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1.  Introduction 
Emotions play a crucial role in mediating human social relationships (Davidson, Scherer, 

& Goldsmith, 2003). Whether articulated through body movements, voice, deed, or 

through the ways we justify our actions, human relationships are laden with emotion. 

Emotion can act as a signal, communicating information about the sender’s mental state, 

indicating their future actions, and indirectly inducing emotions in the mind of observers. 

Emotion can also act as a mental process, altering how people see the world, how they 

form decisions, and how they respond to the environment. In our work we seek to de-

velop testable computational models that emphasize the relationship between emotion 

and cognition (Gratch & Marsella, 2001; Marsella & Gratch, 2003). In this chapter, we 

focus on emotions that have a social component: the rage arising from a perceived of-

fence, the guilt we feel after harming another.  Such emotions arise from social explana-

tions involving judgments not only of causality but intention and free will (Shaver, 1985). 

These explanations underlie how we act on and make sense of the social world. In short, 

they lie at the heart of social intelligence. With the advance of multi-agent systems, user 

interfaces, and human-like agents, it is increasingly important to reason about this uniquely 

human-centric form of social inference. Here we relate recent progress in modeling such 

socio-emotional judgments. 

 

Modeling emotions is a relatively recent focus in artificial intelligence and cognitive 

modeling and deserves some motivation.  Although such models can ideally inform our 
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understanding of human behavior, we see the development of computational models of 

emotion as a core research focus that will facilitate advances in the large array of compu-

tational systems that model, interpret or influence human behavior. On the one hand, 

modeling applications must account for how people behave when experiencing intense 

emotion including disaster preparedness (e.g., when modeling how crowds react in a dis-

aster (Silverman, 2002)), training (e.g., when modeling how military units respond in a 

battle (Gratch & Marsella, 2003)), and even macro-economic models (e.g., when model-

ing the economic impact of traumatic events such as 9/11 or the SARS epidemic). On the 

other hand, many applications presume the ability to correctly interpret the beliefs, mo-

tives and intentions underlying human behavior (such as tutoring systems, dialogue sys-

tems, mixed-initiative planning systems, or systems that learn from observation) and 

could benefit from a model of how emotion motivates action, distorts perception and in-

ference, and communicates information about mental state.  Emotions play a powerful 

role in social influence, a better understanding of which would benefit applications that 

attempt to shape human behavior, such as psychotherapy applications (Marsella, Johnson, 

& LaBore, 2000; Rothbaum et al., 1999), tutoring systems (Lester, Stone, & Stelling, 

1999; Ryokai, Vaucelle, & Cassell, in press; Shaw, Johnson, & Ganeshan, 1999), and 

marketing applications (André, Rist, Mulken, & Klesen, 2000; Cassell, Bickmore, Camp-

bell, Vilhjálmsson, & Yan, 2000). Lastly, models of emotion may give insight into build-

ing models of intelligent behavior in general. Several authors have argued that emotional 

influences that seem irrational on the surface have important social and cognitive func-

tions that would be required by any intelligent system (Damasio, 1994; Minsky, 1986; 

Oatley & Johnson-Laird, 1987; Simon, 1967; Sloman & Croucher, 1981).  For example, 

social emotions such as anger and guilt may reflect a mechanism that improves group 

utility by minimizing social conflicts, and thereby explains peoples “irrational” choices in 

social games such as prison’s dilemma (Frank, 1988).  Similarly, “delusional” coping 

strategies such as wishful thinking may reflect a rational mechanism that is more accu-

rately accounting for certain social costs (Mele, 2001). 

 



Virtual Humans and “Broad” Cognitive Models 

Though, much of cognitive science and cognitive modeling has focused on accurately 

modeling relatively narrow psychological phenomena, our work is part of a growing 

trend to demonstrate cognitive models within the context of “broad agents” that must si-

multaneously exhibit multiple aspects of human behavior (Anderson & Lebiere, 2003).  

Arguably, the most ambitious of such efforts focus on the problem of developing virtual 

humans, intelligent systems with a human-like graphical manifestation. Building a virtual 

human is a multidisciplinary effort, joining traditional artificial intelligence problems 

with a range of issues from computer graphics to social science. Virtual humans must act 

and react in their simulated environment, drawing on the disciplines of automated reason-

ing and planning. To hold a conversation, they must exploit the full gamut of natural lan-

guage research, from speech recognition and natural language understanding to natural 

language generation and speech synthesis. Providing human bodies that can be controlled 

in real time delves into computer graphics and animation. And because a virtual human 

looks like a human, people readily detect and are disturbed by discrepancies from human 

norms. Thus, virtual human research must draw heavily on psychology and communica-

tion theory to appropriately convey nonverbal behavior, emotion, and personality.  

Through their breadth and integrated nature, virtual humans provide a unique tool for as-

sessing cognitive models.  

 

In developing computational models of emotional phenomena, we focus on models that 

can influence and exploit the wide range of capabilities that a virtual human provides.  In 

particular, we have used emotion models to mediate the cognitive and communicative 

behavior of virtual humans in the context of the Mission Rehearsal Exercise (MRE) train-

ing system.  In this system, students can engage in face-to-face spoken interaction with 

the virtual humans in high-stress social settings (Figure 1a) (Gratch, 2000; Gratch & 

Marsella, 2001; Marsella & Gratch, 2002, 2003; Rickel et al., 2002).  Emotional models 

help create the non-verbal communicative behavior and cognitive biases one might ex-

pect if trainees were interacting with real people in similar high-stress settings.  Our sce-

narios focus on dialogue and group decision-making, rather than physical action, so the 

focus of our emotional models is on cognitive source of emotions, emotion’s influence on 



cognition (decision-making, planning, and beliefs) and external verbal and non-verbal 

communicative behavior that reflect the virtual human’s emotional state. 

  

 
Social Emotions 

Allowing naïve users to freely interact with a broad cognitive model can quickly reveal 

its limitations, and the work described here is motivated by the following example of 

“novel” emotional reasoning on the part of our virtual humans. In the Mission Rehearsal 

Exercise, trainees have the opportunity to make bad decisions.  In one instance, a human 

user issued a particular flawed order to his virtual subordinate. The subordinate suggested 

a better alternative, but when this was rejected, the subordinate, in turn, ordered lower 

level units to execute the flawed order.  Rather than blaming the trainee, however, the 

virtual human paradoxically displayed anger at the subordinate characters that executed 

the plan.  In contrast, human observers universally assign blame to the trainee, as the 

subordinate was clearly following orders and even attempted to negotiate for a different 

outcome. The virtual human’s “novel” attribution of blame was traced to some simplify-

ing assumptions in the model: the model assigns blame to whoever actually executes an 

act with undesirable consequence.  In this case, however, the action was clearly coerced. 

Such results indicate an impoverished capacity to judge credit or blame in a social con-

text.  How we addressed this limitation is the subject of the second half of this chapter. 

Figure 1: Two applications that use virtual humans to teach people to cope with emotionally-
charged social situations. The image on the left illustrates the first author interacting through 
natural language with the MRE system, designed to teach leadership skills.  The image on the 
left is from Carmen’s Bright Ideas (Marsella, Johnson, & LaBore, 2003), developed by the 
third author, and designed to teach coping skills to parents of pediatric cancer patients. 



Overview 

This chapter provides an overview of EMA, our current model of emotion, and then de-

scribes our efforts to extend the model with respect to its ability to reason about social 

(multi-agent) actions.  Section 2 gives a review of cognitive appraisal theory, the theo-

retical underpinning of our model.  Section 3 outlines our current computational ap-

proach.  Section 4 contrasts our model with related work and describes some limitations.  

Section 5 discusses how we can extend the model to better account for attributions of so-

cial credit and blame.  Section 6 ends with some concluding remarks. 

 

2. Cognitive Appraisal Theory (a review) 
Motivated by the need to model the influence of emotion on symbolic reasoning, we 

draw theoretical inspiration from cognitive appraisal theory, a theory that emphasizes the 

cognitive and symbolic influences of emotion and the underlying processes that lead to 

this influence (K. R. Scherer, Schorr, & Johnstone, 2001) in contrast to models that em-

phasize lower-level processes such as drives and physiological effects (Velásquez, 1998). 

In particular, our work is informed by Smith and Lazarus’ cognitive-motivational-

emotive theory (Smith & Lazarus, 1990).  

 

Appraisal theories argue that emotion arises from two basic processes: appraisal and cop-

ing. Appraisal is the process by which a person assesses their overall relationship with the 

environment, including not only current conditions, but events that led to this state and 

future prospects. Appraisal theories argue that appraisal, although not a deliberative proc-

ess in of itself, is informed by cognitive processes and, in particular, those process in-

volved in understanding and interacting with the environment (e.g., planning, explana-

tion, perception, memory, linguistic processes).  Appraisal maps characteristics of these 

disparate processes into a common set of intermediate terms called appraisal variables.  

These variables serve as an intermediate description of the person-environment relation-

ship and mediate between stimuli and response. Appraisal variables characterize the sig-

nificance of events from an individual’s perspective. Events do not have significance in 

of themselves, but only by virtue of their interpretation in the context of an individual’s 

beliefs, desires and intention, and past events. 



 

Coping determines how the organism responds to the appraised significance of events, 

preferring different responses depending on how events are appraised (Peacock & Wong, 

1990). For example, events appraised as undesirable but controllable motivate people to 

develop and execute plans to reverse these circumstances. On the other hand, events ap-

praised as uncontrollable lead people towards denial or resignation. Appraisal theories 

typically characterize the wide range of human coping responses into two classes. Prob-

lem-focused coping strategies attempt to change the environment. Emotion-focused cop-

ing) (Lazarus, 1991) are inner-directed strategies that alter one’s mental stance toward the 

circumstances, for example, by discounting a potential threat or abandoning a cherished 

goal.  

 

The ultimate effect of these strategies is a change in a person’s interpretation of his or her 

relationship with the environment, which can lead to new (re-)appraisals. Thus, coping, 

cognition and appraisal are tightly coupled, interacting and unfolding over time (Lazarus, 

1991; K. Scherer, 1984): an agent may “feel” distress for an event (appraisal), which mo-

tivates the shifting of blame (coping), which leads to anger (re-appraisal). A key chal-

lenge for a computational model is to capture this dynamics. 

 

3.  A Computational Model of Appraisal and Coping 
EMA is a computational model of emotion processing that we have been developing and 

refining over the last few years (Gratch, 2000; Gratch & Marsella, 2001, 2004a; Marsella 

& Gratch, 2003).  EMA is implemented within the Soar, a general architecture for devel-

oping cognitive models (Newell, 1990). Here, we sketch the basic outlines of the model 

and some of the details of its Soar implementation. Soar is intended to model the mixture 

of parallel and sequential reasoning that has been posited to underlie human cognition 

and can be seen as a blackboard model.  It provides an unstructured working memory (in 

terms of objects with attributes and values that can be other objects).  Persistent changes 

to working memory are made by operators that are proposed in parallel but selected se-

quentially and are intended to model the sequential bottleneck of deliberative reasoning.  

Elaboration rules fire rapidly and in parallel and make transitory elaborations to working 



memory.  Soar also provides a model of learning via a chunking mechanism and a model 

of universal subgoaling, though these last two features do not play a role in our current 

model. 

3.1 EMA Overview 
A central tenant in cognitive appraisal theories in general, and Smith and Lazarus’ work 

in particular, is that appraisal and coping center around a person’s interpretation of their 

relationship with the environment. This interpretation is constructed by cognitive proc-

esses, maintained in a working memory, summarized by appraisal variables and altered 

by coping responses. To capture this interpretative process in computational terms, we 

have found it most natural to build on decision-theoretic planning representations (e.g., 

(Blythe, 1999)) and on methods that explicitly model commitments to beliefs and inten-

tions (Bratman, 1990; Grosz & Kraus, 1996). Planning representations provide a concise 

description of the causal relationship between events and states, key for assessing the 

relevance of events to an agent’s goals and for forming causal attributions. The appraisal 

variables of desirability and likelihood find natural analogues in the concepts of utility 

and probability as characterized by decision-theoretic methods. In addition to inferences 

about causality, attributions of blame or credit involve reasoning if the causal agent in-

tended or foresaw the consequences of their actions, most naturally represented by ex-

plicit representations of beliefs and intentions. As we will see, commitments to beliefs 

and intentions also play a key role in assigning social blame and credit. Admittedly, these 

methods and representational commitments have issues from the standpoint of cognitive 

plausibility, but taken together they form a first-approximation of the type of reasoning 

that underlies cognitive appraisal. 



 

In EMA, the agent’s current interpretation of its “agent-environment relationship” is rei-

fied by an explicit representation of beliefs, desires, intentions, plans and probabilities 

that correspond to the agent’s working memory.  Following a blackboard-type model, this 

representation encodes as the input, intermediate results and output of reasoning process 

that mediate between the agent’s goals and its physical and social environment (e.g., per-

ception, planning, explanation, and natural language processing).  These incremental 

processes are implemented as Soar operators, though we use the more general term cog-

nitive operators to refer to these processes and adopt the term causal interpretation to 

refer to this collection of data structures to emphasize the importance of causal reasoning 

as well as the interpretative (subjective) character of the appraisal process. At any point 

in time, the causal interpretation encodes the agent’s current view of the agent-

environment relationship, an interpretation that may subsequently change with further 

observation or inference. EMA treats appraisal as a set of feature detectors that map fea-

tures of the causal interpretation into appraisal variables. For example, an effect of an ac-

tion that threatens a desired goal would be assessed as a potential undesirable event. Cop-

ing acts by creating control signals that prioritize or trigger the processing of cognitive 

operators, guiding them to overturn or maintain features of the causal interpretation that 

yield high-intensity appraisals. For example, coping may resign the agent to the threat by 

 
Figure 2: EMA’s reinterpretation of Smith and Lazarus 



abandoning the desired goal. Figure 2 illustrates a reinterpretation of Smith and Lazarus’ 

cognitive-motivational-emotive system consistent with this view. 

 

Figure 3 illustrates the representation of a causal interpretation. In the figure, an agent has 

a single goal (affiliation) that is threatened by the recent departure of a friend (the past 

action “friend departs” has one effect that deletes the “affiliation” state).  This goal might 

be re-established if the agent “joins a club.” Appraisal assesses every instance of an act 

facilitating or inhibiting a fluent in the causal interpretation.  In the figure, the interpreta-

tion encodes two “events,” the threat to the currently satisfied goal of affiliation, and the 

potential re-establishment of affiliation in the future. 

   

Each event is appraised in terms of several appraisal variables by domain-independent 

functions that examine the syntactic structure of the causal interpretation: 

 

 Perspective:  from whose perspective is the event judged 

 Desirability: what is the utility of the event if it comes to pass, from the perspective 

taken (i.e., does it causally advance or inhibit a state of some utility) 

 Likelihood: how probable is the outcome of the event 

 Causal attribution: who deserves credit or blame (i.e., what entity performed the action 

leading to the desirable/undesirable outcome) 

 Temporal status: is this past, present, or future 

 Controllability: can the outcome be altered by actions under control of the agent whose 

perspective is taken 

 Changeability: can the outcome be altered by some other causal agent 

 

Each appraised event is mapped into an emotion instance of some type and intensity, fol-

lowing the scheme proposed by Ortony et al (Ortony, Clore, & Collins, 1988).  A simple 

activation-based focus of attention model computes a current emotional state based on 

most-recently accessed emotion instances. 

 



Coping determines how one responds to the appraised significance of events. Coping 

strategies are proposed to maintain desirable or overturn undesirable in-focus emotion 

instances.  Coping strategies essentially work in the reverse direction of appraisal, identi-

fying the precursors of emotion in the causal interpretation that should be maintained or 

altered (e.g., beliefs, desires, intentions, expectations). Strategies include: 

 

 Action: select an action for execution 

 Planning: form an intention to perform some act (the planner uses such intentions to 

drive its plan generation) 

 Seek instrumental support: ask someone that is in control of an outcome for help 

 Procrastination: wait for an external event to change the current circumstances 

 Positive reinterpretation: increase utility of positive side-effect of an act with a negative 

outcome 

 Resignation:  drop a threatened intention 

 Denial: lower the probability of a pending undesirable outcome 

 Mental disengagement: lower utility of desired state 

 Shift blame: shift responsibility for an action toward some other agent 

 Seek/suppress information: form a positive or negative intention to monitor some pend-

ing or unknown state 

 

Strategies give input to the cognitive processes that actually execute these directives.  For 

example, planful coping will generate an intention to perform the join “join club” action, 

which in turn leads to the planning system to generate and execute a valid plan to accom-

plish this act.  Alternatively, coping strategies might abandon the goal, lower the goal’s 

importance, or re-assess who is to blame. 

 



Not every strategy applies to a given stressor (e.g., an agent cannot engage in problem 

directed coping if it is unaware of an action that impacts the situation), however multiple 

strategies can apply. EMA proposes these in parallel but adopts strategies sequentially. 

EMA adopts a small set of search control rules to resolve ties. In particular, the model 

prefers problem-directed strategies if control is appraised as high (take action, plan, seek 

information), procrastination if changeability is high, and emotion-focus strategies if con-

trol and changeability is low. 

 



In developing EMA’s model of coping, we have moved away from the broad distinctions 

of problem-focused and emotion-focused strategies. Formally representing coping re-

quires a certain crispness that is otherwise lacking in the problem-focused/emotion-

focused distinction. In particular, much of what counts as problem-focused coping in the 

clinical literature is really inner-directed in an emotion-focused sense. For example, one 

might form an intention to achieve a desired state – and feel better as a consequence – 

without ever acting on the intention. Thus, by performing cognitive acts like planning, 

one can improve ones interpretation of circumstances without actually changing the 

physical environment.  

3.2 Soar Implementation 
The overall model consists of the repeated application of the five stages listed in Figure 4.  

Note that similar stages have been suggested by other cognitive modeling architectures.  

In particular, they are analogous to the standard problem solving cycle used in the Soar 

architecture (1990), of which we take advantage in our Soar implementation.  Here we 

describe these stages in some detail. 

3.2.1 Construct Causal Interpretation 
The causal interpretation is a structured representation built atop Soar’s working memory. 

This representation can be viewed as an explicit representation of a partial order plan in 

 

1. Construct and maintain a causal interpretation of ongoing world events in terms of 

beliefs, desires plans and intentions. 

2. Generate multiple appraisal frames that characterize features of the causal interpre-

tation in terms of appraisal variables 

3. Map individual appraisal frames into individual instances of emotion 

4. Aggregate instances and identify  current emotional state. 

5. Propose and adopt a coping strategy in response to the current emotional state 

 

Figure 4:  Stages in EMA’S emotional reasoning 



the sense of (Ambros-Ingerson & Steel, 1988).  Certain working memory elements corre-

spond to actions that are linked to precondition and effect objects.  Other objects repre-

sent relationships between actions such as establishment relations (this action establishes 

a precondition of that action), threat relations (this action has an effect that disables a pre-

condition of that action), and ordering relations (this action should be executed before 

that action).  There is also an explicit representation of beliefs, desires and intentions (e.g, 

actions have attributes indicating if they are intended, states have attributes representing 

their worth to the agent and if they are believed to be true in the current world).   

 

The causal interpretation is constructed sequentially through the application of operators 

(a process analogous to deliberation).  These operators adjust the causal interpretation at a 

micro level.  For example, an update-belief operator will change the belief associated 

with a single state object.  An add-step operator will add a signal step to the current plan, 

and so forth.  

3.2.2 Appraise the Causal Interpretation 
Appraisal is performed by elaboration rules that trigger automatically and in parallel 

based on changes to working memory.  For example, if an add-step operator adds a new 

operator to the plan, elaboration rules automatically fire to assess the significance of this 

new action from the perspective of the agent’s goals:  Does the action have an effect that 

facilitates or inhibits certain desired states?  How does this action impact the likelihood of 

goal achievement, etc.  These conclusions are represented by explicit appraisal frames 

stored in working memory. A separate frame exists for each state object represented in 

working memory and these are automatically created or modified as a side effect of op-

erators manipulating the causal interpretation. 

3.2.3 Construct Emotion Instances  
Emotion instances are generated automatically and in parallel from appraisal rules operat-

ing on the appraisal variables listed in each appraisal frame.  One or more objects repre-

senting an emotion type and intensity are associated with the appraisal frame that gener-

ates them.  The emotion type of the instance is determined by a fixed mapping based on 



the configuration of appraisal variables.  For example, a frame with low desirability and 

high likelihood would yield to intense Fear. 

3.2.4 Determine Emotional State 
EMA uses an activation-based sub-symbolic process, modeled outside of the Soar archi-

tecture and loosely motivated by ACT-R, to identify a particular emotional instance to 

exhibit and cope with.  This activation is based on two factors:  1) how recently cognitive 

structures associated by the instance were “touched” by a Soar operator, and 2) how con-

gruent the instance is to the other emotion instances in memory (this latter factor is in-

tended to account for mood-congruent effects of emotion).  For the activation factor, each 

time a Soar operator accesses an element of the causal interpretation that has an associ-

ated appraisal frame, this frame is assigned an activation level equal to its intensity (this 

currently decays to zero upon the next application of a Soar operator).  For example, an 

“add-step” operator would tend to activate an instance of hope that the step will address 

the threat and fear that the goal is threatened. For the congruence factor, EMA communi-

cates the type and intensity of all current instances to a module that decays their intensity 

according to a fixed rate and sums the intensities of instances of a given type into an 

overall score that can be viewed as the agent’s mood (e.g., there is an overall Fear score 

that consists of the sum of the intensities of each instance of Fear). A small fraction of 

this mood vector is added to the activation-level of activated instances. The instance with 

the most activation becomes the emotion to be displayed and coped with.  

3.2.5 Propose and Adopt a Coping Strategy 
Soar elaboration rules propose individual coping strategies that could potentially address 

the emotion instance identified in the previous stage.  The strategy itself is implemented 

by a Soar operator and each of these operators is proposed in parallel but only one is ul-

timately selected by Soar to sequentially apply.   

3.3 Limitations and Related Work 
EMA relates to a number of past appraisal models of emotion.  Although we are perhaps 

the first to provide an integrated account of coping, computational accounts of appraisal 

have advanced considerably over the years. In terms of these models, EMA contributes 



primarily to the problem of developing general and domain-independent algorithms to 

support appraisal, and by extending the range of appraisal variables amenable to a com-

putational treatment.  Early appraisal models focused on the mapping between appraisal 

variables and behavior and largely ignored how these variables might be derived, instead 

requiring domain-specific schemes to derive their value variables. For example, Elliott’s 

(1992) Affective Reasoner, based on the OCC model (1988), required a number of do-

main specific rules to appraise events.  A typical rule would be that a goal at a football 

match is desirable if the agent favors the team that scored. More recent approaches have 

moved toward more abstract reasoning frameworks, largely building on traditional artifi-

cial intelligence techniques. For example El Nasr and colleagues (2000) use markov-

decision processes (MDP) to provide a very general framework for characterizing the de-

sirability of actions and events. An advantage of this method is that it can represent indi-

rect consequences of actions by examining their impact on future reward (as encoded in 

the MDP), but it retains the key limitations of such models: they can only represent a 

relatively small number of state transitions and assume fixed goals. The closest approach 

to what we propose here is WILL (Moffat & Frijda, 1995) that ties appraisal variables to 

an explicit model of plans (which capture the causal relationships between actions and 

effects), although they, also, did not address the issue of blame/credit attributions, or how 

coping might alter this interpretation. We build on these prior models, extending them to 

provide better characterizations of causality and the subjective nature of appraisal that 

facilitates coping.  

 

There are several obvious limitations in the current model.  The model could be viewed 

as over-emphasizing the importance of task-oriented goals. Many psychological theories 

refer to more abstract concepts such as ego-involvement (Lazarus, 1991). Other theories, 

for example, the theory of Ortony, Clore and Collins (1988), emphasize the importance of 

social norms or standards in addition to goal processing.  For example, fornication may 

satisfy a personal goal but violate a social standard.  Our approach is to represent social 

standards by (dis-utility) utility over states or actions that (violate) uphold the standard, 

which we have found this sufficient in practice.  Perhaps the largest deficiency of the 

model concerns the impoverished reasoning underlying causal attributions (and social 



reasoning in general), which we will address in the second half of this chapter.  Currently 

the model assumes the executor of an act deserves responsibility for its outcomes, but this 

can lead to nonsensical conclusions in the case of social actions.  We address this limita-

tion in the next section.   

 

4.  Modeling Social Attributions 
EMA must be extended with respect to its ability to form social attributions of blame and 

credit.  Currently, an entity is assumed credit/blameworthy for an outcome if it actually 

performed the act.  While this works well in single-entity scenarios, in multi-agent set-

tings it can often fall short.  For example, when someone is coerced by another to per-

form an undesirable act, people tend to blame the coercer rather than the actor.  People 

also excuse social blame in circumstances where the act was unintentional or the outcome 

unanticipated.  Failing to account for these mitigating circumstances can lead EMA to 

produce nonsensical appraisals.  The following example from one of our training exer-

cises is illustrative.  In the exercise, a trainee (acting as the commander of a platoon) or-

dered his sergeant (played by a virtual human) to adopt a course of action that the ser-

geant agent considered highly undesirable.  The command was such that it could not be 

executed directly by the sergeant, but rather the sergeant had to, in turn, order his subor-

dinates to perform the act.  The current model assigned blame to the subordinates as they 

actually performed the undesirable action with the result that the sergeant became angry 

at his subordinates, even though he commanded them to perform the offensive act.  

Clearly, such results indicate an impoverished ability to assign social credit and blame.          

  

To address this limitation we turn to social psychology.  This is in contrast to most com-

putational work on blame assignment that, inspired by philosophy or law, emphasizes 

proscriptive approaches that try to identify "ideal" principles of responsibility (e.g., the 

legal code or philosophical principles) and ideal mechanisms to reason about these, typi-

cally  

 

contradictory principles (e.g., non-monotonic or case-based reasoning) (McCarty, 1997).  

As our primary goal is to inform the design of realistic virtual humans that mimic human 



communicative and social behavior, our work differs from these models in emphasizing 

descriptive rather than proscriptive models.  

 

Our extension of EMA is motivated by psychological attribution theory, specifically the 

work of Weiner (Weiner, 1995) and Shaver (Shaver, 1985), as their symbolic approaches 

mesh well with our existing approach. Indeed, Lazarus pointed to Shaver as a natural 

complement to his own theory. In these theories, the assignment of credit or blame is a 

multi-step process initiated by events with positive or negative consequences and medi-

ated by several intermediate variables. First one assesses causality, distinguishing be-

tween personal versus impersonal causality (i.e., is causal agent a person or a force of na-

ture). If personal, the judgment proceeds by assessing key factors: did the actor foresee its 

occurrence; was it the actor’s intention to produce the outcome; was the actor forced un-

der coercion (e.g., was the actor acting under orders)? As the last step of the process, 

proper degree of credit or blame is assigned to the responsible agent.1 

  

 

 

                                                 
1 Note that we did not strictly follow the process model of Shaver in our approach. As it is explained in later sections, 

we model the same basic inferences but relax the strict sequential nature of his model.  This generalization follows 

more naturally from the model and, indeed, has been argued for by subsequent theorists  (e.g., Weiner). 



We extend EMA by incorporating these mediating factors (foreseeability, coercion, etc.) 

into our assignment of causal attribution.  The variables mediating blame in these models 

are readily derived by representations underlying appraisal and we show how planning 

and dialogue processing can inform and alter these assessments. Causality and intention 

map to our representations of action, beliefs, desires and intentions. Coercion requires a 

representation of social relationships and understanding of the extent to which it limits 

one’s range of options. For example, one may be ordered to carry out a task but to satisfy 

the order, there may be alternatives that vary in blame or creditworthiness.  In the re-

mainder of this section, we describe this extension in detail. 

4.1. Computational Representation 

4.1.1 Actions and Consequences 
EMA represents causal information through a hierarchical plan representation.  Actions 

consist of a set of propositional preconditions and effects. Each action step is either a 

primitive action (i.e., an action that can be directly executed by some agent) or an abstract 

action. An abstract action may be decomposed hierarchically in multiple ways and each 

alternative consists of a sequence of primitive or abstract sub-actions. The desirability of 

action effects (i.e., effects having positive/negative significance to an agent) is repre-

sented by utility values (Blythe, 1999) and the likelihood of preconditions and effects is 

represented by probability values. 
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Figure 5: Process model of blame/credit attribution (adapted from Shaver ) 



A non-decision node (or And-node) is an abstract action that can only be decomposed in 

one way. A decision node (or Or-node), on the other hand, can be decomposed in more 

than one way. In a decision node, an agent needs to make a decision and select among 

different options. If a decision node A can be decomposed in different ways a1, a2, …, an, 

we will refer to a1, a2, …, an as alternatives of each other. Clearly, a primitive action is a 

non-decision node, while an abstract action can be either a non-decision node or a deci-

sion node. 

 

Consequences or outcomes (we use the terms as exchangeable in this chapter) of actions 

are represented as a set of primitive action effects. The consequence set of an action A is 

defined recursively from leaf nodes (i.e., primitive actions) in plan structure to an action 

A as follows. Consequences of a primitive action are those effects with non-zero utility, 

and all the consequences of a primitive action are certain. For an abstract action, if the 

abstract action is a non-decision node, then the consequence set of the abstract action is 

the union of the consequences of its sub-actions. If the abstract action is a decision node, 

we need to differentiate two kinds of consequences. If a consequence p of a decision node 

occurs among all the alternatives, we call p a certain consequence of the decision node; 

otherwise p is an uncertain consequence of the node. 

 

In addition, each action step is associated with a performer (i.e., the agent that performs 

the action) and an agent who has authority over its execution. The performer cannot exe-

cute the action until authorization is given by the authority. This represents the hierarchi-

cal organizational structure of social agents. 

 

4.1.2 Attribution Variables 
Weiner and Shaver define the attribution process in terms of a set of key variables:2 

 

Causality refers to the connection between actions and the effects they produce. In our 

approach, causal knowledge is encoded via hierarchical task representation. Interde-
                                                 
2 Note that these models differ in terminology. Here we adopt the terminology of Shaver. 



pendencies between actions are represented as a set of causal links and threat relations. 

Each causal link specifies that an effect of an action achieves a particular goal that is a 

precondition of another action. Threat relations specify that an effect of an action threat-

ens a causal link by making the goal unachievable before it is needed.  

 

Foreseeability refers to an agent’s foreknowledge about actions and consequences. We 

use know and bring-about to represent foreseeability. If an agent knows an action brings 

about certain consequence before its execution, then the agent foresees the action brings 

about the consequence. 

 

Intention is generally conceived as a commitment to work toward certain act or outcome.  

Intending an act (i.e., act intention) is distinguished from intending an outcome of an act 

(i.e., outcome intention) in that the former concerns actions while the latter concerns con-

sequences of actions. Most theories argue that outcome intention rather than act intention 

is the key factor in determining accountability and intended outcome usually deserves 

more elevated accountability judgments (Weiner, 1986, 2001). We use intend with do to 

represent act intention and intend with achieve for outcome intention. Since our work is 

applied to rich social context, comparing with (Bratman, 1987; Grosz & Kraus, 1996), we 

include indirect intentions in our work. For example, an agent intends an action or a con-

sequence, but may not be the actor himself/herself (i.e., by intending another agent to act 

or achieve the consequence), or an agent intends to act but is coerced to do so. 

 

Similar difference exists in coercion. An agent may be coerced to act (i.e., act coercion) 

yet not be coerced to achieve any outcome of the action (i.e., outcome coercion), depend-

ing on whether the agent has choices in achieving different outcomes among alternatives. 

It is important to differentiate act coercion and outcome coercion, because it is the latter 

that actually influences our judgment of behavior, and is used to determine the responsi-

ble agent. We use coerce with do to represent act coercion and coerce with achieve for 

outcome coercion. In the case of outcome coercion, the responsible agent for a specific 

outcome is the performer or the authority of an action, but the action may not be the 

primitive one that directly leads to the outcome. 



 

4.1.3 Representational Primitives 
In modeling Shaver and Weiner’s attribution theory, we need to map attribution variables 

into representational features of an agent’s causal interpretation.  Here we define a num-

ber of specific primitive features that support this mapping.  

 

x and y are different agents. A and B are actions and p is a proposition. The following 

primitives are adopted in system. 

 

(1) and-node(A): A is a non-decision node in plan structure. 

(2) or-node(A): A is a decision node in plan structure. 

(3) alternative(A, B): A and B are alternatives of performing the same higher-level ac-

tion. 

(4) effect(A): Effect set of a primitive action A. 

(5) certain-consq(A): Certain consequence set of A. 

(6) uncertain-consq(A): Uncertain consequence set of an abstract action A. 

(7) performer(A): performing agent of A. 

(8) authority(A): authorizing agent of A. 

(9) know(x, p): x knows p. 

(10) intend(x, p): x intends p. 

(11) coerce(y, x, p): y coerce x the proposition p. 

(12) want(x, p): x wants p. 

(13) by(A, p): By acting A to achieve p. 

(14) bring-about(A, p): A brings about p. 

(15) do(x, A): x does A. 

(16) achieve(x, p): x achieves p. 

(17) responsible(p): Responsible agent for p. 

(18) superior(y, x): y is a superior of x. 

 



4.1.4 Axioms 
We identify the interrelations of attribution variables, expressed as axioms. The axioms 

are used either explicitly as commonsense inference rules for deriving key attribution val-

ues, or implicitly to keep the consistency between different inference rules. 

 

x and y are different agents. A is an action and p is a proposition. The following axioms 

hold from a rational agent’s perspective (To simplify the logical expressions, we omit the 

universal quantifiers in this chapter, and substitute A for do( , A) and p for achieve( , p) 

here). 

 

(1) y(coerce(y, x, A))  intend(x, A) 

(2) intend(x, A)  ( y(coerce(y, x, A))  p(p certain-consq(A)  intend(x, p)) 

(3) intend(x, p)  A(p certain-consq(A)  intend(x, A)) 

(4) intend(x, by(A, p))  know(x, bring-about(A, p)) 

 

The first axiom shows that act coercion entails act intention. It means if an agent is co-

erced an action A by another agent, then the coerced agent intends A3. The second and the 

third axioms show the relations between act intention and outcome intention. The second 

one means if an agent intends an action A and the agent is not coerced to do so (i.e. A is a 

voluntary act), then the same agent must intend at least one consequence of A. The third 

means if an agent intends a consequence p, the same agent must intend at least one action 

that has p as a consequence4. Note that in both axioms, intending an action or a conse-

quence includes the case that an agent intends another agent to act or achieve the conse-

quence. The last one shows the relation between intention and foreseeability. It means if 

an agent intends acting A to achieve a consequence p, the same agent must know that A 

brings about p. 
                                                 
3 The notion of intention in this axiom is not identical to the typical implication of intention in literatures, as here it is 

applied to coercive situations. 

4 This axiom is not true in general cases, as the agent may not know that an action brings about p. Here we apply it 

within the restrictive context of after action evaluation, where actions have been executed and the consequence has 

occurred. 



 

4.1.5 Attribution Rules 
Social credit assignment focuses on consequences with personal significance to an agent. 

This evaluation is always from the perspective of a perceiving agent and based on the at-

tribution values acquired by the individual perceiver. As different perceivers have differ-

ent preferences, different observations, and different knowledge and beliefs, it may well 

be the case that for the same situation, different perceivers form different judgments. 

 

Nevertheless, the attribution process and rules are general, and applied uniformly to dif-

ferent perceivers. Following Weiner (Weiner, 2001), we use coercion to determine the 

responsible agent for credit or blameworthiness, and intention and foreseeability in as-

signing the intensity of credit/blame. 

 

If an action performed by an agent brings about positive/negative consequence, and the 

agent is not coerced to achieve the consequence, then credit/blame is assigned to the per-

former of the action. Otherwise, assign credit/blame to the authority. If the authority is 

also coerced, the process needs to be traced further to find the responsible agent for the 

consequence. The back-tracing algorithm for finding the responsible agent will be given 

later. 

 

Rule 1:  If   <consequence>  of  <action>  is  positive/negative   and 

<performer>  is  not coerced  the  <consequence> 

 Then   Assign  credit/blame  to the  <performer> 

Rule 2:  If   <consequence>  of  <action>  is  positive/negative   and 

<performer>  is  coerced  the  <consequence> 

 Then   Assign  credit/blame  to the  <responsible agent> 

 

We adopt a simple categorical model of intensity assignment, though one could readily 

extend the model to a numeric value by incorporating probabilistic rules of inference. If 

the responsible agent intends the consequence while acting, the intensity assigned is high. 

If the responsible agent does not foresee the consequence, the intensity is low. 



4.2 Commonsense Inference 
Judgments of causality, foreseeability, intentionality and coercion are informed by dia-

logue and causal evidence. Some theories have formally addressed subsets of this judg-

ment task. For example, (Sadek, 1990) addresses the relationship between dialogue and 

inferences of belief and intention. These theories have not tended to consider coercion. 

Rather than trying to synthesize and extend such theories, we introduce small number of 

commonsense rules that, via a justification-based truth maintenance system (JTMS), al-

low agents to make inferences based on this evidence. 

 

4.2.1 Dialogue Inference 
Conversational dialogue between agents is a rich source of information for deriving val-

ues of attribution variables. In a conversational dialogue, a speaker and a hearer take 

turns alternatively. When a speech act (Austin, 1962; Searle, 1969, 1979) is performed, a 

perceiving agent (who can be one of the participating agents or another agent) makes in-

ferences based on observed conversation and current beliefs. As the conversation pro-

ceeds, beliefs are formed and updated accordingly. 

 

Assume conversations between agents are grounded (Traum & Allen, 1994) and they 

conform to Grice’s maxims of Quality5 and Relevance6 (Grice, 1975). Background infor-

mation (agents’ social roles, relationship, etc) is also important, for example, an order can 

be successfully issued only to a subordinate, but a request can be made of any agent. 

 

x and y are different agents. p and q are propositions and t is time. For our purpose, we 

analyze following speech acts that help infer agents’ desires, intentions, foreknowledge 

and choices in acting. 

 

(1) inform(x, y, p, t): x informs y that p at t. 

(2) request(x, y, p, t): x requests y that p at t. 
                                                 
5 The Quality maxim states that one ought to provide true information in conversation. 

6 The Relevance maxim states that one’s contribution to conversation ought to be pertinent in context. 



(3) order(x, y, p, t): x orders y that p at t. 

(4) accept(x, p, t): x accepts p at t. 

(5) reject(x, p, t): x rejects p at t. 

(6) counter-propose(x, p, q, t): x counters p and proposes q at t. 

 

We have designed commonsense rules that allow perceiving agents to infer from dialogue 

patterns. These rules are general. Hence, they can be combined flexibly and applied to 

variable-length dialogue sequences with multiple participants. 

 

Let z be a perceiving agent. If at time t1, a speaker (s) informs a hearer (h) that p, then after 

t1, a perceiving agent can infer that both the speaker and the hearer know that p as long as 

there is no intervening contradictory belief. 

 

Rule 3: inform(s, h, p, t1)  t1<t3  ( t2)(t1<t2<t3  believe(z, know(s, p) know(h, 

p), t2))  believe(z, know(s, p) know(h, p), t3) 

 

A request gives evidence of the speaker’s desire (or want). An order gives evidence of the 

speaker’s intend. 

 

Rule 4: request(s, p, t1)  t1<t3  ( t2)(t1<t2<t3  believe(z, want(s, p), t2)  be-

lieve(z, want(s, p), t3) 

 

Rule 5: order(s, p, t1)  t1<t3  ( t2)(t1<t2<t3  believe(z, intend(s, p), t2))  be-

lieve(z, intend(s, p), t3) 

 

The hearer may accept, reject or counter-propose. If the speaker wants (or intends) and the 

hearer accepts, it can be inferred that the hearer intends. An agent can accept via speech or 

action execution. If the hearer accepts what the superior wants (or intends), there is evi-

dence of coercion. 

 



Rule 6: believe(z, want/intend(s, p), t1)  accept(h, p, t2)  superior(s, h)  t1<t2<t4  

( t3)(t2<t3<t4  believe(z, intend(h, p), t3))  believe(z, intend(h, p), t4) 

 

Rule 7: believe(z, want/intend(s, p), t1)  accept(h, p, t2)  superior(s, h)  t1<t2<t4  

( t3)(t2<t3<t4  believe(z, coerce(s, h, p), t3))  believe(z, coerce(s, h, p), t4) 

 

In the rules above, if act coercion is true, act intention can be deduced from Axiom 1. 

 

If the speaker wants (or intends) and the hearer rejects, infer that the hearer does not intend. 

 

Rule 8: believe(z, want/intend(s, p), t1)  reject(h, p, t2)  t1<t2<t4  ( t3)(t2<t3<t4  

believe(z, intend(h, p), t3))  believe(z, intend(h, p), t4) 

 

If the hearer counters acting A and proposes acting B instead, both the speaker and the 

hearer are believed to know that A and B are alternatives. It is also believed that the hearer 

does not want A and wants B instead. 

 

Rule 9: counter-propose(h, do(h, A), do(h, B), t1)  t1<t3  ( t2)(t1<t2<t3  believe(z, 

know(h, alternative(A, B)) know(s, alternative(A, B)), t2))  believe(z, 

know(h, alternative(A, B)) know(s, alternative(A, B)), t3) 

Rule 10: counter-propose(h, p, q, t1)  t1<t3  ( t2)(t1<t2<t3  (believe(z, want(h, 

p) want(h, q), t2)))  believe(z, want(h, p) want(h, q), t3) 

 

If the speaker has known that two actions are alternatives and still requests (or orders) 

one of them, infer that the speaker wants (or intends) the chosen action instead of the al-

ternative. The beliefs that the speaker wants (or intends) the chosen action can be de-

duced from Rules 4&5.  

 



Rule 11: believe(z, know(s, alternative(A, B)), t1)  request/order(s, do(h, A), t2)  t1<t2<t4 

 ( t3)(t2<t3<t4  believe(z, want(s, do(h, B)), t3))  believe(z, 

want/intend(s, do(h, B)), t4) 

 

4.2.2 Causal Inference 
Causal knowledge encoded in plan representation also helps derive values of attribution 

variables. Different agent may have access to different plans in memory. While plans are 

specific to certain domain, the structure and features of plans can be described using do-

main-independent terms such as action types, alternatives and action effects. We adopt the 

hierarchical task formalism that differentiates action types, explicitly expresses conse-

quences of alternatives, and separates certain consequences of an action from its uncertain 

ones. 

 

An agent’s foreknowledge can be derived simply by checking primitive action effects. If a 

consequence p is an effect of a primitive action A, then the agents involved (i.e., the per-

former and the authority) should know that A brings about p. 

 

Rule 12: p effect(A)  believe(z, know(performer(A), bring-about(A, p))) 

p effect(A)  believe(z, know(authority(A), bring-about(A, p))) 

 

Outcome intent can be partially inferred from evidence of act intent and comparative fea-

tures of consequence sets of action alternatives. According to Axiom 2, if an agent intends 

a voluntary action A, the agent must intend at least one consequence of A. If A has only 

one consequence p, then the agent is believed to intend p. In more general cases, when an 

action has multiple consequences, in order to identify whether a specific outcome is in-

tended or not, a perceiver may examine alternatives the agent intends and does not in-

tend, and compare the consequences of intended and unintended alternatives. 

  

If an agent intends an action A voluntarily and does intend its alternative B, we can infer 

that the agent either intends (at least) one consequence that only occurs in A or does not 



intend (at least) one consequence that only occurs in B, or both. If the consequence set of 

A is a subset of that of B, the rule can be simplified. As there is no consequence of A not 

occurring in the consequence set of B, we can infer that the agent does not intend (at 

least) one consequence that only occurs in B. In particular, if there is only one conse-

quence p of B that does not occur in the consequence set of A, infer that the agent does 

not intend p. 

 

Rule 13: believe(z, intend(x, A) intend(x, B) ( y(superior(y, x) coerce(y, x, A))))  

alternative(A, B)  certain-consq(A) certain-consq(B)  p(p certain-consq(A) 

 p certain-consq(B)  believe(z, intend(x, p))) 

 

On the other hand, given the same context that an agent intends an action A and does not 

intend its alternative B, if the consequence set of B is a subset of that of A, infer that the 

agent intends (at least) one consequence that only occurs in A. In particular, if there is only 

one consequence p of A that does not occur in the consequence set of B, the agent must in-

tend p. 

 

Rule 14: believe(z, intend(x, A) intend(x, B) ( y(superior(y, x) coerce(y, x, A))))  

alternative(A, B)  certain-consq(B) certain-consq(A)  p(p certain-consq(A) 

 p certain-consq(B)  believe(z, intend(x, p))) 

 

Outcome coercion can be properly inferred from evidence of act coercion and consequence 

sets of different action types. In a non-decision node (i.e., and-node), if an agent is coerced 

to act, the agent is also coerced to achieve the consequences of subsequent actions, for the 

agent has no other choice. 

 

Rule 15: y(superior(y, x)  believe(z, coerce(y, x, A))  and-node(A)  p certain-consq(A) 

 believe(z, coerce(y, x, p))) 

 

In a decision node (i.e., or-node), however, an agent must make a decision amongst mul-

tiple choices. Even if an agent is coerced to act, it does not follow that the agent is co-



erced to achieve a specific consequence of subsequent actions. In order to infer outcome 

coercion, we examine the choices at a decision node. If an outcome is a certain conse-

quence of every alternative, then it is unavoidable and thus outcome coercion is true. 

Otherwise, if an outcome is an uncertain consequence of the alternatives, then the agent 

has the option to choose an alternative to avoid this outcome and thus outcome coercion 

is false. Our definition of consequence set ensures the consistency when the rules are ap-

plied to actions at different levels of plan structure. 

 

Rule 16: y(superior(y, x)  believe(z, coerce(y, x, A))  or-node(A)  p certain-consq(A) 

 believe(z, coerce(y, x, p))) 

y(superior(y, x)  believe(z, coerce(y, x, A))  or-node(A)  p uncertain-

consq(A)  believe(z, coerce(y, x, p))) 

4.3. Back-Tracing Algorithm 
We have developed a back-tracing algorithm for evaluating the responsible agent for a 

specific consequence. The evaluation process starts from the primitive action that directly 

causes a consequence with positive or negative utility. Since coercion may occur in more 

than one level in hierarchical plan structure, the process must trace from the primitive 

action to the higher-level actions. We use a back-tracing algorithm to find the responsible 

agent. The algorithm takes as input some desirable or undesirable consequence of a 

primitive action (step 1) and works up the task hierarchy7. During each pass through the 

main loop (step 2), the algorithm initially assigns default values to the variables (step 

2.2). Then apply dialog rules to infer variable values at the current level (step 2.3). If 

there is evidence that the performer was coerced to act (step 2.4), the algorithm proceeds 

by applying plan inference rules (step 2.5). If there is outcome coercion (step 2.6), the 

authority is deemed responsible (step 2.7). If current action is not the root node in plan 

structure and outcome coercion is true, the algorithm enters next loop and evaluates the 

next level up in the task hierarchy. 

 

                                                 
7 Given that the evaluating agent is aware of the task hierarchy. 



After the execution of the algorithm, the responsible agent for the outcome is determined. 

Meanwhile, through applying inference rules, the algorithm also acquires values of inten-

tion and foreknowledge about the agents. The variable values are then used by the attri-

bution rules (Rules 1&2) to assign credit or blame to the responsible agent with proper 

intensity.  

 

Events may lead to more than one desirable/undesirable consequence. For evaluating 

multiple consequences, we can apply the algorithm the same way, focusing on one con-

sequence each time during its execution. Then, to form an overall judgment, the results 

can be aggregated and grouped by the responsible agents. 

 

 

 

 

 

 

4.4. Illustrative Example 
The need to extend EMA was motivated by a number of odd social attributions generated 

by agents in the Mission Rehearsal Exercise (MRE) leadership training system (Rickel et 

Back-trace (consequence, plan structure): 

1. parent = A, where consequence is an effect of action A 

2. DO  

2.1 node = parent 

2.2 coerce(authority(node), performer(node), node) = unknown 

coerce(authority(node), performer(node), consequence) = unknown  

responsible(consequence) = performer(node) 

2.3 Search dialog history on node and apply dialog inference rules 

2.4 IF   coerce(authority(node), performer(node), node)   THEN 

2.5 apply plan inference rules on node 

2.6 IF   coerce(authority(node), performer(node), consequence)   THEN 

2.7 responsible(consequence) = authority(node) 

2.8 parent = P, where P is the parent of node in plan structure 

WHILE   parent  root of plan structure   AND  

coerce(authority(node), performer(node), consequence) 

3. RETURN   responsible(consequence) 



al., 2002), to which EMA was applied. By extending EMA with a more realistic social 

attribution process, we eliminated the obvious departures of the model from normal hu-

man behavior.  Here we illustrate how the model operates on one of these previous de-

fects.  The example arises from the following extract of dialogue taken from an actual run 

of the system.  Details on how this negotiation is automatically generated and how natu-

ral language is mapped into speech acts can be found in (Traum, Rickel, Gratch, & 

Marsella, 2003): 

 

 Student:   Sergeant.  Send two squads forward. 

Sergeant:  That is a bad idea, sir.  We shouldn’t split our forces.  In-

stead we should send one squad to recon forward. 

Student: Send two squads forward. 

Sergeant: Against my recommendation, sir.  Lopez! Send first and 

fourth squads to Eagle 1-6’s location. 

Lopez: Yes, sir.  Squads! Mount up!  

 



We focus on three social actors, the student, the sergeant and the squad leader (Lopez), 

who act as a team in this example.  The student is a human trainee and acts as an author-

ity over the sergeant. The squad leader acts as a subordinate of the sergeant. Conversa-

tions between agents are represented within the system as speech acts and a dialogue his-

tory as in the MRE.  Figure 6 illustrates the causal knowledge underlying the example. 

 

Take the sergeant’s perspective as an example. The sergeant perceives the conversation 

between the actors and task execution. Dialogue history includes the following acts, or-

dered by the time the speakers addressed them (std, sgt and sld stand for the student, the 

sergeant and the squad leader, respectively. t1<t2<…<t6). 

(1) order(std, do(sgt, two-sqds-fwd), t1) 

(2) inform(sgt, std, bring-about(two-sqds-fwd, unit-fractured), t2) 

(3) counter-propose(sgt, do(sgt, two-sqds-fwd), do(sgt, one-sqd-fwd), t3) 

(4) order(std, do(sgt, two-sqds-fwd), t4) 

(5) accept(sgt, do(sgt, two-sqds-fwd), t5) 

(6) order(sgt, do(sld, 1st-and-4th-to-celic), t6) 

Support Eagle 1-6
Authority: std
Performer: std

One Squad Forward
Authority: std
Performer: sgt

4th Squad Recon
Authority: sgt
Performer: sld

Remaining Fwd
Authority: sgt
Performer: sld

Two squads Forward
Authority: std
Performer: sgt

1st & 4th Fwd
Authority: sgt
Performer: sld

2nd & 3rd Fwd
Authority: sgt
Performer: sld

AND AND

OR

Route Secure 1-6 supported

Unit fracturedUnit fractured

1-6 supported Not fractured

Support Eagle 1-6
Authority: std
Performer: std

One Squad Forward
Authority: std
Performer: sgt

4th Squad Recon
Authority: sgt
Performer: sld

Remaining Fwd
Authority: sgt
Performer: sld

Two squads Forward
Authority: std
Performer: sgt

1st & 4th Fwd
Authority: sgt
Performer: sld

2nd & 3rd Fwd
Authority: sgt
Performer: sld

AND AND

OR

Route Secure 1-6 supported

Unit fracturedUnit fractured

1-6 supported Not fractured

 
Figure 6: Team plan from the sergeant’s perspective 



To simplify the example, we illustrate part of the task structure from MRE scenario and 

evaluate one of the negative consequences, though we can generally apply the approach 

in the chapter to more complex judgments. The sergeant has access to a partial plan, 

where one squad forward and two squads forward are two choices of action support ea-

gle-1-6. One squad forward is composed of two primitive actions, 4th squad (recon) for-

ward and remaining (squads) forward. Two squads forward consists of 1st and 4th 

(squads) to celic and 2nd and 3rd (squads) to celic. Two action effects are salient to the 

sergeant, (eagle) 1-6 supported and unit fractured. 1-6 supported is a desirable team goal. 

Assume the sergeant assigns negative utility to unit fractured and this consequence serves 

as input to the back-tracing algorithm. We illustrate how to find the blameworthy agent 

given the sergeant’s task knowledge and observations. 

 

Loop 1: The algorithm starts from primitive action 1st-and-4th-to-celic, of which unit-

fractured is an effect. The sergeant perceived that the squad leader performed the action. 

Step 2.2: Initially, coerce(sgt, sld, 1st-and-4th-to-celic) and coerce(sgt, sld, unit-fractured) 

are unknown. Assign the squad leader to the responsible agent. 

Step 2.3: Relevant dialogue history is act 6. Since the sergeant ordered the squad leader 

the act, apply Rule 5. The algorithm infers that the sergeant believes he intended the 

squad leader to act. Since the squad leader accepted by executing the action and the ser-

geant is the superior, apply Rule 7. The sergeant believes that he coerced the squad 

leader to act. 

Step 2.4 2.5: Since coerce(sgt, sld, 1st-and-4th-to-celic) is true and the primitive action is 

an and-node in the plan structure, apply Rule 15 . The sergeant believes he coerced the 

squad leader to fracture the unit. Since unit-fractured is an effect of the primitive action, 

apply Rule 12. The sergeant believes that both he and the squad leader knew the action 

bringing about unit-fractured. 

Step 2.6 2.7: Since coerce(sgt, sld, unit-fractured) is true, assign the sergeant to the re-

sponsible agent. The sergeant believes that he is responsible for unit-fractured and he has 

the foreknowledge while acting. 



Since parent node is not the root of plan structure and outcome coercion is true, the algo-

rithm enters next loop. 

 

Loop 2: The action is two-sqds-fwd, performed by the sergeant. Relevant dialogue history 

is sequence 1 5. A variety of beliefs can be inferred from commonsense rules by analyz-

ing the task structure and conversation history. The results are given below. 

 

(1) believe(sgt, intend(std, do(sgt, two-sqds-fwd)))             (act 1 or 4, rule 5) 

(2) believe(sgt, know(sgt, bring-about(two-sqds-fwd, unit-fractured))) (act 2, rule 3) 

(3) believe(sgt, know(std, bring-about(two-sqds-fwd, unit-fractured))) (act 2, rule 3) 

(4) believe(sgt, know(sgt, alternative(one-sqd-fwd, two-sqds-fwd))) (act 3, rule 9) 

(5) believe(sgt, know(std, alternative(one-sqd-fwd, two-sqds-fwd))) (act 3, rule 9) 

(6) believe(sgt, want(sgt, do(sgt, two-sqds-fwd)))   (act 3, rule 10) 

(7) believe(sgt, want(sgt, do(sgt, one-sqd-fwd)))    (act 3, rule 10) 

(8) believe(sgt, intend(std, do(sgt, one-sqd-fwd)))         (act 4, result 5, rule 11) 

(9) believe(sgt, coerce(std, sgt, two-sqds-fwd))          (act 5, result 1, rule 7) 

(10) believe(sgt, coerce(std, sgt, unit-fractured))          (act 5, result 9, rule 15) 

 

After loop 2, the sergeant believes the student coerced him to fracture the unit (Result 

10). So the student is responsible for the outcome. 

 

Loop 3: The action is support-eagle-1-6, performed by the student.  There is no relevant 

dialogue in history. The initial values and the responsible agent are as default. There is no 

clear evidence of coercion, so the sergeant believes that the student is the responsible 

agent.  Parent node is the root of plan.  The algorithm terminates. 

 

Now the sergeant also believes that the student intended to send two squads forward and 

did not intend to send one squad forward (Results 1&8). Since the consequence set of 

one-sqd-fwd (i.e., 1-6-supported) is subset of that of two-sqds-fwd (i.e., 1-6-supported 

and unit-fractured), apply rule 14. The sergeant believes that the student intended unit-



fractured and foresaw the outcome (Result 3), so the student is to blame for unit-

fractured with high intensity. 

 

4.5. Discussion 
By incorporating this richer model of causal attribution into EMA, the system now gives 

reasonable inferences on situations that arise in our current MRE application. As the 

work moves forward, several issues need further attention. We must incorporate probabil-

istic reasoning to deal with uncertainty in observations and judgment process. For modeling 

more complex multi-agent teamwork, we need to consider joint responsibility and sharing 

responsibility among teammates (the current model assumes one agent has sole responsibil-

ity) and less hierarchical relationships between social actors. Some inference rules are too 

restrictive and need to make better use of plan knowledge, particularly considering how 

preconditions and effects indirectly limit one’s choices in acting. As our task representation 

has already encoded information about action preconditions and effects, this should be a 

natural extension of our existing methods. 

   

A critical issue is formal evaluation. Although the work is based on psychological theory 

and seems to provide reasonable responses in practice, we would like to more systemati-

cally assess the veracity of the approach.  This is a challenge given that social attributions 

are more variable than many phenomena studied by cognitive science, differing widely 

both within and across individuals depending on non-observable factors like goals, be-

liefs, cultural norms, etc. And unlike work in decision making, there is no accepted nor-

mative model of such attributions or their dynamics that we can use as a gold standard for 

evaluating techniques. We would like to build on the “situational psychology” methodol-

ogy we have used in evaluating the basic model (Gratch & Marsella, 2004a).  Under this 

methodology, people are presented with a description of an evolving situation and que-

ried as to their feelings and interpretations during several intermediate stages of the epi-

sode. For example, a subject is asked to imagine themselves in a stereotypical situation, 

such as an argument with their boss. They are asked how they would respond emotion-

ally, how they appraise aspects of the situation and how they would cope. They are then 



given subsequent updates on the situation and asked how their emotions/coping would 

dynamically unfold in light of systematic variations in both expectations and perceived 

sense of control. Based on their evolving pattern of responses, subjects are scored as to 

how closely their reactions correspond to those of typical healthy adults. In our evalua-

tion, we encode these evolving situations in EMA’s domain language, run the scenarios, 

and compare EMA’s appraisals and coping strategies to the responses indicated by the 

scale.  In using this methodology to assess the extensions related to social attribution, we 

must identify or create a corpus of situations involving social attributions and compare 

the results of the mode against human data. 

 

5. Evaluation 
Given the broad influence emotions have over behavior, evaluating the effectiveness of 

such a general architecture presents some unique challenges.  Emotional influences are 

manifested across a variety of levels and modalities. For instance, there are telltale physi-

cal signals: facial expressions, body language, and certain acoustic features of speech. 

There are also influences on cognitive processes, including coping behaviors such as 

wishful thinking, resignation, or blame-shifting. Unlike many phenomena studied by 

cognitive science, emotional responses are also highly variable, differing widely both 

within and across individuals depending on non-observable factors like goals, beliefs, 

cultural norms, etc. And unlike work in rational decision making, there is no accepted, 

idealized model of emotional responses or their dynamics that we can use as a gold stan-

dard for evaluating techniques.  



In evaluating our model, we adopt a multi-pronged approach, identifying certain specific 

functions that emotions play in humans and assessing the extent that the model repro-

duces those functions. Here we briefly summarize two recent evaluation studies, each il-

lustrating this multi-pronged approach. In the first study, we address the question of 

process dynamics: does the model generate cognitive influences that are consistent with 

human data on the influences of emotion, specifically with regard to how emotion shapes 

perceptions and coping strategies, and how emotion and coping unfold over time. In the 

second, we address the question of behavioral influence: do external behaviors have the 

same social influence on a human subject that one person’s emotion has on another per-

son, specifically with regard to how emotional displays influence third-party judgments.  
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Figure 7.  Some results from the emo-
tion process evaluation.  The experi-
ment compares human and model re-
sponses to two emotion evoking sce-
narios (“aversive” and “loss”).  Each 
scenario evolves over three phases, 
ending in either a good or bad outcome 
and subjects are queried as to their 
emotional state, appraisals and coping 
strategies after each phase.  The model 
fits the basic trends of human subjects, 
though differs in specific ratings. 



 

In the first study, we fit our model to a standard instrument used in the clinical psycho-

logical evaluation of a person’s emotional and coping response to stressful situations, and 

in particular, how these responses evolve over time. In the Stress and Coping Process 

Questionnaire (Perrez & Reicherts, 1992), a subject is presented a stereotypical situation, 

such as an argument with their boss. They are asked how they would respond emotionally 

and how they would cope. They are then given subsequent updates on the situation and 

asked how their emotions/coping would dynamically unfold in light of systematic varia-

tions in both expectations and perceived sense of control. Based on their evolving pattern 

of responses, subjects are scored as to how closely their reactions correspond to those of 

normal healthy adults. In our evaluation, we encode these evolving situations in EMA’s 

domain language, run the scenarios, and compare EMA’s appraisals and coping strategies 

to the responses indicated by the scale.  Figure 7 illustrates the basic results.  The model 

matches the basic trends of normal human subjects, though differs in some particulars.  

See  (Gratch & Marsella, 2004b) for details.      

 
For evaluating the social impact of our model, we are initially focusing on the phenom-

ena of social referencing, whereby people, when presented with an ambiguous decision, 

are influenced by appraisals of others (Campos, 1983). In our evaluation, we assess the 

ability of synthetic emotion displays to induce social referencing in human subjects in the 

Figure 8:  Study illustrates that the emotional displays of virtual characters can influence 
the decision making of human subjects.  Consistent with the phenomenon of social ref-
erencing, when presented with an ambiguous decision, subjects inferred how bystanders 
appraised the situation through their emotional displays and factored this information 
into their decision.   
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one squad 

Reference 
two squads

Response to “What action would you
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Response to “What action do you believe

the team members preferred?” 

One squad 
forward 

Two squads 
forward 



context of the Mission Rehearsal Exercise. Subjects observe the disagreement described 

in Section 4.4 and are asked to indicate which course of action is better (sending two 

squads forward or sending one squad).  As subjects have no military background, the cor-

rect action is ambiguous. Across two experimental conditions, we vary the emotional dis-

plays of the virtual team members that will ultimately have to carry out the order: in the 

“reference two squads” condition, the team members uniformly exhibit positive emo-

tional displays when “two squads forward” is proposed and negative displays when “one 

squad forward” is proposed; vice versa for the “reference one squad” condition.  The hy-

pothesis is that human subjects both recognize that these displays indicate a preference 

and will be influenced to adopt a decision that is consistent with this preference.  The re-

sults, Figure 8, support this hypothesis.  See (Gratch & Marsella, 2004a) for more details.  

 

Together, the results lend support to both the fidelity and social impact of the basic 

model.  The extensions described in Section 4 have yet to be formally evaluated.  The 

basic structure of this study will follow the basic structure of first study, though with ma-

terial drawn from empirical studies of attribution theory.     

 

6. Summary 
EMA provides a general and comprehensive model of the processes underlying cognitive 

appraisal. In particular, we feel it is the first process model that explains how the ap-

praisal of an event can change over time (by tying appraisal to an interpretation that can 

change with further inference) and is the first comprehensive attempt to model the range 

of human coping strategies. It is also one of the most comprehensive integrations of an 

appraisal model with other reasoning capabilities including planning, natural language 

processing, and non-verbal behavior. This chapter significantly extends the model’s abil-

ity to reason about multi-agent situations by providing a cognitively plausible model of 

social blame and credit assignment based on social attribution theory. 
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