
Metaplanning for Multiple Agents

Jonathan Gratch

University of Southern California, Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA, 90292

gratch@isi.edu

Abstract
We present an extension to classical planning techniques
that facilitates their use in complex multi-agent domains.
The approach implements a form of metaplanning that en-
ables a planner to reason about properties of multiple plans
in a single plan network. With this approach, a planning
agent can simultaneously generate an individual plan, re-
pair a second, and, together with a group, execute a third.
This provides some of the key functionality of sophisti-
cated multi-agent reasoning techniques, such as Grosz and
Kraus’ shared plans, but within the context of better under-
stood classical planning techniques. As such, it helps
bridge the gap between planning and multi-agent research.

Introduction
Recent applications have illustrated the power of planning
techniques in remarkably complex virtual environments
such as information gathering (Knoblock, 1995), intelli-
gent tutoring (Rickel and Johnson, 1997) and military
simulations (Hill, 1997). In these domains, planning sys-
tems don’t simply develop plans but also monitor their
execution and replan when things go awry. Many of
these domains involve multiple agents, posing greater
challenges: a planning agent must distinguish between its
own activities and those done in coordination with others;
even the process of planning could conceivably be shared,
allowing parts of a group plan to be constructed through
collaboration.

It is increasingly important for a planning system to
represent multiple plans in various states of development
or execution. For example, in the above military simula-
tion domain, a commander agent may have to generate a
team plan while simultaneously executing another plan
that moves it into proximity with the rest of the team.
Coordinating the relationships between plans and between
plans and other agents requires sophisticated reasoning
techniques. Indeed, some multi-agent research has pro-
posed building elaborate representations systems around a
classical planner to support this type of inference (e.g.,
shared plans, Grosz and Kraus 1996).

Reasoning about multiple plans is a form of metaplan-
ning. In this paper, we propose a surprisingly simple ex-
tension to classical planning techniques that allows the
planner itself to cleanly perform this type of reasoning
using a single plan. Actually, we suggest a reconceptu-
alization of the term “plan”. Traditionally, the term plan

is synonymous with the network of operators, henceforth
called tasks, and constraints maintained by the planner.
Instead, we make a distinction between this network,
which we call the task network , and a plan, which we now
define as some subset of the task network. Thus, the net-
work contains multiple plans and we allow different plans
to have different status (some are executable, some asso-
ciated with groups, etc.). Most importantly, some plans
manipulate the properties of other plans, and in this way,
the planner engages in metaplanning. The advantage of
maintaining multiple plans in the same task network is we
take full advantage of a planner’s ability to reason about
interactions between tasks, and therefore between plans in
this new sense. For example, the effects of tasks in one
plan could support preconditions in a second, and incon-
sistencies across plans can be detected automatically by a
planner’s constraint reasoning.

Metaplanning has been explored in the past but our
focus differs from that earlier work. Previously,
metaplanning was seen as a form of search control
(Wilensky 1980, Stefik 1981). Such meta-planners treat
plan modifiers (such as promotion or step addition) as
steps in a meta-space who’s sequence of application is to
be determined by planning. A drawback is that meta-
plans can become quite detailed and the approach seems
more cumbersome than alternate methods of search
control, particularly learning techniques (Minton 1990).
In contrast, we don’t attempt to control the details of how
a plan is generated, and instead focus on the relationships
that plans have with each other and with other domain
objects. Another difference is that while earlier work
maintained separate planning levels (essentially separate
task networks), we maintain all plans, meta or otherwise,
in the same task network.

As we mentioned, multi-agent research also considers
the problem of metaplanning, focusing on representing
properties of plans to support group planning (e.g., I have
a plan to do X, we have a plan to do Y). Researchers in
this area have identified key meta-level concepts (e.g.,
joint commitments, Cohen and Levesque 1990, and
shared plans, Grosz and Kraus 1996) necessary to support
group planning and execution. A drawback of this re-
search is it tends to focus almost exclusively on repre-
sentational rather than algorithmic issues, and the repre-
sentations tend to be quite complex. This makes it diffi-
cult to see the relationship between these methods and
classical planning research. Our approach supports some

Submitted to the Fifteenth National Conference on Artificial Intelligence

of the key functionality provided by multi-agent formal-
isms without adopting the full representational complexity
of these approaches.

In this paper, we describe our approach to metaplan-
ning, motivated by the issues raised in multi-agent re-
search. We have successfully applied the method to a
large-scale application domain of military combat simu-
lations, and we illustrate the method on an example from
this domain.

The Planner
We briefly overview of the basic planner before describ-
ing how it can be extended to perform metaplanning.
While our extension could be incorporated into a variety
of planning architectures, some of the details of our im-
pact the example and discussion below.

Our planner incorporates a number of novel features,
but for the purposes of this article it may be considered
equivalent to IPEM (Ambros-Ingerson and Steel 1988),
which shares many features with the more recent XII
planner (Golden et al. 1994). Some differences between
our approach and IPEM are briefly considered later in the
article. IPEM was designed to support planning, execu-
tion and replanning for environments where actions have
duration and the world can change in surprising ways.

IPEM plans by posting constraints to a task network in
the same fashion as other classical planners such as SNLP
(McAllester and Rosenblitt 1991). Constraints are added
in response to flaws in the current network. For example,
if a task has an open precondition, the planner attempts to
resolve this flaw by identifying an existing task that es-
tablishes the effect (simple-establishment) or introduce a
new task (step addition). Both modifications add con-
straints to the network. Simple-establishment asserts a
protection constraint that protect the effect from the mo-
ment it is created until it is used by the precondition, and
binding constraints that ensure the effect unifies with the
open-precondition. Step-addition posts a constraint to
include the task in the network in addition to the con-
straints posted by simple-establishment. Unlike SNLP,
tasks have duration: they must be explicitly initiated and
terminated. Tasks can also be decomposed hierarchically.

Besides the task network, the planner maintains a de-
clarative representation of the perceived state of the world
or current world description (CWD). The CWD allows
the planner to monitor the execution of task and detect
any surprising changes in the environment. The planner
may only initiate tasks who’s preconditions unify with the
CWD (and are not preceded by any uninitiated tasks).
Similarly, tasks are terminated when all of their effects
appear in the CWD. Task initiation and termination may
be interleaved with other planning operations. As the
CWD reflects the perceived state of the world, it may
change in ways not predicted by the current task network.
For example, some external process modifying the envi-
ronment is detected by changes to the CWD not predicted
by the current set of executing tasks. These changes may

provide opportunities (as when an unsatisfied precondi-
tions now observed in the world). They may also threaten
constraints in the plan network, forcing the planner to
modify the task network to handle the resulting flaws.

Metaplanning
We extend the planning algorithm in several ways: (1)
allow multiple plans to be represented in a single task
network (the notion of a plan will be defined below); (2)
allow plans to participate in relationships with other do-
main objects including other plans; (3) allow plans to
modify the relationships in which plans participate.

To support these capabilities, we introduce the notion
of a plan designator, a symbol that denotes the portion of
the task corresponding to a plan. Plan designators can be
used just as any other constant when defining a domain
theory. They may be used as terms in the preconditions
and effects of tasks. For example, if P is a plan designa-
tor, we may define a predicate FLAWED over plans and
use FLAWED(P) as a precondition to some task in our
domain theory. The difference between this and a state-
ment such as ON(A,B) is that while ON(A,B) is typically
interpreted as a relation among objects in an external en-
vironment, FLAWED(P) is to be interpreted as a relation
over portions of the planner’s task network (i.e. the sub-
network denoted by P participates in some flaw).

Plans and Plan designator semantics
A plan corresponds to a subset of the task network and a
plan designator is the symbol that denotes this subset. We
have a procedural semantics for determining this denota-
tion that is closely tied to the operations a planner can use
to make changes to the task network. A task network can
be viewed as a set of constraints (task T1 is constrained to
be in the plan, the fact F is protected from T3 to T4, etc.).
For a given task network, each of these constraints be-
longs to exactly one plan (i.e., plans form a partition of
the set of constraints comprising the task network).1
Whenever new constraints are inserted into the task net-
work, they are simultaneously added to a particular plan.

Deciding the goals a plan is to solve is necessarily do-
main-specific. Therefore, initial partial plans are created
(along with the corresponding designation) as result of
executing domain-specific procedures that can be associ-
ated with tasks. This “seed” plan will consists of con-
straints needed to represent a *goal* task and possibly a
partial plan for achieving its preconditions. For example,
in the military simulation domain, an agent can be com-
manded to achieve a goal. The radio message containing
the command is translated into a partial plan using one of
these domain-specific procedures (see below).

New constraints are added to this “seed” as it is ex-
panded by the planner. Step addition inserts a task into

1 In our current work we are generalizing the notion of a plan designa-
tor to allow a given task to belong to multiple plans (see below).

the network in order to establish some open precondition
of another task (the establishee). Any constraints added
as a result of this modification become part of the estab-
lishee’s plan (more precisely, they becomes part of the
plan containing the constraint that asserts the establishee).
Similarly, simple establishment introduces protection and
binding constraints into the network that becomes part of
the establishee’s plan. Task decomposition, which breaks
an abstract task into a partially ordered sequence of sub-
tasks, generates a set of constraints that become part of
the abstract task’s plan. The planner has three modifica-
tions for resolving threats to protection constraints
(promotion, demotion, and separation). Constraints added
by these modifications are added to the plan which con-
tains the threatened protection constraint.

Meta-relations, Meta-predicates, and Meta-tasks
Now that we have defined plans, the next step is to de-
scribe the relationships in which a plan may participate.
A meta-relation is some relation over plans (and possibly
other domain constructs) represented by the planner. For
example, to represent group plans (plans that are to be
executed by a group of individuals) the planner must pos-
sess a meta-relations that associates plans with groups.

Just as a plan designator is a symbol denoting a plan,
meta-predicates (predicates involving plan designators)
are declarative representations of meta-relations. For ex-
ample, PLAN(P) is a declarative statement that P is a plan
and it may be used in preconditions and effects of tasks.

Finally, meta-tasks are tasks involving plans (i.e., one
or more of their preconditions or effects is a meta-
predicate). It is through meta-tasks that the planner ma-
nipulates meta-relations, and when defining meta-tasks,
one must also define how its execution modifies the meta-
relations of the plans it involves (as illustrated in the next
section). Meta-predicates are used to declare the precon-
ditions and effects of these changes, allowing the planner
to introspect on and control the planning process.

We emphasize this distinction between meta-predicates
and meta-relations because one may not wish to declara-
tively represent all the meta-relations maintained by the
planner (one reason for this could be efficiency concerns).
For example, an ExecutePlan task might make a plan ex-
ecutable upon its initiation and make it unexecutable if
the task fails, but we might choose not to explicitly repre-
sent the executability meta-relation as a meta-predicate.

To implement meta-predicates and meta-tasks, one
must alter the planner to reflect the correspondence be-
tween meta-predicates and the underlying meta-relations
they reflect. This correspondence is formed through the
meaning of predicates on current world description. That
is, one must provide a mechanism that assigns truth val-
ues to any meta-predicates in the CWD. For normal
predicates such as ON(A,B), this truth value is assigned by
sensing the environment. With meta-predicates, we are
essentially making the plan network “part of the environ-
ment” and must similarly provide mechanisms for (1)
examining the current meta-relations and assign truth val-

ues to corresponding predicates, and (2) receiving the
commands of meta-tasks and making the appropriate
change in the current meta-relations.

As there is a close tie between meta-relations and the
planning architecture, we describe in detail a core set of
“planner-specific” meta-relations that we have incorpo-
rated into our planner. We make no claims to the suit-
ability of this set, but we have found them useful for im-
plementing multi-agent domains, and they serve to illus-
trate the type of reasoning we wish to support.

Modifiability: Normally, the planner automatically modi-
fies the plan in response to any flaws that may arise. Un-
der some circumstances, one may wish to override this
automatic behavior. For example, Cohen and Levesque
introduce the notion of joint commitment to lock in a
course of action until certain criteria are satisfied. The
modifiability meta-relation allows the planner to engage
in this deliberate committing and uncommitting to a
course of action.

A plan is considered modifiable by default. If a plan is
made unmodifiable then the planner is prevented from
adding new constraints to the plan or removing existing
constraints. Thus, if a task belonging to an unmodifiable
plan has an open precondition flaw, the planner is pre-
vented from resolving it (via simple establishment or step
addition) as would normally occur. In contrast, if a task
in an unmodifiable plan clobbers a task in another modifi-
able plan, the planner may still add constraints to the
modifiable plan to resolve the conflict.

Flaws: A key property of plans is whether they contain
any flaws. For example, one may be reluctant to execute
a plan that has inconsistencies or missing steps. The flaw
meta-relation and corresponding meta-predicate facilitates
this type of reasoning. A plan is considered flawed if any
of its constraints participate in a flaw.

Conjectures: Often, one would like to consider alterna-
tive plans to accomplish a goal before actually commit-
ting to a particular course of action. We use the conjec-
ture meta-relation to support this type of reasoning. In
particular, if we are considering two conjectured plans for
achieving the same goal, we shouldn’t allow constraints
in one plan to clobber constraints in the other, as could
happen since both plans are represented in the same net-
work. If a plan is conjectured, the planner only checks for
flaws between constraints within the plan or with con-
straints of other non-conjectured plans.

Executability: Simply because a planner has created a
plan doesn’t mean it should execute it immediately, espe-
cially in a multi-agent setting where activities may require
coordination. Using the executability meta-relation we
can bring the execution of plans under deliberate control.
If a plan is unexecutable, the planner is prevented from
initiating the executing of any tasks in the plan. Tasks

which have already been initiated will still be terminated
if their effects are observed, but no new task may begin

Common Knowledge: Multi-agent planning requires the
ability to communicate plans to other agents. The com-
mon knowledge meta-relation keeps track of to whom the
plan has been communicated to.

We also allow the definition of domain-specific meta-
predicates that do not relate to how the planner functions
but may be important for a specific domain.

Example
We illustrate the approach by working through an exam-
ple of how metaplanning works in an application domain.
The approach has been tested in the context of large-scale
military simulations (Hill et. al. 1997) and we use this
domain as a basis for discussion. Our system participated
in a simulated military exercises known as Synthetic
Theater of War '97 (Stow-97). This exercise involved
about 5000 independently controlled simulated vehicles
(planes, ships, tanks, soldiers, etc.) operating in a 700 by
500 kilometer virtual world and run across a distributed
network of several hundred computers. The goal of this
exercise was twofold: to support training for the United
States Atlantic Command, and to demonstrate advanced
simulation technology. This latter goal required generat-
ing appropriate and believable behavior, as judged by a
group of "subject matter experts" (retired military person-
nel). Our contribution to this exercise was software for
controlling several companies of helicopter entities that
engaged in multiple battles against simulated ground ve-
hicles during the course of the 48 hour exercise. Our par-
ticipation was deemed a success by the standards imposed
by the Stow-97 exercise.

In this domain, each company of helicopters consists of
five vehicles that coordinate their activities as a group,
and a commander agent that performs all high-level plan-
ning, replanning, and execution monitoring. The individ-

ual vehicle agents execute the commander’s high-level
plans, making appropriate reactions based on the current
state of the environment (Tambe 1997).2 The commander
agent is based on the planning architecture described
above, whereas the vehicle agents can be viewed as RAP-
like execution systems (Firby 1987) supplemented with
Tambe’s teamwork and agent tracking techniques.

We illustrate the capabilities of metareasoning by ex-
amining the planning performed by the commander agent
in the course of a typical exercise. During such an exer-
cise, the command agent receives orders from its com-
manding unit (a battalion command agent). This consists
of the goal of the company’s mission, and a partial plan
for achieving it. The command agent generates a com-
plete plan to achieve the goal, communicates this plan to
the vehicles in its company, and monitors the plan's exe-
cution. From the perspective of the vehicle agents, the
plan is an abstract specification of their mission and they
have significant latitude in executing it with regard to the
current environment and any unanticipated circumstances.
However, some circumstances may violate the constraints
of the commander’s plan. In these cases, the commander
agent must detect the flaw, repair the plan, and communi-
cate the change to the vehicles in its company.

The commander’s planning is represented using two
plans in a single task network: a "base-level" plan corre-
sponding to the company's mission, and a "meta-level"
plan consisting of tasks that manipulate the base-level
plan. We only describe the meta-level in detail. Figure 1
lists the set of meta-level tasks. Currently, planning at the
meta-level is quite simple, involving only four tasks. At a
high-level, given some new orders, GeneratePlan results
in a base-level plan that achieves the orders. TransmitPlan
makes this plan common knowledge to all the vehicles in
a group (in simulation this corresponds to sending the
plan out over simulated radio). If a plan has no flaws and
is common knowledge to a group, then that group can
execute the plan. Finally, flawed plans can be repaired by

2 The commander and vehicle agents are all implemented within the
Soar agent architecture (Newell 1990).

TransmitPlan (?group ?order ?plan)
 pre: plan-for(?group ?order ?plan)
 -flawed(?plan)
 add: commonKn(?plan ?group)
 body: :at-start transmit-plan(?plan ?group)

:at-start disable-conjecture(?plan)

GeneratePlan (?group ?order ?plan)
 pre: order(?group ?order)
 my-group(?group)
 add: plan-for(?group ?order ?plan)
 del: flawed(?plan)
 body: :at-start ?plan = make-plan(?order)
 :at-end disable-modification(?plan)

ExecutePlan (?group ?plan ?order)
 pre: plan-for(?group ?order ?plan)
 commonKn(?plan ?group) :type maintenance
 -flawed(?plan) :type maintenance
 add: achieved(?group ?order)
 body: :at-start enable-execution(?group ?plan)
 :at-failure transmit-abort(?group ?plan)
 :at-failure disable-execution(?plan)

RepairPlan (?group ?order ?plan)
 pre: plan-for(?group ?order ?plan)
 flawed(?plan)
 del: commonKn(?plan ?group)
 flawed(?plan)
 body: :at-start enable-modification(?plan)
 :at-end disable-modification(?plan)

Figure 1: Meta-level domain theory

RepairPlan, but then they are no longer common knowl-
edge. There are two differences between the tasks illus-
trated in Figure 1 and standard STRIPS operators. The
first is the body field which names the procedures actually
called to implement the task (note that these procedures
can return variable bindings). The second is that the pre-
conditions and effects can have types that change what
constraints they impose on the plan. For example, the
Not(Flawed(P)) precondition of ExecutePlan is a mainte-
nance condition that must be protected throughout the
execution of this task. If a maintenance constraint is vio-
lated, any executing task associated with it fails.

Initially the command agent begins with a single meta-
level plan, designated by M, which consists of two tasks
(not illustrated): the *init* task who’s effects correspond
to the CWD, and an *goal* task who's preconditions are
initially empty. The meta-level plan is by default modi-
fiable and non-conjectured.

When new orders are received they are represented by
an ORDER predicate on the current world description.
Simultaneously, via a domain-specific rule, the goal of
achieving the order is added to the precondition of the
goal task. This creates an open precondition flaw in the
meta-level plan, which is represented declaratively on the
CWD by FLAWED(M). As M is modifiable, the planner
attempts to eliminate the flaw, eventually adding Gener-
atePlan, TransmitPlan, and ExecutePlan via step addition
and establishing the remaining preconditions via simple
establishment. The resulting plan is displayed within the
box labeled M in Figure 2.

When GeneratePlan is initiated, the make-plan com-
mand in its body results in the creation of a new base-
level plan, designated by P, which is populated initially
with a *goal* task who’s preconditions represent the
goals of the mission, and possibly some abstract tasks that
are to be used to accomplish the goal. Typically, the or-

ders will be incomplete (open preconditions, abstract
tasks, etc.) which is represented by the predicate
FLAWED(P) on the CWD. P is initially modifiable and
conjectured. Since it is modifiable, the planner attempts
to resolve the flaws until a viable plan is generated. This
results in FLAWED(P) being removed from the CWD,
which signals the termination of GeneratePlan. As P
must be communicated and executed with other entities,
the planner should avoid changing it without a deliberate
decision. Thus, disable-modification is placed in the body
of GeneratePlan and its execution makes P unmodifiable.
Figure 2 illustrates the state of the task network at this
point. If all goes as predicted, TransmitPlan and Ex-
ecutePlan will be initiated and terminated in turn, com-
pleting the mission.

Sometimes things do not go as predicted. For example,
perhaps after the group begins executing the plan it re-
ceives new information about enemy activity that violates
some protection constraint in the base-level plan (say a
location that was assumed to be safe to land is now
threatened). This threat is represented on the CWD by the
reappearance of the FLAWED(P) predicate, which in turn
violates a maintenance constraint of ExecutePlan, causing
this task to fail, and creating an open-precondition flaw at
the meta-level, as the achieved predicate is no longer es-
tablished by the failed task.

Without meta-reasoning, the planner would immedi-
ately try to resolve the flaw in the base-level plan P, ig-
noring the other members currently executing this plan,
(who are unaware of the flaw). In contrast, as P partici-
pates in the unmodifiable meta-relation, the planner is
prevented from immediately resolving the flaw. It can
only modify the plan by deliberately enabling modifica-
tions at the meta-level. This deliberation arises in the
context of resolving the open-precondition ACHIEVED in
M, resulting in the plan in Figure 3. The planner repairs

Generate

M

 plan
-flawed

 commonKn achievedTransmit

T1 T2 T3

P

Execute
 order

Figure 2: Initial complete meta-level and base-level plans

Generate

M

 -cKn
-flawed

 commonKnTransmit

T1 T2

P

Execute

Figure 3: Final meta-level and base-level plans after repair

flawedNewInfo Repair

 plan
-flawed

 cKnTransmit T4 achievedExecute

TASK NETWORK

TASK NETWORK

the flawed plan, transmits it (as it is no longer common
knowledge) and begins execution of the modified plan.
(We use search control knowledge to prefer repairing the
plan over generating a new plan from scratch.)

Issues and Conclusion
As the example illustrates, plan designators and meta-
relations provides the planner an ability to deliberate over
the process of planning in a way that facilitates multi-
agent reasoning, as well as more complex forms of single-
agent reasoning. We can represent multiple plans, assign
them properties such as modifiability and executibility,
and relate them to other domain constructs. We can asso-
ciate plans with groups of agents and represent the notion
of common knowledge, relationships that are essential for
coordinated behavior. And we can do this within the
context of well understood classical planning techniques.

This work is still in its early stages and there are many
issues to be resolved. One key limitation for multi-agent
domains is that tasks may only participate in a single plan.
This prevents us from representing the notion that a plan
is composed of several subplans. This makes it difficult
to reason about “contracting out” parts of a plan to other
planning agents. Similarly, we cannot repair parts of a
group plan while continuing to execute other parts - even
though the planner itself supports an interleaving of plan-
ning and execution, as there is no way to communicate
that a portion of the plan is to be repaired. Representing
these more subtle properties of plans is an active area of
current research.

While this work draws connections between planning
and multi-agent research, the relationship needs further
elaboration. For example, which of the meta-level con-
structs suggested in the multi-agent literature can be rep-
resented using our technique?

Finally, although our metaplanning approach could be
incorporated into a variety of classical planners, it may be
that different planning techniques are more or less condu-
cive to its successful implementation. One key issue is
how the planner searches the space of plans. Maintaining
multiple (roughly independent) plans in the same network
may favor different search methods than those commonly
used. A novel feature of our planner is that it generates
plans via local iterative repair search (Kautz and Selman
1996), rather than conventional systematic backtracking
search of IPEM and other classical planners. We believe
that iterative repair search is more appropriate for plan-
ners that perform replanning and it also interacts well
with the notion of multiple plans, but this conjecture
needs further evaluation.

In conclusion, we have illustrated how a simple form of
metaplanning can extend the capabilities of a classical
planning system. With plan designators and meta-
predicates we can reason about multiple plans and their
properties. Besides supporting more complex single-
agent reasoning this also provides the framework for rep-
resenting multi-agent information such as group plans.

Finally, our hope is that by drawing a clearer connection
between classical planning and multi-agent research, it
will support more interchange between these two prolific
communities.

References
Ambros-Ingerson, J. A. and Steel, S. 1988. “Integrating
Planning, Execution and Monitoring,” in AAAI-88.

Cohen, P. and Levesque, H., 1990. “Intention is choice
with commitment,” Artificial Intelligence, 42(3).

Firby, J. 1987. “An investigation into reactive planning in
complex domains,” In AAAI-87.

Golden, K., Etzioni, O., and Weld, D. 1994.
“Omnipotence without Omniscience: Efficient Sensor
Management for Planning.” in AAAI-94, Seattle, WA.

Grosz, B., and Kraus, S. 1996. “Collaborative Plans for
Complex Group Action,” Artificial Intelligence, 86(2).

Hill, R., Chen, J., Gratch, G., Rosenbloom, P., and
Tambe, M. 1997. “Intelligent Agents for the Synthetic
Battlefield,” in AAAI-97/IAAI-97, pp. 1006-1012.

Kautz, H. and Selman, B. 1996. “Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search,” in
AAAI-96, Portland, OR, pp. 1194-1201.

Knoblock, C. 1995. “Planning, executing, sensing, and
replanning for information gathering,” in Proceedings of
IJCAI-95, Montreal, pp. 1686-1693.

McAllester, D. and Rosenblitt, D. 1991. “Systematic
Nonlinear Planning,” in AAAI-91.

Minton, S., 1990. “Quantitative Results Concerning the
Utility of Explanation-Based Learning,” Artificial Intelli-
gence, 42.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, MA: Harvard University Press.

Rickel, J. and Johnson, L. 1997. Intelligent tutoring in
virtual reality,” in Proceedings of Eighth World Confer-
ence on AI in Education, pp. 294-301.

Stefik, M. 1981. “Planning and Metaplanning,” in Read-
ings in Artificial Intelligence, Nilsson and Webber, eds.,
Tioga Publishing, Palo Alto, CA, pp. 272-286.

Tambe, M. 1997. “Agent Architectures for Flexible,
Practical Teamwork,” in AAAI-97, pp. 22-28.

Wilensky, R. 1980. “Meta-Planning,” Proceedings AAAI-
80, Stanford, CA, pp. 334-336.

