 shows, given the meaning item “<i> ^mood interrogative”, the word
“who” has a probability of 0.00013071, the word “is” following “who” has a
probability of 0.82727273, and the word “not” following “who is” has a probability of
0.10989011.

4.4 Understanding Component

The language understanding component is a key part of our system. Its main task is to
interpret an input English sentence with the model acquired in the training procedure
and produce a cascading information frame as the result.

With the word model and the meaning model, we can interpret each sentence using
the Naïve Bayes classifier. Given an English sentence, all the words are divided into
separate units. With the specific language model P(W|M) (say, the trigram model) we
obtain a set of candidate meaning items for each word patterns in the sentence, each
associated with a probability. For each candidate meaning item, we take the product
of this probability and P(M) as the meaning item’s final probability. Thus each word
pattern is classified with a set of candidate meaning items.

We normalize each classified set of meaning items and use a weighted sum voting
scheme to compose all the classification results. In the learned tables, each English
word pattern is associated with a set of probable meaning items. A candidate meaning
item may receive probabilities from several word patterns in the input. The
accumulation of all the probabilities represents the total score for each meaning item.
In the final result, the meaning items are ranked based on their total probability
scores, and are transformed into a cascading information frame as the output.

The procedure inevitably produces some noisy results. Some meaning items may
contradict with others. We adopt two pruning strategies to eliminate noise. The first is
to prune unsatisfactory meaning items based on a gap in the probability values. Where
there is a large enough jump between the probabilities of two adjacent meaning items,
the lower and everything below are removed. The degree of jump can be defined with
a threshold value. The second concerns ambiguity. If a slot has more than one value,
the values are grouped together and only the top value is selected. Figure 6 gives an
example of the understanding procedure.

<i> ^mood interrogative
 who 0.00013071
 is 0.82727273
 not 0.10989011
 badly 0.01098901
 is 0.00654375
 not 0.00181587
 critically 0.2
 not 0.00001188
 critically 0.2
 hurt 0.5
 injured 0.5

With these strategies, the system has the ability to learn and can deal with
unexpected sentence patterns. It can extract as much information as possible even if
only parts of the input sentences are recognized, and will never die even if new words
appear in the sentences. However, the result information frame may also carry some
noisy results for future processing. The evolutionary performances are investigated in
Section 5.

Figure 6. Example of understanding procedure

5 Evolutionary Experimental Results

5.1 Initial Training Set with FSM

The initial training set requires all the sentences to be provided with correct mappings
to their information frames. Here we propose to ease the construction of a well-
annotated training set with finite state machine.

The main idea is to design a finite state network and place all related information
on the arcs as the input and the output. Every sentence string starts from the finite
state network’s “START” state, and any successful matching of pre-specified patterns
or words will move the system forward to another state. The string to be parsed must
match exactly with the input on the arcs and go through from one state to another.
Any matching procedure arriving at the “END” state means a successful interpretation
of the whole sentence. The composition of all the output along the parsing path gives
the cascading information frame for the input sentence. Otherwise, the interpreter will
die and return failure.

A complete finite state interpreter requires all the target sentence patterns be
available during designing. In our domain the initial training set includes 65 sentence

patterns and 23 word classes. Figure 7 gives some examples of target sentence
patterns and word classes. The implemented finite state network consists of 128 states
totally. To make this sensible in more cases, the point is to put variables on the arcs
for both input and output.

Using the finite state machine and lexicon exhaustively, we obtain all the possible
sentences as the training corpus by the Cartesian product. The total number of
sentences is 20,677. After manually removing unpragmatical or odd sentences, we
have 16469 sentences remained. This approach is much more efficient than simply
building the mapping of a sentence and information frame one by one manually.

Figure 7. Target sentence patterns

5.2 Data Collection

With the system trained on the initial training set, we are in a position ready to
interpret any new sentence coming in. In our evolutionary experimental test, we have
trainees test our system and collect the useful sentences in the conversation. In each
test, several trainees use our system in the virtual training environment. Here, we use I
to represent the initial training set, Ni to represent the newly collected data. Every
time, the new knowledge collected from the test is added into the training set and the
system is re-trained with the new training data. In our study, totally we have 3 new
data sets coming in, and we annotate with N1, N2, and N3. Therefore the training sets
are I, I+N1, I+N1+N2, and I+N1+N2+N3 respectively. Table 2 gives the size of each
data set.

Table 2. Data size in terms of number of sentences

I N1 N2 N3
16469 210 135 122

Each time the conversations are recorded and annotated manually. Only those
meaningful sentences in this domain are kept. The sizes of the new data in terms of
the number of sentences are 210, 135, and 122 respectively. The system’s
evolutionary results are analyzed in Section 5.3.

5.3 Result Analysis

As discussed above, we get the training set bigger and bigger. We use the new
training data set to get an improved model and test on the new data. Taking the frames
we manually build as the real answers, we define precision, recall, and F-score to
measure the system’s performance. Since our case frames are nested and have
different levels, the corresponding metrics are described as follows:

$phrase1 = what is $agent doing;
$phrase2 = [and|how about] (you | me | [the] $vehicle | $agent);
…
$agent = he|she|$people-name|[the] ($person_civ | $person_mil | $squad);
$vehicle = ambulance | car | humvee | helicopter | medevac;
…

model learning from pairs value-slot of #
pairs value-slotcorrect of #ionsub_precis (5.1)

answer real from pairs value-slot of #
pairs value-slotcorrect of #sub_recall (5.2)

For the whole case frame we calculate the average precision and recall.

levelsof#

ionsub_precis
precision

level
level

(5.3)

levelsof#

sub_recall
recall

level
level

(5.4)

We adopt F-Score to incorporate the two metrics, which is defined by Formula 5.5.

recall precision
)recall *precision (*2Score-F (5.5)

Evolutionary Results

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

I I+N1 I+N1+N2 I+N1+N2+N3
Data Set

Performance

Precision Recall F-Score

Figure 8. System performance

Figure 8 gives the system’s performance curves as more data are introduced in.
The results are encouraging, though further refinement and filtering are needed. We
set the performances trained with the initial training set as 0. From Figure 8, we can
see the system’s performance improves as more data come in. Basically, we can
understand that later tests with N2 and N3 have better performances because the
previous set has already incorporated real data whose features and distributions are
more similar to later real test data. One of the reasons that the performance with I+N1
+N2 +N3.changes slightly with I+N1 +N2 is that the data set N3 may contain more data
with new features from the previous set, but this will benefit the future test results as
more and more similar situations occur. That’s the way why evolutionary approach

always learns more knowledge from its experience and can handle future situations
better. In this way, we can make the system more and more robust to handle unknown
sentences in the real test.

6 Conclusions

The lack of well-annotated data is always one of the biggest problems for most
training-based dialogue systems.

In this paper, we explore the evolutionary language processing approach to build a
natural language understanding system for dialogue systems in a virtual human
training project. The initial training data are built with a finite state machine. The
language understanding machine is trained based on the automated data first and is
improved as more and more data come in, which is proved by the experimental
results.

The quality and the configuration of the training set affect the ability to process
sentences. How to build a balanced training set with single finite state machine will
remain one of our important future problems. Ongoing research also includes
improving pruning approaches and finding new ways to integrate semantic knowledge
to our classifier.

References

1. Swartout, W., et al.: Toward the Holodeck: Integrating Graphics, Sound, Character and
Story. Proceedings of 5th International Conference on Autonomous Agents. (2001)

2. Eugene Charniak. Statistical Parsing with a Context-free Grammar and Word Statistics.
AAAI-97, (1997) pp. 598-603

3. Michael Collins. Three Generative, Lexicalised Models for Statistical Parsing. Proc. of the
35th ACL, (1997) pp. 16-23

4. S. Miller, R. Bobrow, R. Ingria, and R. Schwartz. Hidden Understanding Models of Natural
Language, Proceedings of ACL Meeting, (1994) pp. 25-32

5. Schwartz, R., Miller, S., Stallard, D., and Makhoul, J.: Language Understanding using
hidden understanding models. In ICSLP’96 (1996.), pp. 997-1000

6. Klaus Macherey, Franz Josef Och, Hermann Ney. Natural Language Understanding Using
Statistical Machine Translation, EUROSPEECH, (2001) pp. 2205-2208, Denmark

7. K. A. Papineni, et al. Feature-based language understanding, Proceedings of EuroSpeech'97,
Greece, vol 3, (1997) pp. 1435-1438

8. A.L. Gorin, G. Riccardi and J.H. Wright. How may I help you?, Speech Communication,
vol. 23, (1997) pp. 113-127

9. W. Minker, S.K. Bennacef, and J.L. Gauvain. A Stochastic Case Frame Approach for
Natural Language Understanding, Proc. ICSLP, (1996) pp. 1013—1016

10. D. Gildea and D. Jurafsky. Automatic Labeling of Semantic Roles, Computational
Linguistics, 28(3) (2002) 245-288 14

11. Michael Fleischman, Namhee Kwon, and Eduard Hovy. Maximum Entropy Models for
FrameNet Classification. EMNLP, Sapporo, Japan. (2003)

12. G. Sampson, 1996. Evolutionary Language Understanding, Cassell, NY/London (1996)
13. Peter F. Brown, et al. Class-Based n-gram Models of Natural Language, Computational

Linguistics, 18 (4), (1992) 467-479

