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Abstract. Can mental imagery be incorporated uniformly into a cognitive 
architecture by leveraging the mixed (relational and probabilistic) hybrid (discrete 
and continuous) processing supported by factor graphs?  This article takes an 
initial step towards answering this question via an implementation in a graphical 
cognitive architecture of a version of the Eight Puzzle based on a hybrid function 
representation and a factor node optimized for object translation. 
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Introduction 

A cognitive architecture is a hypothesis about the fixed structure underlying intelligent 
behavior, whether in natural or artificial systems [1].  When combined with knowledge 
and skills, such an architecture should be capable of yielding effective performance 
across a diversity of domains.  By definition, all cognitive architectures include 
mechanisms in support of central thought processes, minimally consisting of models of 
short-term and long-term memory along with an ability to make decisions.  But it may 
also be elaborated to involve multiple forms of memory, complex decision making – 
based on problem solving or planning – learning, and other hypothesized capabilities. 

The diversity of intelligent behavior supported in such architectures may be due to 
either their comprising a relatively large number of specialized mechanisms [2,3,4] or 
their supporting flexible interaction among a relatively small number of general 
mechanisms [5,6].  Both of these strategies have been followed in building integrated 
models of central cognitive processes, although the choice generally embodies an 
implicit tradeoff between ease of achieving broad coverage and theoretical elegance.  
When it comes to extending architectures beyond central cognition, with the addition of 
peripheral perceptual and motor capabilities, the former strategy has been the primary 
option, with distinct perceptual and motor modules being added to whatever 
mechanisms exist for central cognition.  Even the Epic cognitive architecture, which 
has gone furthest in supporting end-to-end modeling of human performance – from 
perception through cognition and on to action – uses distinct perceptual and motor 
modules [7].   
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A variant of the latter strategy can be pursued via a dual level approach; 
implementing a small set of general mechanisms at a level below the architecture that 
can interact to yield a diversity of architectural mechanisms – spanning symbolic 
cognition and continuous perceptuomotor capabilities – at the next level up [8]. Two 
leading candidates for such a lower level are neural networks – as, for example, in [9] – 
and graphical models [10], with the work here based on the latter.  Graphical models 
share neural nets’ focus on local processing in a network of limited computational 
units, and some kinds of neural networks map directly onto graphical models, but the 
primary focus is computational rather than biological.  The work here should thus be 
considered as loosely, or abstractly, biologically inspired, but as not so in the details. 

As part of an ongoing exploration into combining broad coverage with theoretical 
elegance in a new form of cognitive architecture, the work here is based on a particular 
variant of graphical models – factor graphs [11] – that are capable of supporting mixed 
(relational + probabilistic) and hybrid (discrete + continuous) processing.  Within 
central cognition, the mixed aspect of this implementation level has yielded a uniform 
memory architecture able to replicate capabilities normally part of distinct procedural 
rule-based memories and declarative semantic and episodic memories, plus a constraint 
memory that is not typically found in cognitive architectures [12].  Exploiting this 
mixed aspect, plus many of the mechanisms that were already implemented in support 
of the memory architecture, has also enabled the addition of basic problem solving 
capabilities [13]. 

The focus in this article is on extending the uniformity at the heart of this graphical 
approach even further, in the direction of the peripheral processing underlying 
perception and motor control, by including mental imagery.  Those existing cognitive 
architectures that include mental imagery, such as Soar (version 9) [3], do so in a 
modular fashion, with memories and processes distinct from those employed in the 
more symbolic parts of cognition [14].  Here we’ll leverage principally the hybrid 
aspect of the graphical approach, along with a specially optimized class of factor nodes, 
to yield the beginnings of a mental imagery capability that breaks down the barrier 
between the center and the periphery, yielding a more uniform and less modular 
approach to complete architectures that it is hoped will be extendable to the entirety of 
mental imagery, and even beyond, to perception – where graphical models such as 
hidden Markov models and Markov/conditional random fields already provide a wide 
range of state of the art models – and motor control. 

The results to date focus on a version of the classic Eight Puzzle, but with the 
board represented internally as a multidimensional hybrid data structure.  The key 
mental imagery operation required for this puzzle is translation, where tile locations in 
the plane are shifted as the tiles are slid from place to place.  Section 1 reviews the 
graphical cognitive architecture, as composed of memory and problem solving 
capabilities.  Section 2 then describes how the requisite representation and reasoning 
are implemented for the imagery aspects of the Eight Puzzle, while introducing a class 
of factor nodes specially optimized for object translation.  Section 3 delves further into 
this approach to object translation, both to understand it better and to explore how far it 
might extend. Section 4 wraps up with a summary and future directions.  The core 
contributions of this work are: (1) the demonstration of the feasibility of representing 
and reasoning about continuous mental imagery uniformly in a graphical cognitive 
architecture; and (2) the identification and optimization of a special class of factor 
nodes for imagery operations, which happen also to fill critical roles in support of other 
architectural capabilities such as reflection and episodic memory. 



1.  A Graphical Cognitive Architecture 

The graphical cognitive architecture is based on factor graphs, which are similar to the 
more familiar construct of Bayesian networks except that they: (1) concern the 
decomposition of arbitrary multivariate functions into products of simpler functions, 
rather than just the decomposition of joint probability distributions into products of 
prior and conditional distributions; (2) utilize bidirectional links; and (3) include 
explicit factor nodes, in addition to variables nodes, representing the subfunctions into 
which the original function factors.  In yielding bidirectional networks that can 
represent more than just probability distributions, factor graphs are actually more like 
Markov networks (aka Markov random fields) than like Bayesian networks, but they 
are still more general than the Markov alternative [15]. 

Inference in factor graphs typically occurs by some form of sampling or message 
passing.  The graphical architecture is based on message passing, via a variant of the 
summary product algorithm that passes messages between variable and factor nodes 
concerning the possible values of the variables [11].  Roughly, incoming messages are 
multiplied together at all nodes, in a pointwise manner, with factor nodes also including 
their functions in the product and then summarizing out all variables not to be included 
in an output message to a variable node.   When sum is used for summarization, the 
graph computes marginals on its individual variables.  When max is used instead, the 
graph computes the maximum a posteriori estimation over all of the variables. 

One of the prime determinants of the generality of a particular implementation of 
factor graphs is the representation used for factor functions and messages.  The 
simplest implementations use tables with: one dimension per variable involved; a 
bounded number of discrete values along each dimension; and a functional value for 
each distinct combination of domain values across the variables.  Although simple to 
define and process, such representations are limited to discrete functions; and even 
there their verboseness can yield major efficiency issues.  An implementation focused 
on probability densities may instead be based on individual Gaussian functions – each 
specified by just two parameters – or more generally on mixtures of Gaussians.  Such 
representations can be concise and effective in representing levels of uncertainty, but 
can become awkward in representing other forms knowledge. 

The graphical cognitive architecture is based on multidimensional continuous 
functions that are specified as piecewise linear functions over rectilinear regions [16].  
Such a representation can approximate arbitrary continuous functions as accurately as 
desired, while also supporting discrete and even symbolic dimensions.  To implement a 
discrete dimension, the function’s domain is unitized to integral values, such as the 
half-open intervals [0,1) and [1,2) for the integers 1 and 2.  For a symbolic dimension, 
domain unitization is combined with a restriction on the function’s range to Boolean 
values (0/1 for true/false).  A 
symbol table is then also added 
– for use by researchers rather 
than the system – to map from 
unit domain intervals to 
symbolic labels.  Table 1 
illustrates this hybrid 
representational capability via 
a function over two 
dimensions, one of them 

Table 1. Piecewise linear representation of the conditional 
probability of an object's weight given its category: P(W | C).  
The category is symbolic while the weight is continuous.  
Only a fragment of the full table is shown. 
 
w\c Walker Table … 
[1,10) .01w .001w … 
[10,20) .2-.01w “ … 
[20,50) 0 .025-.00025w … 
[50,100) “ “ … 

 



continuous and the other symbolic.  
Boundaries among regions are introduced automatically, as needed, by splitting 

existing regions whenever a single linear function is no longer adequate for them.  For 
example, if a function is currently 0 across its entire multidimensional domain, and the 
value at a single point is then set to 1, boundaries are added along each dimension to 
separate that point from all of the adjacent space.  The value for the region containing 
that point is set to 1, while all of the regions now surrounding it are set to 0. 

To introduce a boundary at a point along a dimension, an n-1 dimensional slice is 
added at that point that cuts across all of the other dimensions.  In consequence, a 
function always comprises an array of rectilinear regions, as in Table 1.  When a slice 
becomes unnecessary, because the regions on both sides of it now express the same 
linear function, the slice is automatically removed to maintain a minimal representation 
for the overall function.  In the example above, if the value at the altered point once 
again becomes 0, the boundaries around it are removed. 

In a Bayesian network, knowledge about joint probability distributions is stored in 
the network structure plus prior and conditional distributions over variables. Evidence 
concerning particular variables then constrains the values of these variables in the 
network before an inference algorithm computes the implications of the network over 
all of the variables given this evidence.  A similar approach is taken in the graphical 
architecture.  The factor graph embodies knowledge in its links plus in the functions 
stored in the factor nodes.  A subset of the factor nodes comprise working memory, the 
internal cognitive state of the system.  Working memory serves the role of evidence in 
the graph, fixing the values of particular variables during a single application of the 
summary product algorithm.  Working memory may be changed between successive 
applications of the algorithm based on the results of graph processing. 

The remainder of the factor graph comprises long-term memory, with the 
execution of the summary product algorithm serving to retrieve long-term knowledge 
into working memory.  Fragments of knowledge in long-term memory are represented 
in the architecture via generalized conditionals that are compiled into subgraphs within 
the overall factor graph.  Each conditional may contain conditions, actions, condacts 
and functions.  Conditions and actions are like the corresponding structures in standard 
rule systems.  Conditions match to working memory to constrain which rules fire and 
to determine variable bindings.  Actions consult variable bindings from conditions to 
suggest changes in working memory.  Condacts provide a combination of these two 
functionalities, yielding the kind of bidirectional processing required for correct 
probabilistic reasoning and for partial match in declarative memories.  Functions are 
specified over subsets of conditional variables, and compile down to functions in 
particular factor nodes within the graph. 

When conditions and actions alone are used, the resulting conditionals behave like 
standard rules.  An accumulation of such conditionals can then serve as a procedural 
rule-based memory.  
Figure 1, for example, 
shows a conditional 
defining a heuristic rule 
that rejects any Eight 
Puzzle operator that 
moves a tile out of its 
goal location.  When 
instead just condacts 

CONDITIONAL GoalReject 
 Conditions: (Operator id:o state:s x:x y:y) 
             (Goal state:s x:x y:y tile:t) 
             (Board state:s x:x y:y tile:t) 
 Actions: (Selected - state:s operator:o) 

 
Figure 1. Eight Puzzle heuristic that rejects from consideration operators 
that move tiles out of place. 



and functions are used, the resulting conditionals behave more like fragments of 
traditional probabilistic Bayesian and Markov networks.  Accumulations of such 
conditionals have yielded functionality akin to what is observed in declarative semantic 
and episodic memories, as well as the kinds of functionality provided by constraint 
memories.  Conditionals based on other combinations of the four basic types of 
elements can yield hybrid and blended functionality.  Figure 2, for example, shows a 
conditional defined via one condition, two condacts and a function (the one specified in 
Table 1).  This provides a fragment of an extended semantic memory in terms of the 
conditional probability of an 
attribute given the concept.  

One key distinction over 
variables and their 
corresponding dimensions in 
the graphical architecture is 
between universal and 
unique variables [17].  
Universal variables are like 
the variables in rule systems that yield all possible consistent bindings to conditions.  
Unique variables instead yield distributions over their best bindings, as generally 
desired when accessing declarative memories.  For unique variables, only the single 
best value – as determined by aggregating over the factor functions in the relevant 
conditionals – is placed into working memory at the end of a cycle.  This selection 
process serves as the core of the problem solving approach in the graphical architecture, 
enabling operators to be selected and applied based on knowledge in long-term 
memory [13].  

2. Mental Imagery in the Eight Puzzle 

The Eight Puzzle is defined in terms of a 3×3 board on 
which eight numbered tiles are placed and one cell is 
left blank (Figure 3).  A legal move slides a tile that is 
horizontally or vertically adjacent to the blank cell into 
the blank cell.  A problem instance consists of 
reconfiguring an initial board configuration by sliding 
tiles to yield a specified goal board. 

In the graphical architecture, the Eight Puzzle 
board is represented in working memory as a four 
dimensional hybrid factor function.  Two of the 
dimensions represent the x and y extent of the board, 
with each defined to be continuous over the half-open 
interval [0,3).  The other two dimensions are also numeric, albeit discrete, with one 
representing the problem solving state that the board is part of and the other a tile 
number in [0,9), with the 0 tile denoting the empty cell.  These latter two dimensions 
could conceivably have been symbolic, but it was easier to use successive integers for 
the states and tiles rather than creating distinct symbolic names for them.  Also, as will 
be discussed shortly, the numeric representation for states plays a key role in enabling 
the mechanisms developed for mental imagery to be reused in the implementation of a 
reflection capability within the architecture. 

Figure 3. The Eight Puzzle Board. 

CONDITIONAL ConceptWeight 
 Conditions: (Object state:s object:o) 
 Condacts: (Concept object:o concept:c) 
           (Weight object:o weight:w) 

 Function: [see table 1] 

Figure 2. Conditional probability of the weight of an object 
associated with the state given its concept. 



The representation of a board in working memory has a functional value of 1 for 
each four-dimensional region – comprised of an <x,y> extent, a tile, and a state – 
whenever that tile is in that region for that state.  Otherwise, the region has a functional 
value of 0.  Figure 4 shows a part of the representation used for the board configuration 
in Figure 3, with the state dimension omitted for simplicity and the locations of only 
the first two tiles indicated.  The grey regions in the figure have a value of 1 while the 
clear regions have a value of 0, denoting that the center right cell – the square 
<[2,3),[1,2)> – is blank, while tile 1 occupies the top left cell: <[0,1),[0,1)>.  The Eight 
Puzzle board and tiles fit quite easily within the rectilinear regions supported by the 

architecture, but more complex objects 
should also be representable as 
combinations of such regions. 

Translating a tile from one cell to 
another requires shifting its location 
along either the x or y dimension.  
Because such operations on mental 
imagery involve two images of the 
board – from before and after the 
operation – plus a specification of the 
difference between them, it was earlier 
assumed that they would best be 
approached via the relatively complex 
kinds of graphical computations 
deployed in areas such as sequence 
prediction and stereovision [18].  
However, a much simpler approach that 
is afforded by the piecewise linear 
structure of the image representation has 
so far proven sufficient.  Given that 

altering the location of a slice automatically shifts the boundaries of all of the regions 
that abut the slice, the translation of a tile along a single dimension – which is all that is 
required in the Eight Puzzle – can be handled by offsetting the slices corresponding to 
its upper and lower boundaries along that 
dimension. 

For example, Tile 1, which is at 
<[0,1),[0,1)> in Figure 4, can be moved to 
the right by shifting both of the slices that 
bound it along the x dimension – 0è1 and 
1è2 – so that the tile is now located at 
<[1,2),[0,1)>.  This is actually implemented 
via an action in a conditional that shifts to 
the right the entire plane corresponding to 
the 1 tile – altering the positions of all of its 
slices, not just those abutting the tile – with 
the region of the plane newly within the 
board at its left receiving a value of 0 and 
the region of the plane that is shifted off the 
right edge of the board cropped (Figure 5).  
Because each tile is in its own plane of the 

Figure 4. Partial visualization of three dimensions  
– two continuous and one discrete – of the hybrid 
representation used for the Eight Puzzle board. 

Figure 5. Translating the 1 tile to the right. 



function, altering the location of one tile in this manner has no impact on the locations 
of the others.  

Figure 6 shows the conditional that performs this shift of a tile to the right.  It 
checks that an operator is selected (for the state) which is to move the tile located at 
<x,y>, and that the cell just to the right of <x,y> is blank.  The first two actions shift the 
tile’s plane to the right, by creating a new shifted plane and deleting the old one.  The 
final two actions shift the empty cell leftward.   

3. Offsets, Translation, and Beyond 

The use of numeric 
offsets in conditionals 
induces one of the 
more intriguing 
aspects of this 
graphical approach to 
mental imagery.  
Translation occurs by 
specifying an offset 
for an action variable, 
as in the first and last 
actions in Figure 6.  
This leads to the insertion of a new factor node (and an associated variable node) into 
the action’s subgraph that shifts the slices in incoming messages according to the offset 
(while properly handling new and cropped regions).  In conditions, this same offset 
mechanism enables testing structures at positions relative to those of other structures.  
So, for example, the fourth condition in Figure 6 tests that the location just to the right 
of a tile is empty.  It actually performs this test for all of the tiles, not just for the one 
that is to the left of the empty cell, but it only succeeds for this particular tile. 

Beyond these two uses of offsets in mental imagery, offsets also play important 
roles elsewhere in the graphical architecture; in particular, in reflection and episodic 
memory.  Reflection is being modeled on the Soar architecture [19].  When an impasse 
is detected in decision making – because a new operator cannot be selected – a new 
meta-level state is created in which reflective problem solving can be used to resolve 
this problem in the system’s own performance.  The discrete numeric representation 
used for the state then enables exploiting the offset mechanism to operate across states 
in the meta-level hierarchy.  The contents of adjacent states, or even of states separated 
by some larger but still fixed distance, can be related via offsets in conditions, and 
information can be moved across states – to, for example, return results from reflective 
problem solving – via offsets in actions.  Offsets in episodic memory enable, for 
example, accessing and comparing episodes that are adjacent, or at any fixed distance, 
along the temporal dimension.  It thus turns out that a primitive architectural 
mechanism originally implemented for the translation of mental imagery not only 
provides this functionality – through its use in actions that modify imagery in working 
memory – but it also facilitates testing multiple relatively located portions of an image, 
as well as supporting key aspects of both reflection and episodic memory. 

It is important to ask though whether such a mechanism fits properly into factor 
graphs, given that factor nodes normally compute subfunctions of the graph’s globally 

CONDITIONAL MoveRight 
 Conditions: (selected state:s operator:o) 
             (operator id:o state:s x:x y:y) 
             (board state:s x:x y:y tile:t) 
             (board state:s x:x+1 y:y tile:0) 
 Actions: (board state:s x:x+1 y:y tile:t) 
          (board – state:s x:x y:y tile:t) 
          (board state:s x:x y:y tile:0) 
          (board – state:s x:x+1 y:y tile:0) 

Figure 6. Conditional to slide a tile to the right. 



defined function over a subset of its full complement of variables; and they do so by 
computing the pointwise product of the messages arriving from these variables with its 
internal function, and then summarizing out all variables that are irrelevant to the 
outgoing message.  It is also worth considering how far this mechanism might be 
extended both to additional aspects of mental imagery and to other architectural 
capabilities.  These two questions are the subject of the remainder of this section. 

Although shifting the locations of slices in piecewise memories is not a standard 
factor node operation, it is possible to encode translation in the normal fashion, 
validating that it does fit naturally into factor graphs.  However, this is only possible in 
a manner that is expensive computationally, particularly for continuous dimensions.  
Consider first a simple discrete example, with a single dimension and a region of 
interest along the dimension that is restricted to [0,3).  Suppose further that the 
functional values for the three regions along the dimension are <0, 1, 0> and that we 
want to offset this to the right, to yield the new vector of values <0, 0, 1> across these 
same three regions. If the vector <0, 1, 0> for variable x is sent to a factor node defined 
via the function in Figure 7, the resulting vector for variable y does become <0, 0, 1>, 
implementing the desired rightward shift. 

The same approach works 
for any fixed offset.  However, 
the approach engenders a 
function size that is 
proportional to the square of 
the length of the discrete span 
of interest (n2); and 
regionalization can’t compress 
this function because the 
diagonal layout of the 1s forces 
a fragmentation into unit regions.  Even worse, offsetting a continuous dimension in 
this fashion would require a vast number of ε-sized regions along both x and y, with a 
resulting piecewise function of unwieldy extent: (n/ε)2.  By handling offsets directly – 
via slice shifting – translation occurs efficiently for both discrete and continuous 
dimensions.  Thus, offsets define legitimate factor nodes, but ones that are best handled 
via a special purpose optimization, particularly for continuous dimensions.  This turns 
out to be comparable to how negation is handled in conditionals, via a special purpose, 
more efficient, implementation of a distinct class of factor nodes [17]. 

A more abstract way of viewing the factor functions used to compute offsets in 
translation is as general delta functions – the Kronecker delta for discrete functions and 
the Dirac delta for continuous functions – as are more typically used for computing 
variable equality in factor graphs [20].  Delta functions are in fact already used in this 
manner in the graphical architecture, but there their efficient special-purpose 
implementation can be simpler, just amounting to message copying.  Efficient 
representation of true delta functions in factor nodes requires a functional form more 
flexible than the rectilinear piecewise linear functions currently used in the architecture. 

The Eight Puzzle only requires translation along one dimension at a time, but the 
offset technique works just as well for simultaneous translation along multiple 
dimensions, enabling object movement at any angle.  It also appears that a conceptually 
simple extension to it will enable the additional mental imagery operation of scaling for 
continuous dimensions.   Instead of adding a fixed value to the locations of the slices 
along a dimension, the slice locations instead need to be multiplied by a fixed scaling 

Figure 7. Factor function for a discrete shift rightwards by 1. 



factor.  Each dimension could then conceivably be scaled independently by its own 
fixed factor, or scaling alternately could be restricted to a single multiplicative factor 
across all dimensions. 

Rotation is the other major operation classically defined on objects in mental 
imagery.  However, in contrast to translation and scaling, it cannot be performed 
independently along each dimension.  Rotation not only conflates dimensions, but it 
also requires reslicing the image – as in Figure 8 for a rotated Eight Puzzle plane – to 
regenerate regions that are rectilinear along the original dimensions. 

One potential approach for dealing with 
rotation is to allow more flexibility in slice 
orientation across multiple dimensions [16].  
Should this work, it would not only enable 
rotation without major reworking of slices, but 
also more flexibility generally in the shapes of 
regions; allowing convex polytopes (nD 
convex polygons).  Application of arbitrary 
combinations of translation, scaling and 
rotation would then occur via more general 
factor nodes capable of efficiently processing 
any form of affine transformation, comprising 
a linear transformation plus a translation.  It is 
even conceivable that such an approach would 
eliminate the need for some or all of the 
specially optimized factor nodes, by enabling functions such as deltas to be specified 
via long narrow regions with values of 1 that are appropriately angled and offset. 

4. Summary and Future 

The work described here takes an initial step towards the uniform implementation of 
mental imagery with other cognitive processes in a graphical architecture.  Imagery 
leverages the hybrid mixed function representation that is at the heart of the 
architecture plus the memory capability that is based on factor graphs.  Specially 
optimized factor nodes for translation have been added that show potential for 
extension to a broader set of imagery transformations, and which also turn out to be 
critical for implementing several architectural capabilities that are outside of the normal 
scope of mental imagery.  A more uniform approach to at least some of this may also 
eventually be possible through a more flexible region representation. 

The focus in this article has been on two-dimensional imagery plus the translation 
operation, as needed for problem solving in the Eight Puzzle.  With a total of 18 
conditionals, a system has been constructed that can solve the Eight Puzzle by selecting 
and applying a sequence of translation operations defined over the hybrid board 
representation [13].  A longer term goal is to extend this nascent mental imagery 
capability to dynamic three-dimensional imagery capable of coping appropriately with 
uncertainty about the existence and trajectories of objects, as is necessary for example 
to support complex situation assessment and prediction.  This will require many of the 
extensions already mentioned.  It will likely also require: more sophisticated functional 
forms, an intimate connection with both perception and other cognitive capabilities, 
plus improvements in efficiency. 

Figure 8. Reslicing a rotated structure. 
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