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Abstract. During face-to-face communication, people continuously ex-
change para-linguistic information such as their emotional state through
facial expressions, posture shifts, gaze patterns and prosody. These af-
fective signals are subtle and complex. In this paper, we propose to ex-
plicitly model the interaction between the high level perceptual features
using Latent-Dynamic Conditional Random Fields. This approach has
the advantage of explicitly learning the sub-structure of the affective
signals as well as the extrinsic dynamic between emotional labels. We
evaluate our approach on the Audio-Visual Emotion Challenge (AVEC
2011) dataset. By using visual features easily computable using off-the-
shelf sensing software (vertical and horizontal eye gaze, head tilt and
smile intensity), we show that our approach based on LDCRF model
outperforms previously published baselines for all four affective dimen-
sions. By integrating audio features, our approach also outperforms the
audio-visual baseline.

Keywords: audio-visual emotion recognition, multi-modal fusion, la-
tent variable models, conditional random fields

1 Introduction

Automated recognition and analysis of human emotions is an important part
of the development of affect sensitive AI systems [18]. Humans display affective
behavior that is multi-modal, subtle and complex. People are adept at expressing
themselves and interpreting others through the use of such non-verbal cues as
vocal prosody, facial expressions, eye gaze, various hand gestures, head motion
and posture. All of these modalities contain important affective information that
can be used to automatically infer the emotional state of a person [23, 7].

Majority of work in automated emotion recognition so far [23] has focused
on analysis of the six discrete basic emotions [4] (happiness, sadness, surprise,
fear, anger and disgust), even though in everyday interactions people exhibit
non-basic and recognisable mental/affective states such as interest, boredom,
confusion etc. [20].



Furthermore, because a single label (or multiple discrete labels from a small
set) might not describe the complexity of an affective state well, there has been
a move to analyse emotional videos/audio along a set of small number of la-
tent dimensions, providing a continuous rather than a categorical view of emo-
tions. Examples of such affective dimensions are power (sense of control), valence
(pleasant vs. unpleasant), activation (relaxed vs. aroused), and expectancy (an-
ticipation). Fontaine et al. [6] argue that these four dimensions account for most
of the distinctions between everyday emotion categories, and hence form a good
set to analyse.

Automatic affect sensing and recognition researches have started exploring
this venue as well [7]. The problem of dimensional affect recognition is often posed
as a binary classification problem [7] (active vs. passive, positive vs. negative etc.)
or even as a four-class one (classification into quadrants of a 2D space) rather
than a regression one, although there are some exceptions (see Section 2 for more
details). In our work we represent the problem as a separate binary classification
one along each of the four dimensions.

In addition, most of the work so far has concentrated on analysing different
modalities in isolation rather than looking for ways to fuse them [23, 7]. This
is partly due to the limited availability of suitably labeled multi-modal datasets
and the difficulty of fusion itself, as the optimal level at which the features should
be fused is still an open research question [23, 7].

We present a Latent-Dynamic Conditional Random Field [13] (LDCRF)
based model to infer the dimensional emotional labels from multiple high level
visual cues and a set of auditory features. This approach has the advantage of
explicitly learning the sub-structure of the affective signals as well as the ex-
trinsic dynamic between emotional labels. The dimensions analysed in our work
are power, valence, expectancy, and activation. Our model is evaluated on the
First International Audio/Visual Emotion Challenge (AVEC 2011) dataset. A
complete description of the challenge and the dataset can be found in Shuller et
al. [21]. For the challenge the originally continuous dimensions were redefined as
binary ones based on whether they were above or below average, this reduced a
regression problem into a classification one.

We evaluate our method on all of the three challenge datasets: video, audio
and audio-visual. This allows us to examine the suitability of our approach for
analysing audio, visual and audio-visual data. We see an improvement in perfor-
mance over all of the selected baselines (Support Vector Machines, Conditional
Random Fields and Decision Trees) when evaluating our approach on the devel-
opment set. Furthermore, when evaluated on the test set our approach improves
the baseline results for video and audio-visual data.

2 Previous Work

As this paper concentrates on recognition of emotion in dimensional space we
present the previous work on this specific task. For recent surveys of dimensional
and categorical affect recognition see Zeng et al. [23], and Gunes and Pantic [7].



Of special relevance to our work is the work done by Wöllmer et al. [22]
that uses Conditional Random Fields (CRF) for discrete emotion recognition
by quantising the continuous labels for valance and arousal based on a selection
of acoustic features. In addition, they use Long Short-Term Memory Recurrent
Neural Networks to perform regression analysis on these two dimensions. Both
of these approaches demonstrate the benefits of including temporal information
when approaching emotion recognition in dimensional space.

Nicolaou et al. [14] present experiments for classification of spontaneous af-
fect based on Audio-Visual features using coupled Hidden Markov Models that
allow them to model temporal correlations between different cues and modali-
ties. They also show the benefits of using the likelihoods produced from separate
(C)HMMs as input to another classifier, rather than picking the label with a
maximum likelihood for audio-visual classification of affective data. Interestingly,
their experiments show that visual features contribute more in spontaneous af-
fect classification in the valence dimension. As in our work the task is approached
as a classification rather than regression one.

Nicolaou et al. [15] propose the use of Output-Associative Relevance Vec-
tor Machine (OA-RVM) for dimensional and continuous prediction of emotions
based on automatically tracked facial feature points. Their work poses the di-
mensional labeling problem as a regression and not a classification one. Their
proposed regression framework exploits the inter-correlation between the valence
and arousal dimensions by including in their mode the initial output estimation
together with their input features. In addition, OA-RVM regression attempts to
capture the temporal dynamics of output by employing a window that covers a
set of past and future outputs.

Eyben et al. [5] fuse both visual (head motion, facial action units) and audio
modalities in order to analyse human affect in valence and expectation dimen-
sions. Their results show improved performance when using high-level event-
based features such as smiles, head shakes or laughter rather than low-level
signal-based ones such as facial feature points or spectral information when pre-
dicting affect from audiovisual data in valence and expectation dimensions.

3 Approach

When approaching the challenging problem of recognizing affective dimensions
in un-segmented video and audio sequences, one valid approach is to experiment
with an extensive set of visual or audio features, where each feature is a low-
level representation of the instantaneous appearance of the face or a low level
descriptor of the audio signal. The problem with this approach is that the feature
space will end up extremely large (5900 dimensions of visual and 1941 of audio
features in the case of Schuller et al. [21]). This high dimensionality issue can be
partially solved by performing dimensionality reduction or feature selection.

For audio features we employ a standard approach of selecting a subset of fea-
tures using Correlations-based Feature Selection (CFS) [8]. For visual features
however, we propose to take advantage of the existing visual sensing techno-
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Fig. 1: Graphical representation of the LDCRF model. xj represents the jth

observation (corresponding to the jth observation of the sequence), hj is a hid-
den state assigned to xj , and yj the class label of xj (i.e. positive or negative).
Gray circles are observed variables.

logy such as Omron OKAO Vision [17] and SHORE4, to automatically compute
higher-level visual features. These commercial and open-source software packages
can detect visual features (e.g., eye corners) and recognize high-level communica-
tive signals (e.g., smile intensity). We selected a subset of communicative signals
which were shown to be useful when analyzing dyadic interactions [2, 11, 1] and
could be estimated robustly: eye gaze, smile and head tilt (see Section 4.2 for
more details). By using higher-level visual features, we have the advantage of
lower dimensionality, which allows us to learn the interaction between features.

To recognize affective dimensions, we propose to explicitly learn the hidden
dynamics between input features (e.g., gaze and smile) using the Latent-Dynamic
Conditional Random Field(LDCRF) model [13] (see Figure 1). LDCRF offers
several advantages over previous discriminative models. In contrast to Condi-
tional Random Fields(CRFs) [12], LDCRF incorporates hidden state variables
which model the sub-structure of gesture sequences. The CRF approach models
the transitions between gestures, thus capturing extrinsic dynamics, but lacks
the ability to represent internal sub-structure. LDCRF can learn the dynam-
ics between gesture labels and can be directly applied to labeled unsegmented
sequences.

As described in Morency et al. [13], the task of the LDCRF model is to learn a
mapping between a sequence of observations x = {x1, x2, ..., xm} and a sequence

of labels y = {y1, y2, ..., ym}. Each yj is a class label for the jth observation
in a sequence and is a member of a set Y of possible class labels, for example,
Y = {positive-valence, negative-valence}. Each frame observation xj is
represented by a feature vector φ(xj) ∈ Rd, for example, the eye gaze, smile
and head tilt at each frame. For each sequence, we also assume a vector of “sub-
structure” variables h = {h1, h2, ..., hm}. These variables are not observed in the
training examples and will therefore form a set of hidden variables in the model.

Given the above definitions, we define a latent conditional model:

P (y | x, θ) =
∑
h

P (y | h,x, θ)P (h | x, θ). (1)

where θ are the parameters of the model.

4 http://www.iis.fraunhofer.de/en/bf/bv/ks/gpe/demo/



Given a training set consisting of n labeled sequences (xi,yi) for i = 1...n,
training is done following Lafferty et al. [12] using this objective function to learn
the parameter θ∗:

L(θ) =

n∑
i=1

logP (yi | xi, θ)−
1

2σ2
||θ||2 (2)

The first term in Eq. 2 is the conditional log-likelihood of the training data.
The second term is the log of a Gaussian prior with variance σ2, i.e., P (θ) ∼
exp

(
1

2σ2 ||θ||2
)
.

For a more detailed discussion of LDCRF training and inference see Morency
et al. [13].

4 Experimental Setup

In this section we first introduce the dataset used for validating and testing our
approach. We follow with a discussion of the audio and video features selected for
our experiments. We then describe the audio-visual fusion methods used in our
experiments. Finally, the training and the validation of the models is described.

4.1 Dataset

For all our experiments we used the dataset provided by Schuller et al. [21].
The dataset consist of 95 video and audio recorded dyadic interaction sessions
between human participants and a virtual agent operated by a human. The
dataset consists of upper body video segments with per frame and audio and
audio-visual segments with per word binary labels along the four affective di-
mensions (activation, expectation, power and valence).

4.2 Visual Features

As discussed in Section 3, we selected a subset of visual communicative signals
which were shown to be useful when analyzing dyadic interactions [2, 11, 1] and
could be estimated robustly by an off-the-shelf sensing software. In our experi-
ments, we processed each video sequence with the Omron OKAO Vision software
library [17] to automatically extract the following facial features: horizontal eye
gaze direction (degrees), vertical eye gaze direction (degrees), smile intensity
(from 0-100) and head tilt (degrees). We reason that the visual features that
play an important role in face-to-face communication are potentially good for
affective signal recognition. In addition, the use of higher-level visual features of
low dimensionality allows us to learn the interaction between features better.

4.3 Audio Features

For our original audio feature set we used the 1941 features provided with the
dataset [21]. Each of the features were sampled over a duration of a single word
(mean word length is 263ms). As the dimensionality of the feature set is very
high we applied Correlation-based Feature Selection (CFS) [8] to select a subset



(a) Early (feature level) fu-
sion

(b) Late (decision level) fusion

Fig. 2: The two multimodal fusion techniques used in our experiments.

of features relevant for the task. Due to memory limitations of WEKA [9] toolkit
a subsample of the audio training set was taken for feature selection (every third
word). On the resulting subset a 10-fold cross validation CFS was performed
on each of the four emotion labels (valence, activation, expectancy, and power)
independently. That is, leaving a 10th of the training set out and running CFS
on the remaining data. Features that were chosen in at least 5 of 10 folds were
chosen as input features for our model, with the exception of arousal where
only the features selected in all of the ten folds were chosen as the 5 out of 10
approach lead to 91 features. This was done in order to keep the dimensionality
low, and have a roughly similar number of features across the different affective
dimensions. This resulted in 19 features for arousal, 7 for expectancy, 22 for
power, and 15 for valence dimensions.

4.4 Audio-Visual Features

In the case of fusion we needed to align the visual with audio features. Audio
features were sampled over a longer and varying period of time as opposed to
per frame sampling of video features. For computing the visual features at the
word level, we used the mean values of all the frames happening during a specific
word. This resulted in same length sequences for both video and audio features.

The optimal level of fusion is still an open research question. In our work we
explore several approaches fusion (illustrated in Figure 2). The most straightfor-
ward one is to concatenate the audio and visual features and train a classifier on
them (Figure 2a). An alternative to that is to concatenate the marginal proba-
bilities output from the unimodal models (Figure 2b) and use that as an input
to another classifier.

4.5 Baseline Models

In addition to the baseline provided by Shuller et al. [21], we decided to evaluate
our approach (LDCRF) against Conditional Random Fields (CRF), which were
already used in an affective dimension classification task by Wöllmer et al. [22].
We also compare our approach to decision trees due to their simplicity and speed
of training, and also to provide us with an additional non-temporal model as a
baseline.

SVM The baseline proposed by Shuller et al. [21] uses Support Vector Ma-
chine (SVM) classification without feature selection. For the audio data a linear
kernel SVM was used, while for the video a radial basis function kernel SVM.



Both were trained on the training dataset. For the audiovisual data, they used
late (decision level) fusion using a linear SVM trained on the development set.

Decision Trees We used the Java implementation of C4.5 algorithm for
decision trees as our first baseline model [19]. The decision tree is created based
on the information entropy of each feature in a given training set.

Conditional Random Field For our third baseline we trained a single
Conditional Random Field (CRF) for each affective dimension using the visual
input features [12]. The CRF model has a similar structure as the LDCRF model
but without the hidden variables. No latent dynamic is explicitly learned with
the CRF model.

4.6 Methodology

For all the experiments we use the data provided by Schuller et al. [21]. The
data is divided into 3 subsets: training, development and testing. The training
set consists of 31 sessions, while the development set consists of 32 sessions that
were used for validation of the model parameters. The test set consists of 11
video only sequences, 11 audio only sequences, and 10 audio-visual sequences.
All of the 32 test sequences did not have any publicly available labels. The
same validation and testing methodology was applied to audio, video and audio-
visual data. In the case of late fusion the training was again performed on the
training dataset and validated on development one (same technique used for the
unimodal models). In each case a separate binary classifier is trained for each of
the dimensions rather than one giving multiple-label output. We automatically
validated the following model parameters: for CRF and LDCRF the L2-norm
regularization term was validated with values 10k, k = −2..3, for LDCRF we
validated the number of hidden states (2-4), no validation was performed for
decision trees. We used weighted accuracy as the measure of performance for all
of our experiments.

For the decision tree experiments we used the WEKA toolkit [9]. For training
CRF and LDCRF we used the freely available hCRF library [10].

5 Results and Discussion

5.1 Visual data

The goal of our experiments on visual data were two fold: evaluating the selected
visual features (gaze, smile and head tilt) and comparing our approach based
on LDCRF with other baseline models. First, we performed a comparison of our
selected set of features (see Section 4.2) with the Local Binary Patterns [16] used
in Schuller et al. [21]. For fair comparison, we trained a Support Vector Machine
(SVM) with a radial basis function (RBF) kernel as was performed by Schuller
et al. [21], who used a 5900 dimensional visual feature vector, while our feature
vector was only 4 dimensional (horizontal and vertical gaze, smile and head tilt).
The performance of using our features can be seen (Table 1) to be similar to
those used by Shuller et al. [21], showing that our selected features are at at
least as good as theirs.



Table 1: Visual feature evaluation: comparison between the use of Local Binary
Patterns features [21] and our set of features described in Section 4.2 on the
development set.

Weighted accuracy (%) Activation Expectancy Power Valence

SVM + LBP [21] 60.2 58.3 56.0 63.6
SVM + Our features 58.7 60.3 54.0 63.6

Table 2: Classification results of our approach (LDCRF) and the baselines on
the development dataset for audio and video modalities. A stands for activation,
E for expectancy, P for power and V for valence.

Weighted accuracy Audio Video
(%) A E P V Average A E P V Average

Baseline [21] 63.7 63.2 65.6 58.1 62.7 60.2 58.3 56.0 63.6 59.5
Decision trees 60.8 65.9 63.1 64.3 63.5 62.1 55.4 49.3 64.1 57.7

CRF 62.9 67.3 67.0 44.6 60.4 72.3 53.8 46.2 69.5 60.5
LDCRF 74.9 68.4 67.0 63.7 68.5 74.5 60.0 60.3 72.9 66.9

We compare our approach with the three selected baselines (described in Sec-
tion 4.5) on the development set. It can be seen from Table 2, video sub-challenge,
that our LDCRF approach outperforms all of them in all of the affection dimen-
sions. We also evaluate our LDCRF model on the test set, it can be seen to
outperform the baseline [21] in all of the affective dimensions (Table 4, video
sub-challenge). We only compare the LDCRF method on the test set due to a
limited number of five attempts of result submissions per sub-challenge.

5.2 Audio Data

Similarly to the video data experiments we first evaluate the approach on audio
data against all three of the baselines on the development set (Table 2, audio
sub-challenge), and only the LDCRF model on the test set (Table 4 audio sub-
challenge). On the development set our model can be seen outperforming other
approaches. On the test set, LDCRF performance is similar to the SVM base-
line. The low performance of both SVM and LDCRF approaches (e.g. the best
performance on the Power labels is 28%) on this test set suggests a significant
difference in the data distribution of the audio-only sub-challenge test set.

5.3 Audio-Visual Data

For audio-visual fusion two experiments were performed, comparing the fusion
methods and evaluating them on the test dataset. From Table 3 we can see
that the late fusion using LDCRF as a model to fuse the outputs of uni-modal
classifiers performed best in all of the affective dimensions, so only this approach
was evaluated on the test set.



Table 3: Fusion methods using LDCRF classifiers on the development set.

Weighted accuracy (%) Activation Expectancy Power Valence avg.

Early Fusion (LDCRF) 79.3 63.4 66.9 62.8 68.1
Late Fusion (LDCRF) 81.7 73.1 73.3 73.5 75.4

Late Fusion (SVM) 75.4 69.4 65.3 72.1 70.5

Table 4: Official results on the test set.

Weighted accuracy (%) Activation Expectancy Power Valence avg.

Video sub-challenge

Baseline [21] 42.2 53.6 36.4 52.5 46.2
LDCRF 65.5 61.7 47.1 69.8 61.0

Audio sub-challenge

Baseline [21] 55.0 52.9 28.0 44.3 45.1
LDCRF 55.8 50.1 19.8 46.5 43.0

Audiovisual sub-challenge

Baseline [21] 67.2 36.3 62.2 66.0 57.9
LDCRF 65.6 53.4 62.9 59.5 60.3

We can see in Table 4 the results of our approach on the audio-visual test
set. Our LDCRF based approach gives results that are always better than 50%
(chance level) while the SVM baseline approach performs below chance level for
expectancy. Our LDCRF based approach outperforms the SVM-based baseline
on the average over all 4 emotion labels.

6 Conclusion

In this paper, we proposed an approach that models the interaction between the
high level perceptual features using Latent-Dynamic Conditional Random Fields.
We evaluated our approach on the Audio-Visual Emotion Challenge (AVEC
2011) dataset. By using visual features easily computable using off-the-shelf
software, we showed that our approach based on LDCRF model outperforms
the previously published baseline for all four affective dimensions on both the
development and test datasets. Integrating this with audio data we are able to
improve performance of the baseline on audio-visual data on average.

LDCRF model seems to be suitable for late feature fusion outperforming
the SVM model for fusion. Looking at the results from video and audio sub-
challenges, they did not seem to generalise very well on the audio-visual sub-
challenge data (both in the case of baseline and our approach), this might have
been due to the differences between the test subsets. This points to the need
of future work looking into using semi-supervised domain adaptation techniques
(such as proposed by Blitzer et al. [3]) to learn the distribution of features in
unseen data allowing the methods to generalise better.
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