
In Proceedings of the 2nd International Conference on Biologically Inspired Cognitive
Architectures (BICA), 2011.

Mental Imagery in a Graphical Cognitive
Architecture
Paul S. ROSENBLOOM1

Department of Computer Science and Institute for Creative Technologies
University of Southern California

Abstract. Can mental imagery be incorporated uniformly into a cognitive
architecture by leveraging the mixed (relational and probabilistic) hybrid (discrete
and continuous) processing supported by factor graphs? This article takes an
initial step towards answering this question via an implementation in a graphical
cognitive architecture of a version of the Eight Puzzle based on a hybrid function
representation and a factor node optimized for object translation.

Keywords. Cognitive architecture, graphical models, mental imagery

Introduction

A cognitive architecture is a hypothesis about the fixed structure underlying intelligent
behavior, whether in natural or artificial systems [1]. When combined with knowledge
and skills, such an architecture should be capable of yielding effective performance
across a diversity of domains. By definition, all cognitive architectures include
mechanisms in support of central thought processes, minimally consisting of models of
short-term and long-term memory along with an ability to make decisions. But it may
also be elaborated to involve multiple forms of memory, complex decision making –
based on problem solving or planning – learning, and other hypothesized capabilities.

The diversity of intelligent behavior supported in such architectures may be due to
either their comprising a relatively large number of specialized mechanisms [2,3,4] or
their supporting flexible interaction among a relatively small number of general
mechanisms [5,6]. Both of these strategies have been followed in building integrated
models of central cognitive processes, although the choice generally embodies an
implicit tradeoff between ease of achieving broad coverage and theoretical elegance.
When it comes to extending architectures beyond central cognition, with the addition of
peripheral perceptual and motor capabilities, the former strategy has been the primary
option, with distinct perceptual and motor modules being added to whatever
mechanisms exist for central cognition. Even the Epic cognitive architecture, which
has gone furthest in supporting end-to-end modeling of human performance – from
perception through cognition and on to action – uses distinct perceptual and motor
modules [7].

1

 Corresponding Author: University of Southern California, 12015 Waterfront Dr., Playa Vista, CA
90094, USA; E-mail: rosenbloom@usc.edu.

A variant of the latter strategy can be pursued via a dual level approach;
implementing a small set of general mechanisms at a level below the architecture that
can interact to yield a diversity of architectural mechanisms – spanning symbolic
cognition and continuous perceptuomotor capabilities – at the next level up [8]. Two
leading candidates for such a lower level are neural networks – as, for example, in [9] –
and graphical models [10], with the work here based on the latter. Graphical models
share neural nets’ focus on local processing in a network of limited computational
units, and some kinds of neural networks map directly onto graphical models, but the
primary focus is computational rather than biological. The work here should thus be
considered as loosely, or abstractly, biologically inspired, but as not so in the details.

As part of an ongoing exploration into combining broad coverage with theoretical
elegance in a new form of cognitive architecture, the work here is based on a particular
variant of graphical models – factor graphs [11] – that are capable of supporting mixed
(relational + probabilistic) and hybrid (discrete + continuous) processing. Within
central cognition, the mixed aspect of this implementation level has yielded a uniform
memory architecture able to replicate capabilities normally part of distinct procedural
rule-based memories and declarative semantic and episodic memories, plus a constraint
memory that is not typically found in cognitive architectures [12]. Exploiting this
mixed aspect, plus many of the mechanisms that were already implemented in support
of the memory architecture, has also enabled the addition of basic problem solving
capabilities [13].

The focus in this article is on extending the uniformity at the heart of this graphical
approach even further, in the direction of the peripheral processing underlying
perception and motor control, by including mental imagery. Those existing cognitive
architectures that include mental imagery, such as Soar (version 9) [3], do so in a
modular fashion, with memories and processes distinct from those employed in the
more symbolic parts of cognition [14]. Here we’ll leverage principally the hybrid
aspect of the graphical approach, along with a specially optimized class of factor nodes,
to yield the beginnings of a mental imagery capability that breaks down the barrier
between the center and the periphery, yielding a more uniform and less modular
approach to complete architectures that it is hoped will be extendable to the entirety of
mental imagery, and even beyond, to perception – where graphical models such as
hidden Markov models and Markov/conditional random fields already provide a wide
range of state of the art models – and motor control.

The results to date focus on a version of the classic Eight Puzzle, but with the
board represented internally as a multidimensional hybrid data structure. The key
mental imagery operation required for this puzzle is translation, where tile locations in
the plane are shifted as the tiles are slid from place to place. Section 1 reviews the
graphical cognitive architecture, as composed of memory and problem solving
capabilities. Section 2 then describes how the requisite representation and reasoning
are implemented for the imagery aspects of the Eight Puzzle, while introducing a class
of factor nodes specially optimized for object translation. Section 3 delves further into
this approach to object translation, both to understand it better and to explore how far it
might extend. Section 4 wraps up with a summary and future directions. The core
contributions of this work are: (1) the demonstration of the feasibility of representing
and reasoning about continuous mental imagery uniformly in a graphical cognitive
architecture; and (2) the identification and optimization of a special class of factor
nodes for imagery operations, which happen also to fill critical roles in support of other
architectural capabilities such as reflection and episodic memory.

1. A Graphical Cognitive Architecture

The graphical cognitive architecture is based on factor graphs, which are similar to the
more familiar construct of Bayesian networks except that they: (1) concern the
decomposition of arbitrary multivariate functions into products of simpler functions,
rather than just the decomposition of joint probability distributions into products of
prior and conditional distributions; (2) utilize bidirectional links; and (3) include
explicit factor nodes, in addition to variables nodes, representing the subfunctions into
which the original function factors. In yielding bidirectional networks that can
represent more than just probability distributions, factor graphs are actually more like
Markov networks (aka Markov random fields) than like Bayesian networks, but they
are still more general than the Markov alternative [15].

Inference in factor graphs typically occurs by some form of sampling or message
passing. The graphical architecture is based on message passing, via a variant of the
summary product algorithm that passes messages between variable and factor nodes
concerning the possible values of the variables [11]. Roughly, incoming messages are
multiplied together at all nodes, in a pointwise manner, with factor nodes also including
their functions in the product and then summarizing out all variables not to be included
in an output message to a variable node. When sum is used for summarization, the
graph computes marginals on its individual variables. When max is used instead, the
graph computes the maximum a posteriori estimation over all of the variables.

One of the prime determinants of the generality of a particular implementation of
factor graphs is the representation used for factor functions and messages. The
simplest implementations use tables with: one dimension per variable involved; a
bounded number of discrete values along each dimension; and a functional value for
each distinct combination of domain values across the variables. Although simple to
define and process, such representations are limited to discrete functions; and even
there their verboseness can yield major efficiency issues. An implementation focused
on probability densities may instead be based on individual Gaussian functions – each
specified by just two parameters – or more generally on mixtures of Gaussians. Such
representations can be concise and effective in representing levels of uncertainty, but
can become awkward in representing other forms knowledge.

The graphical cognitive architecture is based on multidimensional continuous
functions that are specified as piecewise linear functions over rectilinear regions [16].
Such a representation can approximate arbitrary continuous functions as accurately as
desired, while also supporting discrete and even symbolic dimensions. To implement a
discrete dimension, the function’s domain is unitized to integral values, such as the
half-open intervals [0,1) and [1,2) for the integers 1 and 2. For a symbolic dimension,
domain unitization is combined with a restriction on the function’s range to Boolean
values (0/1 for true/false). A
symbol table is then also added
– for use by researchers rather
than the system – to map from
unit domain intervals to
symbolic labels. Table 1
illustrates this hybrid
representational capability via
a function over two
dimensions, one of them

Table 1. Piecewise linear representation of the conditional
probability of an object's weight given its category: P(W | C).
The category is symbolic while the weight is continuous.
Only a fragment of the full table is shown.

w\c Walker Table …
[1,10) .01w .001w …
[10,20) .2-.01w “ …
[20,50) 0 .025-.00025w …
[50,100) “ “ …

continuous and the other symbolic.
Boundaries among regions are introduced automatically, as needed, by splitting

existing regions whenever a single linear function is no longer adequate for them. For
example, if a function is currently 0 across its entire multidimensional domain, and the
value at a single point is then set to 1, boundaries are added along each dimension to
separate that point from all of the adjacent space. The value for the region containing
that point is set to 1, while all of the regions now surrounding it are set to 0.

To introduce a boundary at a point along a dimension, an n-1 dimensional slice is
added at that point that cuts across all of the other dimensions. In consequence, a
function always comprises an array of rectilinear regions, as in Table 1. When a slice
becomes unnecessary, because the regions on both sides of it now express the same
linear function, the slice is automatically removed to maintain a minimal representation
for the overall function. In the example above, if the value at the altered point once
again becomes 0, the boundaries around it are removed.

In a Bayesian network, knowledge about joint probability distributions is stored in
the network structure plus prior and conditional distributions over variables. Evidence
concerning particular variables then constrains the values of these variables in the
network before an inference algorithm computes the implications of the network over
all of the variables given this evidence. A similar approach is taken in the graphical
architecture. The factor graph embodies knowledge in its links plus in the functions
stored in the factor nodes. A subset of the factor nodes comprise working memory, the
internal cognitive state of the system. Working memory serves the role of evidence in
the graph, fixing the values of particular variables during a single application of the
summary product algorithm. Working memory may be changed between successive
applications of the algorithm based on the results of graph processing.

The remainder of the factor graph comprises long-term memory, with the
execution of the summary product algorithm serving to retrieve long-term knowledge
into working memory. Fragments of knowledge in long-term memory are represented
in the architecture via generalized conditionals that are compiled into subgraphs within
the overall factor graph. Each conditional may contain conditions, actions, condacts
and functions. Conditions and actions are like the corresponding structures in standard
rule systems. Conditions match to working memory to constrain which rules fire and
to determine variable bindings. Actions consult variable bindings from conditions to
suggest changes in working memory. Condacts provide a combination of these two
functionalities, yielding the kind of bidirectional processing required for correct
probabilistic reasoning and for partial match in declarative memories. Functions are
specified over subsets of conditional variables, and compile down to functions in
particular factor nodes within the graph.

When conditions and actions alone are used, the resulting conditionals behave like
standard rules. An accumulation of such conditionals can then serve as a procedural
rule-based memory.
Figure 1, for example,
shows a conditional
defining a heuristic rule
that rejects any Eight
Puzzle operator that
moves a tile out of its
goal location. When
instead just condacts

CONDITIONAL GoalReject
 Conditions: (Operator id:o state:s x:x y:y)
 (Goal state:s x:x y:y tile:t)
 (Board state:s x:x y:y tile:t)
 Actions: (Selected - state:s operator:o)

Figure 1. Eight Puzzle heuristic that rejects from consideration operators
that move tiles out of place.

and functions are used, the resulting conditionals behave more like fragments of
traditional probabilistic Bayesian and Markov networks. Accumulations of such
conditionals have yielded functionality akin to what is observed in declarative semantic
and episodic memories, as well as the kinds of functionality provided by constraint
memories. Conditionals based on other combinations of the four basic types of
elements can yield hybrid and blended functionality. Figure 2, for example, shows a
conditional defined via one condition, two condacts and a function (the one specified in
Table 1). This provides a fragment of an extended semantic memory in terms of the
conditional probability of an
attribute given the concept.

One key distinction over
variables and their
corresponding dimensions in
the graphical architecture is
between universal and
unique variables [17].
Universal variables are like
the variables in rule systems that yield all possible consistent bindings to conditions.
Unique variables instead yield distributions over their best bindings, as generally
desired when accessing declarative memories. For unique variables, only the single
best value – as determined by aggregating over the factor functions in the relevant
conditionals – is placed into working memory at the end of a cycle. This selection
process serves as the core of the problem solving approach in the graphical architecture,
enabling operators to be selected and applied based on knowledge in long-term
memory [13].

2. Mental Imagery in the Eight Puzzle

The Eight Puzzle is defined in terms of a 3×3 board on
which eight numbered tiles are placed and one cell is
left blank (Figure 3). A legal move slides a tile that is
horizontally or vertically adjacent to the blank cell into
the blank cell. A problem instance consists of
reconfiguring an initial board configuration by sliding
tiles to yield a specified goal board.

In the graphical architecture, the Eight Puzzle
board is represented in working memory as a four
dimensional hybrid factor function. Two of the
dimensions represent the x and y extent of the board,
with each defined to be continuous over the half-open
interval [0,3). The other two dimensions are also numeric, albeit discrete, with one
representing the problem solving state that the board is part of and the other a tile
number in [0,9), with the 0 tile denoting the empty cell. These latter two dimensions
could conceivably have been symbolic, but it was easier to use successive integers for
the states and tiles rather than creating distinct symbolic names for them. Also, as will
be discussed shortly, the numeric representation for states plays a key role in enabling
the mechanisms developed for mental imagery to be reused in the implementation of a
reflection capability within the architecture.

Figure 3. The Eight Puzzle Board.

CONDITIONAL ConceptWeight
 Conditions: (Object state:s object:o)
 Condacts: (Concept object:o concept:c)
 (Weight object:o weight:w)

 Function: [see table 1]

Figure 2. Conditional probability of the weight of an object
associated with the state given its concept.

The representation of a board in working memory has a functional value of 1 for
each four-dimensional region – comprised of an <x,y> extent, a tile, and a state –
whenever that tile is in that region for that state. Otherwise, the region has a functional
value of 0. Figure 4 shows a part of the representation used for the board configuration
in Figure 3, with the state dimension omitted for simplicity and the locations of only
the first two tiles indicated. The grey regions in the figure have a value of 1 while the
clear regions have a value of 0, denoting that the center right cell – the square
<[2,3),[1,2)> – is blank, while tile 1 occupies the top left cell: <[0,1),[0,1)>. The Eight
Puzzle board and tiles fit quite easily within the rectilinear regions supported by the

architecture, but more complex objects
should also be representable as
combinations of such regions.

Translating a tile from one cell to
another requires shifting its location
along either the x or y dimension.
Because such operations on mental
imagery involve two images of the
board – from before and after the
operation – plus a specification of the
difference between them, it was earlier
assumed that they would best be
approached via the relatively complex
kinds of graphical computations
deployed in areas such as sequence
prediction and stereovision [18].
However, a much simpler approach that
is afforded by the piecewise linear
structure of the image representation has
so far proven sufficient. Given that

altering the location of a slice automatically shifts the boundaries of all of the regions
that abut the slice, the translation of a tile along a single dimension – which is all that is
required in the Eight Puzzle – can be handled by offsetting the slices corresponding to
its upper and lower boundaries along that
dimension.

For example, Tile 1, which is at
<[0,1),[0,1)> in Figure 4, can be moved to
the right by shifting both of the slices that
bound it along the x dimension – 0è1 and
1è2 – so that the tile is now located at
<[1,2),[0,1)>. This is actually implemented
via an action in a conditional that shifts to
the right the entire plane corresponding to
the 1 tile – altering the positions of all of its
slices, not just those abutting the tile – with
the region of the plane newly within the
board at its left receiving a value of 0 and
the region of the plane that is shifted off the
right edge of the board cropped (Figure 5).
Because each tile is in its own plane of the

Figure 4. Partial visualization of three dimensions
– two continuous and one discrete – of the hybrid
representation used for the Eight Puzzle board.

Figure 5. Translating the 1 tile to the right.

function, altering the location of one tile in this manner has no impact on the locations
of the others.

Figure 6 shows the conditional that performs this shift of a tile to the right. It
checks that an operator is selected (for the state) which is to move the tile located at
<x,y>, and that the cell just to the right of <x,y> is blank. The first two actions shift the
tile’s plane to the right, by creating a new shifted plane and deleting the old one. The
final two actions shift the empty cell leftward.

3. Offsets, Translation, and Beyond

The use of numeric
offsets in conditionals
induces one of the
more intriguing
aspects of this
graphical approach to
mental imagery.
Translation occurs by
specifying an offset
for an action variable,
as in the first and last
actions in Figure 6.
This leads to the insertion of a new factor node (and an associated variable node) into
the action’s subgraph that shifts the slices in incoming messages according to the offset
(while properly handling new and cropped regions). In conditions, this same offset
mechanism enables testing structures at positions relative to those of other structures.
So, for example, the fourth condition in Figure 6 tests that the location just to the right
of a tile is empty. It actually performs this test for all of the tiles, not just for the one
that is to the left of the empty cell, but it only succeeds for this particular tile.

Beyond these two uses of offsets in mental imagery, offsets also play important
roles elsewhere in the graphical architecture; in particular, in reflection and episodic
memory. Reflection is being modeled on the Soar architecture [19]. When an impasse
is detected in decision making – because a new operator cannot be selected – a new
meta-level state is created in which reflective problem solving can be used to resolve
this problem in the system’s own performance. The discrete numeric representation
used for the state then enables exploiting the offset mechanism to operate across states
in the meta-level hierarchy. The contents of adjacent states, or even of states separated
by some larger but still fixed distance, can be related via offsets in conditions, and
information can be moved across states – to, for example, return results from reflective
problem solving – via offsets in actions. Offsets in episodic memory enable, for
example, accessing and comparing episodes that are adjacent, or at any fixed distance,
along the temporal dimension. It thus turns out that a primitive architectural
mechanism originally implemented for the translation of mental imagery not only
provides this functionality – through its use in actions that modify imagery in working
memory – but it also facilitates testing multiple relatively located portions of an image,
as well as supporting key aspects of both reflection and episodic memory.

It is important to ask though whether such a mechanism fits properly into factor
graphs, given that factor nodes normally compute subfunctions of the graph’s globally

CONDITIONAL MoveRight
 Conditions: (selected state:s operator:o)
 (operator id:o state:s x:x y:y)
 (board state:s x:x y:y tile:t)
 (board state:s x:x+1 y:y tile:0)
 Actions: (board state:s x:x+1 y:y tile:t)
 (board – state:s x:x y:y tile:t)
 (board state:s x:x y:y tile:0)
 (board – state:s x:x+1 y:y tile:0)

Figure 6. Conditional to slide a tile to the right.

defined function over a subset of its full complement of variables; and they do so by
computing the pointwise product of the messages arriving from these variables with its
internal function, and then summarizing out all variables that are irrelevant to the
outgoing message. It is also worth considering how far this mechanism might be
extended both to additional aspects of mental imagery and to other architectural
capabilities. These two questions are the subject of the remainder of this section.

Although shifting the locations of slices in piecewise memories is not a standard
factor node operation, it is possible to encode translation in the normal fashion,
validating that it does fit naturally into factor graphs. However, this is only possible in
a manner that is expensive computationally, particularly for continuous dimensions.
Consider first a simple discrete example, with a single dimension and a region of
interest along the dimension that is restricted to [0,3). Suppose further that the
functional values for the three regions along the dimension are <0, 1, 0> and that we
want to offset this to the right, to yield the new vector of values <0, 0, 1> across these
same three regions. If the vector <0, 1, 0> for variable x is sent to a factor node defined
via the function in Figure 7, the resulting vector for variable y does become <0, 0, 1>,
implementing the desired rightward shift.

The same approach works
for any fixed offset. However,
the approach engenders a
function size that is
proportional to the square of
the length of the discrete span
of interest (n2); and
regionalization can’t compress
this function because the
diagonal layout of the 1s forces
a fragmentation into unit regions. Even worse, offsetting a continuous dimension in
this fashion would require a vast number of ε-sized regions along both x and y, with a
resulting piecewise function of unwieldy extent: (n/ε)2. By handling offsets directly –
via slice shifting – translation occurs efficiently for both discrete and continuous
dimensions. Thus, offsets define legitimate factor nodes, but ones that are best handled
via a special purpose optimization, particularly for continuous dimensions. This turns
out to be comparable to how negation is handled in conditionals, via a special purpose,
more efficient, implementation of a distinct class of factor nodes [17].

A more abstract way of viewing the factor functions used to compute offsets in
translation is as general delta functions – the Kronecker delta for discrete functions and
the Dirac delta for continuous functions – as are more typically used for computing
variable equality in factor graphs [20]. Delta functions are in fact already used in this
manner in the graphical architecture, but there their efficient special-purpose
implementation can be simpler, just amounting to message copying. Efficient
representation of true delta functions in factor nodes requires a functional form more
flexible than the rectilinear piecewise linear functions currently used in the architecture.

The Eight Puzzle only requires translation along one dimension at a time, but the
offset technique works just as well for simultaneous translation along multiple
dimensions, enabling object movement at any angle. It also appears that a conceptually
simple extension to it will enable the additional mental imagery operation of scaling for
continuous dimensions. Instead of adding a fixed value to the locations of the slices
along a dimension, the slice locations instead need to be multiplied by a fixed scaling

Figure 7. Factor function for a discrete shift rightwards by 1.

factor. Each dimension could then conceivably be scaled independently by its own
fixed factor, or scaling alternately could be restricted to a single multiplicative factor
across all dimensions.

Rotation is the other major operation classically defined on objects in mental
imagery. However, in contrast to translation and scaling, it cannot be performed
independently along each dimension. Rotation not only conflates dimensions, but it
also requires reslicing the image – as in Figure 8 for a rotated Eight Puzzle plane – to
regenerate regions that are rectilinear along the original dimensions.

One potential approach for dealing with
rotation is to allow more flexibility in slice
orientation across multiple dimensions [16].
Should this work, it would not only enable
rotation without major reworking of slices, but
also more flexibility generally in the shapes of
regions; allowing convex polytopes (nD
convex polygons). Application of arbitrary
combinations of translation, scaling and
rotation would then occur via more general
factor nodes capable of efficiently processing
any form of affine transformation, comprising
a linear transformation plus a translation. It is
even conceivable that such an approach would
eliminate the need for some or all of the
specially optimized factor nodes, by enabling functions such as deltas to be specified
via long narrow regions with values of 1 that are appropriately angled and offset.

4. Summary and Future

The work described here takes an initial step towards the uniform implementation of
mental imagery with other cognitive processes in a graphical architecture. Imagery
leverages the hybrid mixed function representation that is at the heart of the
architecture plus the memory capability that is based on factor graphs. Specially
optimized factor nodes for translation have been added that show potential for
extension to a broader set of imagery transformations, and which also turn out to be
critical for implementing several architectural capabilities that are outside of the normal
scope of mental imagery. A more uniform approach to at least some of this may also
eventually be possible through a more flexible region representation.

The focus in this article has been on two-dimensional imagery plus the translation
operation, as needed for problem solving in the Eight Puzzle. With a total of 18
conditionals, a system has been constructed that can solve the Eight Puzzle by selecting
and applying a sequence of translation operations defined over the hybrid board
representation [13]. A longer term goal is to extend this nascent mental imagery
capability to dynamic three-dimensional imagery capable of coping appropriately with
uncertainty about the existence and trajectories of objects, as is necessary for example
to support complex situation assessment and prediction. This will require many of the
extensions already mentioned. It will likely also require: more sophisticated functional
forms, an intimate connection with both perception and other cognitive capabilities,
plus improvements in efficiency.

Figure 8. Reslicing a rotated structure.

Acknowledgments

This work has been sponsored by the Air Force Office of Scientific Research, Asian
Office of Aerospace Research and Development (AFOSR/AOARD) and the U.S. Army
Research, Development, and Engineering Command (RDECOM). Statements and
opinions expressed do not necessarily reflect the position or the policy of the United
States Government, and no official endorsement should be inferred. I would like to
thank Abram Demski for interactions that helped clarify some of these concepts.

References

[1] P. Langley, J. E. Laird, and S. Rogers. Cognitive architectures: Research issues and challenges.
Cognitive Systems Research, 10: 141-160, 2009.

[2] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An integrated theory of
the mind. Psychological Review, 111(4): 1036-1060, 2004.

[3] J. E. Laird. Extending the Soar cognitive architecture. In Artificial General Intelligence 2008:
Proceedings of the First AGI Conference, Memphis, Tennessee, March 2008. IOS Press.

[4] B. Goertzel. OpenCogPrime: A cognitive synergy based architecture for artificial general intelligence.
In Proceedings of the 8th IEEE International Conference on Cognitive Informatics, 2009.

[5] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general intelligence. Artificial
Intelligence, 33: 1-64, 1987.

[6] M. Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability.
Springer-Verlag, Berlin, Germany, 2005.

[7] D. E. Kieras and D. E. Meyer. An overview of the EPIC architecture for cognition and performance
with application to human-computer interaction. Human-Computer Interaction, 12: 391-438, 1997.

[8] P. S. Rosenbloom. Rethinking cognitive architecture via graphical models. Cognitive Systems
Research, 12(2), 2011.

[9] Smolensky, P. & Legendre, G. (2006). The Harmonic Mind: From Neural Computation to Optimality-
Theoretic Grammar. Cambridge, MA: The MIT Press.

[10] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press,
Cambridge, Massachusetts, 2009.

[11] F. R. Kschischang, B. J. Frey, and H-A. Loeliger. Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2): 498-519, February 2001.

[12] P. S. Rosenbloom. Combining procedural and declarative knowledge in a graphical architecture. In
Proceedings of the 10th International Conference on Cognitive Modeling, Manchester, United
Kingdom, August 2010.

[13] P. S. Rosenbloom. From memory to problem solving: Mechanism reuse in a graphical cognitive
architecture. In Proceedings of the 4th Conference on Artificial General Intelligence, Mountain View,
California, August 2011.

[14] S. D. Lathrop, S. Wintermute, and J. E. Laird. Exploring the functional advantages of spatial and
visual cognition from an architectural perspective. Topics in Cognitive Science, 2011. In press.

[15] B. J. Frey. Extending factor graphs so as to unify directed and undirected graphical models. In
Proceedings of the 19th conference on uncertainty in artificial intelligence, pages 257–264, 2003.

[16] P. S. Rosenbloom. Bridging dichotomies in cognitive architectures for virtual humans. In Proceedings
of the AAAI Fall Symposium on Advances in Cognitive Systems, 2011. In press.

[17] P. S. Rosenbloom. Implementing first-order variables in a graphical cognitive architecture. In
Proceedings of Biologically Inspired Cognitive Architectures 2010: Proceedings of the First Annual
Meeting of the BICA Society, Arlington, Virginia, November 2010. IOS Press.

[18] P. S. Rosenbloom. Speculations on leveraging graphical models for architectural integration of visual
representation and reasoning. In Proceedings of the AAAI-10 Workshop on Visual Representations and
Reasoning, 2010.

[19] P. S. Rosenbloom, J. E. Laird, and A. Newell. Meta-levels in Soar. In P. Maes, D. Nardi (eds.) Meta-
Level Architectures and Reflection, pages 227-240. North Holland, Amsterdam, Netherlands, 1988.

[20] H-A. Loeliger. An introduction to factor graphs. IEEE Signal Processing Magazine, 21(1): 28-41,
January 2004.

