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Abstract. The lack of well-annotated data is always one of the biggest 
problems for most training-based dialogue systems. Without enough training 
data, it’s almost impossible for a trainable system to work. In this paper, we 
explore the evolutionary language understanding approach to build a natural 
language understanding machine in a virtual human training project. We build 
the initial training data with a finite state machine. The language understanding 
system is trained based on the automated data first and is improved as more and 
more real data come in, which is proved by the experimental results. 

1   Introduction 

The lack of well-annotated data is always one of the biggest problems for most 
training-based dialogue systems. Typically a successful trainable system requires lots 
of annotated data for training. Without enough training data, it’s almost impossible 
for a trainable system to work. However, most dialogue systems suffer from the lack 
of enough well-annotated data. In the dialogue system, one of most challenging 
problems is: how can we build a language understanding machine to handle 
unexpected new sentences as input while starting with very little or even no real data? 

In this paper, we explore the evolutionary approach to build a spoken language 
understanding system in a virtual human training project to overcome the problem of 
data sparseness. The approach presented in this paper has been realized in the 
research project, Mission Rehearsal Exercise (MRE). The goal of MRE is to provide 
an immersive learning environment in which trainees experience the sights, sounds 
and circumstances they will encounter in real-world scenarios [1]. Figure 1 gives the 
pipeline of the whole procedure. The language processing part plays the role to 
support the communication between trainees and computers. Audio signals are first 
transformed into natural language sentences by speech recognition. Sentence 
interpretation is used to “understand” the plain text string recognized by ASR 
(Automatic Speech Recognition) and extract semantic information for subsequent 
processing such as dialogue management and action planning. This paper focuses on 
the construction of the language understanding part.  

For the evolutionary approach, we start with only a story script and based on this 
we build the initial training data with a finite state machine. The language 
understanding system is trained with the automated data first and is improved as more 
and more data come in, which is proved by the experimental results.  



 
Figure 1. MRE pipeline 

The rest of this paper is organized as follows: In Section 2, we discuss the related 
work. Section 3 describes the semantic representation for natural language 
understanding. The details of the language understanding model are given in Section 
4. Section 5 explores the evolution experimental results of our system. And the paper 
is concluded with Section 6.  

2   Related Work 

For natural language understanding, traditional systems first perform syntactic parsing 
before semantic analysis. Charniak [2] and Collins [3] applied statistical parsers for 
syntactic parsing to get the dependence tree of the sentence. Miller et al. [4] gave a 
hidden understanding model for finite state concept network and meaning trees. The 
system reported by Schwartz et al. [5] divided the procedure of language 
understanding into three stages, namely, semantic parsing, semantic classification and 
discourse modeling. Some understanding tasks were transformed into the problems of 
machine translation [6] [7]. Our approach is to use the power of the statistical 
approach to obtain automatic adaptability. 

On the other hand, some of the state-of-the-art dialogue systems reduce this to the 
problem of type classification like HMIHY from AT&T [8]. In these systems the final 
category is represented by a single value. However, in our domain, the result is a 
cascading semantic frame, which makes the problem of understanding much more 
complex and difficult.  

For the problem of data collection, most dialogue systems suffer from the lack of 
enough well-annotated training data, especially for frame semantics of language 
understanding [9]. Some previous applications relied on making annotations of the 
training data manually, which is both time and effort-consuming. Gildea and Jurafsky 
[10] reported their work in the project, FrameNet, to build a statistically based 
semantic classifier. However, their database has not yet approach the magnitude of 
resource available for other NLP tasks. Fleischman et al. [11] in their work used 
maximum entropy models to overcome the problem of data sparsity. Some other 



works have also tried to overcome this with feature-based understanding [7].  
Sampson [12] explained the idea of evolutionary language understanding in his book.  

In our work, for the same reason and ease of the annotation of training set, we 
explore the evolutionary language understanding approach. First, we propose to use 
finite state machine to generate and annotate the training set efficiently. A finite state 
machine is built to generate and annotate all the anticipated cases as training materials 
and a traversing algorithm can produce all the training cases. Later the language 
understanding model is gradually improved as more and more real data come in.  We 
describe the shallow semantic representation first in next section.  

3   Semantic Representation 

The task of spoken language understanding in our project is to interpret a recognized 
English sentence into a shallow semantic frame. In our domain our topmost semantic 
information frame is defined as follows: 

 
 
 

Figure 2. Topmost information frame 

Here <semantic-object> may be one of three types: question, action, or 
proposition. Question refers to requests for information; action refers to orders and 
suggestions except requests, and all the rest fall into the category of proposition. The 
definitions of the second-level and third-level semantic frame are given in Figure 3. 

 

<question> := ( ^type question 
                     ^q-slot <prop-slot-name> 
                     ^prop <proposition>) 

<action>  := (  ^type action-type 
                   ^name <event-name> 
                    ^<prop-slot-name> <val>) 

<proposition> := <state> | <event> 
                             |  <relation> 
 

<state> :=  (  ^type state 
                ^object-id ID 
                ^polarity <pol> 

…) 
<event>  := (  ^type event-type 

                  ^name <event-name> 
                  ^<prop-slot-name> <val> 

…) 
<relation> := ( ^type relation 

                    ^relation <rel-name> 
                   ^arg1 <semantic-object> 

         ^arg2 <semantic-object>) 

Figure 3. Second-level and third-level information frame 

In Figure 4, we give an example of information frame for the English sentence 
“who is not critically hurt?”. However, we can not directly learn nested knowledge 
from input sentences and cascading frames. Therefore we use prefix strings to 
represent the cascading level of each slot-value pair. The case frame in Figure 4 can 
be re-represented as shown. Each of them is called a meaning item and is identified 
by the statistical classifier separately. Reversely the set of flattened meaning items can 
be composed and restored to a normal cascading frame.  

 

<i-form> := ( ^mood <mood>
^sem <semantic-object>)



Input Sentence:   
who is not critically hurt? 

Output Information Frame:  
(<i>   ^mood interrogative  

    ^sem <t0>)  
(<t0>   ^type question  

      ^q-slot agent  
      ^prop <t1>)  

(<t1>   ^type event-type  
      ^time present  
      ^polarity negative  
      ^degree critical-injuries  
      ^attribute health-status  

           ^value health-bad) 

<i> ^mood interrogative  
<i> ^sem <t0> 
<i> <t0> ^type question  
<i> <t0> ^q-slot agent  
<i> <t0> ^prop <t1> 
<i> <t0> <t1> ^type event-type  
<i> <t0> <t1> ^time present  
<i> <t0> <t1> ^polarity negative  
<i> <t0> <t1> ^degree critical-injuries  
<i> <t0> <t1> ^attribute health-status  
<i> <t0> <t1> ^value health-bad 

Figure 4. Example of interpretation and re-representation to handle nesting 

4   Language Understanding Model 

We adopt Naïve Bayes classification as our learning mechanism. To prepare the 
initial training data, we use finite state machine to obtain result case frames in the 
domain and transform to flattened meaning item set.  

4.1   Naïve Bayes Classifier 

Given a string of English words, say, an English sentence, our goal is to extract all of 
their most possible meanings as represented in the frames. We express this probability 
as P(M|W). Here, W refers to the words and M refers to the meanings. With Bayes’ 
law, we have Formula 4.1. 

P(W)
 P(M) * M)|P(Wmaxarg W)|P(Mmaxarg

MM  
(4.1) 

In this domain, P(W) can be viewed as a constant. Thus (4.1) changes to (4.2) as 
follows:  

P(M)*M)|P(WmaxargW)|P(Mmaxarg
MM  

(4.2) 

Formula 4.2 is composed of two meaningful parts, with P(M) to determine what 
meanings to express and P(W|M) to determine what words to use in order to express 
the specific meaning [4]. We name P(M) the meaning model and P(W|M) the word 
model and discuss them in the following sections.  

4.2   Meaning Model 

The meaning model, P(M), refers to the probability that each meaning occurs in the 
corpus. Here, meanings are represented by meaning items including both slot-value 
pair and hierarchy information. 

Let C(mi) be the number of times meaning item mi appears in the training set, P(M) 
is computed as follows:  
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(4.3) 

All the values can be acquired by counting the meaning items of all the case frames 
in the training set. Table 1 shows some example entries of the trained meaning model.  

Table 1. Example entries of meaning model 

mi P(mi) 
<i> ^mood interrogative 0.06130325 
<i> <t0> ^type question 0.06130325 
<i> <t0> <t1> ^type state 0.04613755 
<i> <t0> ^q-slot polarity 0.04521792 

4.3   Word Model 

In Naïve Bayes classification, P(W|M) stands for the probability of words occurring 
with specific meanings. The specific meanings refer to meaning items including both 
slot-value pair and level information. 

We introduce language model into our system. Let C(wj|mi) be the number of times 
word wj appears under meaning item mi; C(wj-1wj|mi) the number of times word 
sequence wj-1wj appears under meaning item mi; C(wj-2wj-1wj|mi) the number of times 
word sequence wj-2wj-1wj appears under meaning item mi, we can obtain the 
probability as follows:  
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(4.6) 

Formulas 4.4, 4.5, and 4.6 give the probabilities of the word under given meaning 
items for unigram, bigram and trigram respectively. All the parameters in the 
formulas can be acquired by counting the mappings between words and meaning 
items in the training set. Although they are three different language models, they can 
be stored in a single table. Figure 5 gives some example entries of the trained word 
model.  
 



 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Example entries of word model 

As Figure 5 shows, given the meaning item “<i> ^mood interrogative”, the word 
“who” has a probability of 0.00013071, the word “is” following “who” has a 
probability of 0.82727273, and the word “not” following “who is” has a probability of 
0.10989011.  

4.4   Understanding Component 

The language understanding component is a key part of our system. Its main task is to 
interpret an input English sentence with the model acquired in the training procedure 
and produce a cascading information frame as the result.  

With the word model and the meaning model, we can interpret each sentence using 
the Naïve Bayes classifier. Given an English sentence, all the words are divided into 
separate units. With the specific language model P(W|M) (say, the trigram model) we 
obtain a set of candidate meaning items for each word patterns in the sentence, each 
associated with a probability. For each candidate meaning item, we take the product 
of this probability and P(M) as the meaning item’s final probability. Thus each word 
pattern is classified with a set of candidate meaning items.  

We normalize each classified set of meaning items and use a weighted sum voting 
scheme to compose all the classification results. In the learned tables, each English 
word pattern is associated with a set of probable meaning items. A candidate meaning 
item may receive probabilities from several word patterns in the input. The 
accumulation of all the probabilities represents the total score for each meaning item. 
In the final result, the meaning items are ranked based on their total probability 
scores, and are transformed into a cascading information frame as the output.  

The procedure inevitably produces some noisy results. Some meaning items may 
contradict with others. We adopt two pruning strategies to eliminate noise. The first is 
to prune unsatisfactory meaning items based on a gap in the probability values. Where 
there is a large enough jump between the probabilities of two adjacent meaning items, 
the lower and everything below are removed. The degree of jump can be defined with 
a threshold value. The second concerns ambiguity. If a slot has more than one value, 
the values are grouped together and only the top value is selected. Figure 6 gives an 
example of the understanding procedure.  

<i> ^mood interrogative
        who 0.00013071 
                is 0.82727273 
                        not 0.10989011 
                        badly 0.01098901 
        is 0.00654375 
                not 0.00181587 
                        critically 0.2 
        not 0.00001188 
                critically 0.2 
                        hurt 0.5 
                        injured 0.5 



With these strategies, the system has the ability to learn and can deal with 
unexpected sentence patterns. It can extract as much information as possible even if 
only parts of the input sentences are recognized, and will never die even if new words 
appear in the sentences. However, the result information frame may also carry some 
noisy results for future processing. The evolutionary performances are investigated in 
Section 5. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Example of understanding procedure 

5   Evolutionary Experimental Results 

5.1   Initial Training Set with FSM 

The initial training set requires all the sentences to be provided with correct mappings 
to their information frames. Here we propose to ease the construction of a well-
annotated training set with finite state machine. 

The main idea is to design a finite state network and place all related information 
on the arcs as the input and the output. Every sentence string starts from the finite 
state network’s “START” state, and any successful matching of pre-specified patterns 
or words will move the system forward to another state. The string to be parsed must 
match exactly with the input on the arcs and go through from one state to another. 
Any matching procedure arriving at the “END” state means a successful interpretation 
of the whole sentence. The composition of all the output along the parsing path gives 
the cascading information frame for the input sentence. Otherwise, the interpreter will 
die and return failure.  

A complete finite state interpreter requires all the target sentence patterns be 
available during designing. In our domain the initial training set includes 65 sentence 



patterns and 23 word classes. Figure 7 gives some examples of target sentence 
patterns and word classes. The implemented finite state network consists of 128 states 
totally. To make this sensible in more cases, the point is to put variables on the arcs 
for both input and output.  

Using the finite state machine and lexicon exhaustively, we obtain all the possible 
sentences as the training corpus by the Cartesian product. The total number of 
sentences is 20,677. After manually removing unpragmatical or odd sentences, we 
have 16469 sentences remained. This approach is much more efficient than simply 
building the mapping of a sentence and information frame one by one manually.  

 
 
 
 
 
 
 

Figure 7. Target sentence patterns 

5.2   Data Collection 

With the system trained on the initial training set, we are in a position ready to 
interpret any new sentence coming in. In our evolutionary experimental test, we have 
trainees test our system and collect the useful sentences in the conversation. In each 
test, several trainees use our system in the virtual training environment. Here, we use I 
to represent the initial training set, Ni to represent the newly collected data.  Every 
time, the new knowledge collected from the test is added into the training set and the 
system is re-trained with the new training data. In our study, totally we have 3 new 
data sets coming in, and we annotate with N1, N2, and N3. Therefore the training sets 
are I, I+N1, I+N1+N2, and I+N1+N2+N3 respectively. Table 2 gives the size of each 
data set. 

Table 2. Data size in terms of number of sentences 

I N1 N2 N3 
16469 210 135 122 

Each time the conversations are recorded and annotated manually. Only those 
meaningful sentences in this domain are kept. The sizes of the new data in terms of 
the number of sentences are 210, 135, and 122 respectively. The system’s 
evolutionary results are analyzed in Section 5.3.  

5.3   Result Analysis 

As discussed above, we get the training set bigger and bigger. We use the new 
training data set to get an improved model and test on the new data. Taking the frames 
we manually build as the real answers, we define precision, recall, and F-score to 
measure the system’s performance. Since our case frames are nested and have 
different levels, the corresponding metrics are described as follows: 

$phrase1 = what is $agent doing;
$phrase2 = [and|how about] (you | me | [the]   $vehicle | $agent); 
… 
$agent = he|she|$people-name|[the] ($person_civ | $person_mil | $squad); 
$vehicle = ambulance | car | humvee | helicopter | medevac; 
… 



model learning from pairs value-slot of #
pairs value-slotcorrect  of #ionsub_precis  (5.1) 

answer real from pairs value-slot of #
pairs value-slotcorrect  of #sub_recall  (5.2) 

For the whole case frame we calculate the average precision and recall.  

levelsof#

ionsub_precis
precision

level
level  

(5.3) 

levelsof#

sub_recall
recall

level
level

 

(5.4) 

We adopt F-Score to incorporate the two metrics, which is defined by Formula 5.5. 

recall precision 
)recall *precision (*2Score-F  (5.5) 
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Figure 8. System performance 

Figure 8 gives the system’s performance curves as more data are introduced in. 
The results are encouraging, though further refinement and filtering are needed. We 
set the performances trained with the initial training set as 0. From Figure 8, we can 
see the system’s performance improves as more data come in. Basically, we can 
understand that later tests with N2 and N3 have better performances because the 
previous set has already incorporated real data whose features and distributions are 
more similar to later real test data. One of the reasons that the performance with I+N1 
+N2 +N3.changes slightly with I+N1 +N2 is that the data set N3 may contain more data 
with new features from the previous set, but this will benefit the future test results as 
more and more similar situations occur. That’s the way why evolutionary approach 



always learns more knowledge from its experience and can handle future situations 
better. In this way, we can make the system more and more robust to handle unknown 
sentences in the real test.  

6   Conclusions 

The lack of well-annotated data is always one of the biggest problems for most 
training-based dialogue systems. 

In this paper, we explore the evolutionary language processing approach to build a 
natural language understanding system for dialogue systems in a virtual human 
training project. The initial training data are built with a finite state machine. The 
language understanding machine is trained based on the automated data first and is 
improved as more and more data come in, which is proved by the experimental 
results.  

The quality and the configuration of the training set affect the ability to process 
sentences. How to build a balanced training set with single finite state machine will 
remain one of our important future problems. Ongoing research also includes 
improving pruning approaches and finding new ways to integrate semantic knowledge 
to our classifier. 
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