Modeling Culturally \& Emotionally Affected Behavior

Vadim Bulitko, Steven Solomon, Jonathan Gratch, Michael van Lent

http://ircl.cs.ualberta.ca

Acknowledgments

Outline

\ominus Bilateral negotiations (BiLAT)
\ominus Culturally Affected Behavior (CAB)
\ominus EMotion and Adaptation (EMA)
$\ominus C E M A=C A B+E M A$
\ominus Future work

SASO-ST: Negotiating with Virtual Humans

Outline

Biateral negotiations (BiLAT)

- Culturally Affected Behavior (CAB)
\ominus EMotion and Adaptation (EMA)
$\ominus C E M A=C A B+E M A$
\ominus Future work

Cultural Effects in BiLAT

Learn why market is not being used

Get Police Cooperation

PREPARATION

MEETING NEGOTIATION

AAR	FOLLOW
- -UP	

Social Science underpinnings

Social Science underpinnings

\ominus Schemas: frameworks for organizing knowledge and actions such as scripts, stereotypes and worldviews. [DiMaggio 97]
\ominus Conventionalized cultural behaviors
ө Cultural norms, Biases

Social Science underpinnings

\ominus Schemas: frameworks for organizing knowledge and actions such as scripts, stereotypes and worldviews. [DiMaggio 97]
\ominus Conventionalized cultural behaviors
\ominus Cultural norms, Biases
θ Theory of mind: the ability to understand that others have beliefs, desires and intentions that are different from one's own. [Nichols \& Stich 2003]
\ominus Cultural awareness

- Biases

Social Science underpinnings

\ominus Schemas: frameworks for organizing knowledge and actions such as scripts, stereotypes and worldviews. [DiMaggio 97]
\ominus Conventionalized cultural behaviors
\ominus Cultural norms, Biases
θ Theory of mind: the ability to understand that others have beliefs, desires and intentions that are different from one's own. [Nichols \& Stich 2003]
\ominus Cultural awareness
θ Biases
\ominus Shared Symbols: members of a culture share a common mapping from perceived symbols (objects, gestures, words...) to internal concepts. [Warner 1959, Shweder \& Levine 2003]
\ominus Culturally-specific perception
\ominus Cross cultural misperception

Examples of Socio-Cultural States

agent is threatened

participant is respectful

agent is familiar with participant

$C A B$ in a nutshell

\ominus Agent is selecting among alternative courses of action (i.e., plans)
\ominus The plan with the highest utility wins
\ominus Utility of a plan is a sum of utilities of its states
\ominus Utility of a state is belief * state utility

CAB: Example

CAB: Example

CAB: Example

Plan A

CAB: Example

Plan A
perform normal police duties

CAB: Example

Plan A

perform normal police duties

CAB: Example

CAB: Example

Plan A

 perform normal police duties community is helped
Plan B

CAB: Example

Plan A

 perform normal police duties community is helped
CAB: Example

Plan A

 perform normal police duties

CAB: Example

Plan A

perform normal police duties is helped

CAB: Example

Plan A

perform normal police duties is helped

Plan B
give financial aid
$+0.6$
community is helped
give uniforms: khaki shorts

CAB: Example

Plan A

perform normal police duties

community is helped

CAB: Example

Plan A

perform normal police duties is helped

CAB: Example

Plan B

CAB: Example

Plan A

perform normal police duties
 is helped

Plan B

CAB: Example

Plan B

CAB: Example

Plan B

CAB: Example

Plan B

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Example

CAB: Summary

CAB: Summary

CAB: Summary

CAB: Summary

CAB: Summary

Outline

Θ

\ominus EMotion and Adaptation (EMA)
$\ominus C E M A=C A B+E M A$
\ominus Future work

Psychological Underpinnings

Figure 1: The cognitive-motivational-emotive system. Adapted from Smith and Lazarus' (1990)

Appraisals

Table 1: Appraisal Variables		Does the event require attention or adaptive reaction
Relevance	Does the event facilitate or thwart what the person wants	
Desirability	What causal agent was responsible for an event	
Causal attribution	Agency	Blame and Credit
	Does the causal agent deserve blame or credit	
Likelihood	How likely was the event; how likely is an outcome	
Unexpectedness	Was the event predicted from past knowledge	
Urgency	Will delaying a response make matters worse	
Ego Involvement	To what extent does the event impact a person's sense of self (social esteem, moral values, cherished beliefs, etc.)	
Coping potential	Controllability	The extent to which an event can be influenced
	Changeability	The extent to which an event will change of its own accord
	Power	The power of a particular agent to directly or indirectly control an event
	Adaptability	Can the person live with the consequences of the event

[from Gratch and Marsella 2004]

Emotions

Table 3: Emotion categorization and intensity rules		
Appraisal Configuration	Emotion	Intensity
Desirability $(\mathrm{p})>0, \operatorname{Likelihood}(\mathrm{p})<1.0$	Hope	Desirability (p) \times Likelihood(p)
Desirability $(\mathrm{p})>0, \operatorname{Likelihood}(\mathrm{p})=1.0$	Joy	Desirability (p) \times Likelihood(p)
Desirability $(\mathrm{p})<0, \operatorname{Likelihood}(\mathrm{p})<1.0$	Fear	\mid Desirability $(\mathrm{p}) \times$ Likelihood(p)\|
$\operatorname{Desirability}(\mathrm{p})<0, \operatorname{Likelihood}(\mathrm{p})=1.0$	Distress	\mid Desirability $(\mathrm{p}) \times$ Likelihood(p)\|
$\operatorname{Desirability}(\mathrm{p})<0$, causal attribution $(\mathrm{q})=$ blameworthy	Anger	\mid Desirability $(\mathrm{p}) \times$ Likelihood(p)\|
$\operatorname{Desirability}(\mathrm{q} \neq \mathrm{p})<0$, causal attribution $(\mathrm{p})=$ blameworthy, causal agent $=p$	Guilt	\mid Desirability (q) \times Likelihood(p)\|

[from Gratch and Marsella 2004]

EMotion \& Adaptation

[from Gratch and Marsella 2004]

"Macro-EMA"

\ominus In the following, we are not covering
\ominus mood
\ominus some emotions
\ominus causal attributions
\ominus coping

EMA in Virtual Humans

\ominus Agent is selecting among alternative courses of action (i.e., plans)
\ominus The plan with the highest utility wins
\ominus Utility of a plan is cumulative weighted utility of emotions elicited by appraisals of the plan

EMA: Example

Plan A

perform normal police duties

Plan B
give financial aid
 community is helped
demand clear market

EMA: Example

Plan A

perform normal police duties

Plan B

give financial aid
 community is helped demand clear market

EMA: Example

Plan A

perform normal police duties

Plan B

give financial aid

community is helped
demand clear market

EMA: Example

give financial aid

EMA: Example

Plan B
give financial aid

EMA: Example

Plan B
give financial aid

EMA: Example

Plan B

give financial aid

community is helped
demand clear market

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

EMA: Example

Plon

(Hope 240, Joy 0, Fear 0, Distress 0)

Plan B

EMA: Example

Plon

(Hope 240, Joy 0, Fear 0, Distress 0)

Plan B

Bulitko, Solomon, Gratch, van Lent
July II, 2008

EMA: Example

Plon

(Hope 240, Joy 0, Fear 0, Distress 0)

(Hope + I, Joy + I, Fear - I, Distress -I)
hope

Plan B

210
(Hope +1 , Joy +1 , Fear -1 , Distress -1)
fear
(Hope 210, Joy 0, Fear 20, Distress 0)

EMA: Example

Plon

(Hope 240, Joy 0, Fear 0, Distress 0)

(Hope + I, Joy + I, Fear - I, Distress -I)
hope

240

240

Plan B

(Hope + I, Joy + I, Fear -I, Distress -I)

(Hope 210, Joy 0, Fear 20, Distress 0)

EMA: Example

Plon

(Hope 240, Joy 0, Fear 0, Distress 0)

(Hope + I, Joy + I, Fear -I, Distress -I)
hope

240

240

Plan B

190
 (Hope $+I$, Joy $+I$, Fear $-I$, Distress $-I$)

(Hope 210, Joy 0, Fear 20, Distress 0)

EMA: Example

Plon

(Hope 240, Joy 0, Fear 0, Distress 0)

(Hope +1 , Joy +1 , Fear - I, Distress -I
hope

240

Plan B

210
(Hope 210, Joy 0, Fear 20, Distress 0)

Outline

Ө Bilateral negotiations (BiLAT)

Θ

\ominus CEMA $=\mathrm{CAB}+\mathrm{EMA}$
\ominus Future work

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

CEMA: combining CAB \& EMA

Matrix CEMA

\ominus It turns out that CEMA can be encoded in matrix algebra

Matrix CEMA

\ominus It turns out that CEMA can be encoded in matrix algebra

Matrix CEMA

First, compute action effects

	give financial aid	give uniforms :shorts
community is helped	+0.6	+0.4
respectful of modesty	0.0	-0.5

Matrix CEMA

First, compute action effects

	give financial aid	give uniforms :shorts
community is helped	+0.6	+0.4
respectful of modesty	0.0	-0.5

Matrix CEMA

\ominus First, compute action effects

	give financial aid	give uniforms :shorts
community is helped	+0.6	+0.4
respectful of modesty	0.0	-0.5

\times| give
 financial
 aid | 0 |
| :---: | :---: |
| give
 uniforms:
 shorts | 1 |

Matrix CEMA

\ominus First, compute action effects

	give financial aid	give uniforms :shorts
community is helped	+0.6	+0.4
respectful of modesty	0.0	-0.5

\times| give
 financial
 aid | 0 |
| :---: | :---: |
| give
 uniforms:
 shorts | 1 |

Matrix CEMA

\ominus First, compute action effects

	give financial aid	give uniforms :shorts
community is helped	+0.6	+0.4
respectful of modesty	0.0	-0.5

Matrix CEMA

\ominus Second, update beliefs:
Δ

community is helped	0.4
respectful of modesty	-0.5

Matrix CEMA

\ominus Second, update beliefs:

Matrix CEMA

\ominus Second, update beliefs:

community is helped	0.4
respectful of modesty	-0.5

current beliefs

Matrix CEMA

\ominus Second, update beliefs:

current beliefs

community is helped	0.4
respectful of modesty	-0.5

II

Matrix CEMA

\ominus Second, update beliefs:

community is helped	0.4
respectful of modesty	-0.5

current beliefs

community is helped	0.2
respectful of modesty	0.9

new beliefs

$=$| community
 is helped | 0.6 |
| :---: | :---: |
| respectful
 of
 modesty | 0.4 |

Matrix CEMA

\ominus Third, compute plan utility
new beliefs

community is helped	0.6
respectful of modesty	0.4

Matrix CEMA

\ominus Third, compute plan utility

new beliefs

Matrix CEMA

\ominus Third, compute plan utility

Matrix CEMA

\ominus Third, compute plan utility

Matrix CEMA

\ominus Third, compute plan utility

new beliefs

plan utility

Matrix CEMA

\ominus Intention probability
\ominus Agent's actions conditional on state degrees

- Appraisals
\ominus Emotion elicitation
\ominus Can all be encoded in the matrix form

Appraisal + Elicitation: Hope

- hopeMask = (degrees < 1.0) .* (utilities > 0);

ө intensity = abs(degrees .* utilities);
ө hopeInstances = hopeMask .* intensity;

- hope $=$ sum(hopeInstances);
\ominus Actual 4 lines of code in MATLAB

Matrix Advantages

\ominus code becomes a series of one-liners
\ominus transparent and easy to follow
\ominus complete separation of data and code
\ominus cultures and personalities are just matrices
\ominus machine learning of culture and personality parameters

Outline

Θ

θ

\ominus Future work

Future Work: Machine Learning

\ominus Both CAB and EMA have a large number of parameters:
\ominus action add/delete effects
Θ concern values
\ominus intention probability function
\ominus Where do they come from?
\ominus Machine learning using historic data?

Future Work: Learning Heuristic Search

- Lots of (recent) work in learning in heuristic search:
- Korf, Ishida, Russell, Wefald, Shue, Zamani, Barto, Shimbo, Koenig, Furcy, Shang, Bulitko, Hernandez, Meseguer, Sigmundarson, Bjornsson, Likhachev, Rayner, Lu, Anderson, Lustrek, et al.

- Powerful methods
\ominus Search does not have to happen in gridworlds or I5-puzzles
\ominus Can be in negotiation space in BiLAT
\ominus Links to both culture and emotions

Future Work: Emotions from Culture

\ominus Can there be situations where culture or emotions by themselves do not model the right behavior?
\ominus Example:
\ominus agent's cultural norms are threatened or jeopardized \rightarrow causes fear or distress
\ominus agent is fearful of being viewed as unobservant of Islam
\ominus i.e., appraising and eliciting emotions over a socio-cultural network

Contributions

\ominus Simultaneous modeling of emotions and culture
\ominus provisions for modeling emotions from cultural states
\ominus Formal re-write of CAB and EMA in matrix form
\ominus computationally effective
θ transparent/simple representation/implementation
\ominus easy ways to add personality and religion
\ominus provisions for easier machine learning
\ominus provisions for learning real-time heuristic search

