
Modeling and Animating Realistic Faces from Images

Frédéric Pighin Richard Szeliski‡ David H. Salesin † ‡

University of Southern California †University of Washington ‡Microsoft Research

Abstract

We present a new set of techniques for modeling and animating realistic faces from photographs
and videos. Given a set of face photographs taken simultaneously, our modeling technique allows the
interactive recovery of a textured 3D face model. By repeating this process for several facial expressions,
we acquire a set of faces models that can be linearly combined to express a wide range of expressions.
Given a video sequence, this linear face model can be used to estimate the face position, orientation,
and facial expression at each frame. We illustrate these techniques on several datasets and demonstrate
robust estimations of detailed face geometry and motion.

1 Introduction

Realistic face synthesis is one of the most fundamental problems in computer graphics — and one
of the most difficult. Indeed, attempts to model and animate realistic human faces date back to the
early 70’s (Parke 1972), with many dozens of research papers published since. The applications of face
animation include such diverse fields as character animation for films and advertising, computer games
(Inc 1993), video teleconferencing (Choi, Kiyoharu, Harashima and Takebe 1994), user-interface agents
and avatars (Thórisson 1997), and facial surgery planning (Koch, Gross, Carls, von Büren, Fankhauser
and Parish 1996, Vannier, Marsh and Warren 1983). So far, no perfectly realistic face animation has
ever been generated by computer: no “face animation Turing test” has ever been passed.

There are several factors that make realistic face animation so elusive. First, the human face is an
extremely complex geometric form. For example, the human face models used in Pixar’s Toy Story
had several thousand control points each (E. Ostby, Pixar Animation Studios 1997). Moreover, the face
exhibits countless tiny creases and wrinkles, as well as subtle variations in color and texture — all of
which are crucial for our comprehension and appreciation of facial expressions. Rendering the face is a
challenging task too: the multiple skin layers absorb and scatter incoming light in very complex ways. As
difficult as the face is to model and render, it is even more problematic to animate, since face movement
is a product of the underlying skeletal and muscular forms, as well as the mechanical properties of the
skin and sub-cutaneous layers (which vary in thickness and composition in different parts of the face).
All of these problems are enormously magnified by the fact that we as humans have an uncanny ability to
read expressions — an ability that is not merely a learned skill, but part of our deep-rooted instincts. For
facial expressions, the slightest deviation from truth is something any person will immediately detect.

Analyzing face images is the inverse problem of face images synthesis. Given a face image or stream
of images, the goal of the analysis is to extract information such as the face position and orientation, the
facial expression, or the identity of the person. These problems are the focus of many research efforts in
computer vision. This interest is easily explained by the multiple applications that rely on algorithms
for face analysis. For instance, in telesurveillance, human faces must be first located in an image stream
and then tracked over time; eventually the face can be matched to a database to identify the person.
In the field of human computer interfaces, researchers strive to develop algorithms that would allow a
computer to recognize our facial expressions or track our gaze and react accordingly. In teleconferencing,
dramatic compression rates can be achieved by interpreting face images and reducing them to a few
parameters that can be sent efficiently over a communication network. Just as for the synthesis problem,
the complexity of the human face makes the analysis of face images a daunting task. This difficulty

1

comes from the multiple appearances that the human face can take as the facial expression, the lighting
conditions, and the identity of the person change. A robust technique must take into account all these
sources of variations.

2 Methodology

The synthesis and the analysis of face images are dual problems. On the one hand, the goal is to generate
realistic face images; on the other hand the goal is to extract information from face images. However,
we believe some of the most powerful approaches to solve these problems combine both synthesis and
analysis.

Face images of real persons (photographs) provide a wealth of information that can be leveraged for
modeling and animating realistic synthetic faces. New images can be generated from these sample images
using image-based modeling and rendering techniques. The goal of these techniques is to reconstruct a
continuous image function using a set of sample images. Thus the original samples can be interpolated
or extrapolated to produce novel images. For the case of face images, these novel images can introduce
changes in viewpoint, in the lighting conditions, or the facial expression.

The analysis of face images is usually done using a model of the face. Such a model provides structured
knowledge about the type of information that is sought from the images. For instance, a model for
identifying individuals from mug shots could consist of an annotated database of face photographs. The
analysis results from a comparison between the information provided by the model and the target image.
A particular approach is to use an analysis-by-synthesis technique where the model is able to produce
images that can be directly compared to the input images. This approach permits to take advantage of
a realistic face model and estimates parameters that can be reused in an animation system.

In this paper, we develop techniques to model and animate 3-dimensional face models from images,
using these image-based approaches. We build face models from a set of photographs of a person’s face.
We also develop a technique to estimate the position, orientation, and expression of the face in a video
sequence. These techniques blur the line between computer graphics and computer vision as we explore
the fertile synergy between these two fields.

3 Related work

Realistic face modeling and animation have been the topics of many research efforts stemming both in
the computer graphics and computer vision communities. In this section, we describe various research
projects pertaining to face modeling, face animation, and face tracking. We also position our approach
among these efforts.

3.1 Modeling

Several methods can be used to capture a 3D face model of a real person’s face. First, the face geometry
and texture can be automatically acquired using laser-based cylindrical scanners such as those produced
by Cyberware (Cyb 1990). A second approach is based on photogrammetric techniques in which images
are used to create precise geometry (Moffitt and Mikhail 1980, Slama 1980). Our modeling technique
falls into this category. Compared with face modeling methods that utilize a laser scanner, our technique
uses simpler acquisition equipment (regular cameras), and it is capable of extracting texture maps of
higher resolution. (Cyberware scans typically produce a cylindrical grid of 512 by 256 samples). The
price we pay for these advantages is the need for user intervention in the modeling process.

The earliest photogrammetric techniques applied to face modeling and animation employed grids
that were drawn directly on the human subject’s face (Parke 1972, Parke 1974). One consequence of
these grids, however, is that the images used to construct geometry can no longer be used as valid
texture maps for the subject. More recently, several methods have been proposed for modeling the
face photogrammetrically without the use of grids (Ip and Yin 1996, Kurihara and Arai 1991). These
modeling methods are similar in concept to the modeling technique described in this article. However,
these previous techniques use a small predetermined set of features to deform the generic face mesh to

2

the particular face being modeled, and offer no mechanism to further improve the fit. Such an approach
may perform poorly on faces with unusual features or other significant deviations from the normal. Our
system, by contrast, gives the user complete freedom in specifying the correspondences, and enables the
user to refine the initial fit as needed. Another advantage of our technique is its ability to handle fairly
arbitrary camera positions and lenses, rather than using a fixed pair that are precisely oriented. Our
method is similar, in concept, to the work done in architectural modeling by Debevec et al. (Debevec,
Taylor and Malik 1996), where a set of annotated photographs are used to model buildings starting from
a rough description of their shape.

Computer vision techniques can be used to extract geometry from images. These techniques can
rely on stereo images (Devernay and Faugeras 1994), shading (Leclerc and Bobick 1991), or silhouettes
(Proesman, Gool and Oosterlinck 1996). Approaches more specific to faces include the work by Lengagne
et al. (Lengagne, Fua and Monga 1998). Starting from a set of photographs, they extract a depth map
of the face using a stereo algorithm. Using a minimization technique, a 3D face model is then deformed
to fit the map. Fua and Miccio (Fua and Miccio 1998) developed a more general model fitting scheme
that incorporates multiple sources of information (stereo, shading, silhouette, and features). Each source
defines a set of constraints to the minimization problem.

The degree of variations between human faces is such that developing robust analysis methods is
very difficult and fully automatic techniques seldom produce perfect results. We believe that the user
should be able to steer the modeling process to reach her objective. The role of the modeling tools is to
assist the user in reaching her goal in a fast and painless way. This “power assist” (Kass, Witkin and
Terzopoulos 1987) approach has been successfully applied to architecture modeling (Debevec et al. 1996)
and image interpretation (Kass et al. 1987). The modeling tool we develop follows this approach: the user
specifies a set of facial features between the images; the modeling tool assists in finding these features
and provides a visualization of the resulting extracted model. The recovered model can be compared to
the photographs to evaluate the goodness of the fit.

The skin has very complex reflectance properties that are difficult to reproduce. Indeed, the only
attempt at modeling realistically the reflectance properties of the skin was done by Hanrahan and Krueg-
ger (Hanrahan and Kruger 1993). Using a physically-based model of the skin and a subsurface scattering
model they simulate the skin complex reflectance properties. This model is unfortunately very complex
and the results are not very convincing. A different approach is to use face images taken under different
illumination conditions. Hallinan (Hallinan 1994) takes such an image-based approach by modeling light-
ing variations in face images using eigenfaces (Turk and Pentland 1987). The model is built by including
images of faces shot under a set of controlled lighting conditions. The study shows that the variations in
lighting can be accounted for by a subspace of low dimension (about 5) for a simple Lambertian model
with specular lobes. While the reflectance properties of the human face are far more complex than the
proposed models, this might be enough for certain applications. Debevec et al. (Debevec, Hawkins,
Tchou, Duiker, Sarokin and Sagar 2000) offers a thorough study of skin’s reflectance. Thanks to a com-
plex aparatus (the lightstage), they manage to capture a dense set of images of a face lighted from
different directions. They reuse these samples to illuminate the face under arbitrary lighting conditions.
They also develop a limited skin reflectance model and fit it to the reflectance samples. In this paper,
we do not address this issue extensively. We render faces with the lighting conditions captured when the
photographs were taken. We explore two methods for texturing our 3D face model. A view-independent
method that uses a cylindrical texture map and a view-dependent method that blends between differ-
ent photographs as a function of the virtual viewpoint. The view-dependent technique provides crisper
results, in particular for specular highlights.

3.2 Model-based tracking

Recovering the face position and the facial expression automatically from a video is a difficult problem.
The difficulty comes from the wide range of appearances that can be generated by the human face
under different orientations, illumination conditions, and facial expressions. The creation of a model
that encompasses these variations and supports the robust estimation of the face parameters is thus a
very challenging task.

This problem can be made easier using markers on the face such as heavy makeup (Terzopoulos and

3

Waters 1993) or a set of colored dots stuck onto the actor’s face (Guenter, Grimm, Wood, Malvar and
Pighin 1998, Williams 1990). Once the position of the markers has been determined, the position of the
face and the facial features can easily be derived. Williams (Williams 1990) pioneered this technique,
tracking 2D points on a single image. Guenter et al. (Guenter et al. 1998) extended this approach to
tracking points in 3D using multiple images.

The use of markers on the face limits the type of video that can be processed; instead, computer vision
techniques are not used to extract information from a video of an unmarked face. These tracking tech-
niques can be classified into two groups depending on whether they use 2-dimensional or 3-dimensional
models.

Two-dimensional facial feature trackers can be based on deformable or rigid patches (Black and
Yacoob 1995, Covell 1996, Hager and Belhumeur 1996), or on edge or feature detectors (Blake and
Isard 1998, Lanitis, Taylor and Cootes 1995, Matsino, Lee, Kimura and Tsuji 1995). Using a 2D model
limits the range of face orientations that can be handled. For large variations of face orientation, the
3-dimensional properties of the face need to be modeled.

Different approaches have been taken to fit a 3D face model to an image or a sequence of images.
One approach is to build a physically-based model that describes the muscular structure of the face.
These models are fitted by computing which set of muscle activations best corresponds to the target
image. Terzopoulos and Waters (Terzopoulos and Waters 1993) estimated muscle contractions from the
displacement of a set of face markers. Other techniques compute an optical flow from the image sequence
and decompose the flow into muscle activations. Essa and Pentland (Essa and Pentland 1997) built a
physically-based face model and developed a control-theoretic technique to fit it to a sequence of images.
Decarlo and Metaxas (Decarlo and Metaxas 1998) employed a similar model that incorporates possible
variations in head shape using anthropometric measurements. Comparable techniques (Choi, Aizawa,
Harshima and Takebe 1994, Li, Roivainen and Forchheimer 1993) are used in model-based image coding
schemes where the model parameters provide a compact representation of the video frames.

These approaches use a 3D articulated face model to derive a model for face motion. Using the
estimated motion from an input video, the 3D model can be animated to synthesize an animation similar
to the input sequence. However, the synthesized images are not leveraged to perform the analysis. More
recent techniques employ an analysis-by-synthesis approach where target face images are analyzed by
comparing them to synthetic face images. La Cascia et al. (Cascia, Isidoro and Sclaroff 1998) model
the face with a texture-mapped cylinder. The textures are extracted by building a mosaic from the
input image sequence. Schodl et al. (Schodl, Ario and Essa 1998) use a more detailed geometric model
to estimate the face position and orientation. These two models however do not permit the estimation
of the facial expression or the identity of the face in the target image. Vetter and Blanz (Vetter and
Blanz 1998) built a more general statistical model of the human face by processing a set of example
faces that includes variations in identity and expression. Their model consists of a linear combination of
scanned 3D face models. They assume that the head pose is known and compute which linear combination
of the sample faces best fit the target image.

Vetter and Blanz’s linear combination approach is similar to ours. Our morphing technique however is
different. Their model separates shape and texture information. We believe these quantities are correlated
and we consider expression vectors that include both shape and texture. Our goal too is different; we
do not estimate the identity of the person but rather track the person’s facial expression and head pose.
The fact that our model is specialized for a given person enables better tracking results, and our realistic
face models permit an analysis-by-synthesis approach.

In this paper, we present a model-based face tracking technique. Our technique consists of fitting
a 3D face model to each frame in the input video. This face model is a linear combination of 3D face
models, each corresponding to a particular facial expression. The use of realistic face models allows us
to match realistic renderings of faces to the target images. Moreover, we directly recover parameters
that can be used in an animation system. To fit the model, we minimize an error function over the set
of facial expressions and face positions spanned by the model. The fitting process employs a continuous
optimization technique. Because our 3D head model generates more realistic images than previous face
animation systems, we can directly use an analysis-by-synthesis approach and get better tracking results
than with other methods.

4

4 Overview of paper

The remainder of this paper is broken into three sections.
Section 5 describes our face modeling technique. Given a set of photographs of a person’s face, a

generic 3D face model is fitted to estimate both the face geometry and the camera parameters. Using
this geometric data, a texture map can be extracted from the photographs.

Section 6 presents a tracking technique that uses our realistic face models in an analysis-by-synthesis
approach. Given a video featuring a person, we recover for each frame the position of the head, its
orientation, and the facial expression. Our face model is a linear combination of textured face meshes each
representing a key expression. Our fitting method uses continuous optimization techniques to estimate
the parameters of the face model.

Sections 7 and 8 concludes this paper with a summary of our work and some suggestions for future
research directions.

The material that appears in this paper has been presented from a computer graphics perspective in
two publications. The first one was published in the Proceedings of the ACM SIGGRAPH Conference
in 1998 (Pighin, Hecker, Lischinski, Szeliski and Salesin 1998) and covers Section 5. It also describes
a keyframe animation system based on a collection of face meshes. The second one was published
in the Proceedings of the International Conference on Computer Vision in 1999 (Pighin, Szeliski and
Salesin 1999) and covers Section 6 .

5 Modeling faces from photographs

Creating realistic face models is a very challenging problem. The human face is an extremely complex
geometric form. Moreover, the face exhibits countless tiny creases and wrinkles, as well as subtle vari-
ations in color and texture — all of which are crucial for our comprehension and appreciation of facial
expressions. One way to ensure some level of realism is to base the model on a real person’s face. In
this section we present a technique to model a person’s face from a set of photographs corresponding to
different views of the face.

Our modeling approach is based on photogrammetric techniques in which images are used to create
precise geometry and texture information. We model faces by interactively fitting a 3D generic face
model to a set of images. Our fitting process consists of several basic steps. First, we capture multiple
views of a human subject (with a given facial expression) using cameras at arbitrary locations. Next, we
digitize these photographs and manually mark a small set of initial corresponding points on the face in
the different views (typically, corners of the eyes and mouth, tip of the nose, etc.). These points are then
used to automatically recover the camera parameters (position, focal length, etc.) corresponding to each
photograph, as well as the 3D positions of the marked points in space. The 3D positions are then used to
deform a generic 3D face mesh to fit the face of the particular human subject. At this stage, additional
corresponding points may be marked to refine the fit. Finally, we extract one or more texture maps for
the 3D model from the photos. Either a single view-independent texture map can be extracted, or the
original images can be used to perform view-dependent texture mapping.

The rest of this section is structured as follows. First, we describe in detail the technique we develop
to recover the face geometry from a set of images. Then we explain how texture information is extracted
from the photos once the geometry has been estimated. Finally, Section 5.3 illustrates the application
of our modeling technique to several sets of face images.

5.1 Model fitting

The task of the model-fitting process is to adapt a generic face model to fit an individual’s face and
facial expression. As input to this process, we take several images of the face from different viewpoints
(Figure 1a) and a generic face model (we use the generic face model created with Alias|Wavefront
(Ali 1995) shown in Figure 1c). The generic face model provides information about the general topology
of the human face and an initial estimate of the face geometry. The photographs provide geometric
and texture information about a specific face. Fitting the model is done by manually specifying a set of
correspondences between the face model and feature points on the photos. First, a few features points are

5

(a)

(b) (c) (d) (e)

Figure 1: Model-fitting process. (a) a set of input images with marked feature points, (b) facial
features annotated using a set of curves, (c) generic face geometry (shaded surface rendering), (d) face
adapted to initial 13 feature points (after pose estimation) (e) face after 99 additional correspondences
have been given.

chosen (13 in this case, shown in the frames of Figure 1a) to recover the camera pose. These same points
are also used to refine the generic face model (Figure 1d). The model can be further refined by drawing
corresponding curves in the different views (Figure 1b). The output of the process is a face model that
has been adapted to fit the face in the input images (Figure 1e), along with a precise estimate of the
camera pose corresponding to each input image.

The model-fitting process consists of three stages. In the pose recovery stage, we apply computer
vision techniques to estimate the viewing parameters (position, orientation, and focal length) for each of
the input cameras. We simultaneously recover the 3D coordinates of a set of feature points on the face.
These feature points are selected interactively from among the face mesh vertices, and their positions
in each image (where visible) are specified by hand. The scattered data interpolation stage uses the
estimated 3D coordinates of the feature points to compute the positions of the remaining face mesh
vertices. In the shape refinement stage, we specify additional correspondences between face vertices and
image coordinates to improve the estimated shape of the face (while keeping the camera pose fixed).
These three stages are described in detail in the rest of this chapter.

5.1.1 Pose recovery

The goal of pose recovery is to estimate, for each photograph, the internal parameters (focal length)
and external parameters (position and orientation) of the camera. This problem is solved using an
iterative minimization technique: starting with a rough knowledge of the camera positions (e.g., frontal
view, side view, etc.) and of the 3D shape (given by the generic head model), we iteratively improve
the pose and the 3D shape estimates in order to minimize the difference between the predicted and
observed feature point positions. Our formulation is based on the non-linear least squares structure-
from-motion algorithm introduced by Szeliski and Kang (Szeliski and Kang 1994). However, unlike the
method they describe, which uses the Levenberg-Marquardt algorithm to perform a complete iterative
minimization over all of the unknowns simultaneously, we break the problem down into a series of linear
least squares problems that can be solved using very simple and numerically stable techniques (Golub
and Van Loan 1996, Press, Flannery, Teukolsky and Vetterling 1992).

6

To formulate the pose recovery problem, we associate a rotation matrix Rk and a translation vector
tk with each camera pose k. (The three rows of Rk are rk

x, rk
y , and rk

z , and the three entries in tk are
tkx, tky, tkz .) We write each 3D feature point as m i, and its 2D screen coordinates in the k-th image as
(xk

i , yk
i).

Assuming that the origin of the (x, y) image coordinate system lies at the optical center of each
image (i.e., where the optical axis intersects the image plane), the traditional 3D projection equation
for a camera with a focal length fk (expressed in pixels) can be written as

xk
i = fk rk

x ·m i + tkx
rk

z ·m i + tkz
yk

i = fk rk
y ·m i + tky

rk
z ·m i + tkz

(1)

(This is just an explicit rewriting of the traditional projection equation xk
i ∝ Rkm i + tk where xk

i =
(xk

i , yk
i , fk).)

There is a scale ambiguity in this structure from motion problem, i.e., if we scale all of the m ’s
and t ’s up by the same amount, the answer is the same. There is also a pose ambiguity (we can rotate
and/or translate all points and cameras by inverse amounts). In practice, we get around these difficulties
by giving some initial camera position guesses and point position guesses. Since we iterate downhill in
energy, there is no reason for the answer to be affected by the ambiguity.

Instead of using (1) directly, we reformulate the problem to estimate inverse distances to the object
(Szeliski and Kang 1994). Let ηk = 1/tkz be this inverse distance and sk = fkηk be a world-to-image
scale factor. The advantage of this formulation is that the scale factor sk can be reliably estimated even
when the focal length is long, whereas the original formulation has a strong coupling between the fk

and tkz parameters.
Performing these substitutions, we obtain

xk
i = sk rk

x ·m i + tkx
1 + ηkrk

z ·m i

yk
i = sk rk

y ·m i + tky
1 + ηkrk

z ·m i
.

If we let wk
i = (1 + ηk(rk

z ·m i))−1 be the inverse denominator, and collect terms on the left-hand side,
we get

wk
i

(

xk
i + xk

i η
k(rk

z ·m i) − sk(rk
x ·m i + tkx)

)

= 0 (2)

wk
i

(

yk
i + yk

i η
k(rk

z ·m i) − sk(rk
y ·m i + tky)

)

= 0

Note that these equations are linear in each of the unknowns that we wish to recover, i.e., m i, tkx, tky ,
ηk, sk, and Rk, if we ignore the variation of wk

i with respect to these parameters. When solving these
equations, we consider that the scalars wk

i are constant and update their values as better estimates of
m i, tkx, tky, ηk, sk, and Rk become available. Using this method, the set of equations 2 defines a weighted
linear least squares problem.

Given estimates for initial values, we can solve for different subsets of the unknowns. In our current
algorithm, we solve for the unknowns in five steps: first sk, then m i, Rk, tkx and tky , and finally ηk. This
order is chosen to provide maximum numerical stability given the crude initial pose and shape estimates.
For each parameter or set of parameters chosen, we solve for the unknowns using linear least squares.
More details about the systems solved are given in Appendix A. The simplicity of this approach is a
result of solving for the unknowns in five separate stages, so that the parameters for a given camera or
3D point can be recovered independently of the other parameters.

5.1.2 Scattered data interpolation

Once we have computed an initial set of coordinates for the feature points m i, we use these values to
deform the remaining vertices on the face mesh. We construct a smooth interpolation function that gives
the 3D displacements between the original point positions and the new adapted positions for every vertex

7

in the original generic face mesh. Constructing such an interpolation function is a standard problem in
scattered data interpolation. Given a set of known displacements u i = m i−m(0)

i away from the original
positions m(0)

i at every constrained vertex i, construct a function that gives the displacement uj for
every unconstrained vertex j.

There are several considerations in choosing the particular data interpolant (Nielson 1993). The first
consideration is the embedding space, that is, the domain of the function being computed. In our case,
we use the original 3D coordinates of the points as the domain. (An alternative would be to use some
2D parameterization of the surface mesh, for instance, the cylindrical coordinates described in Section
5.2.) We therefore attempt to find a smooth vector-valued function f (m) fitted to the known data
u i = f (m i), from which we can compute u j = f (mj).

There are also several choices for how to construct the interpolating function (Nielson 1993). We use
a method based on radial basis functions, that is, functions of the form

f (m) =
∑

i

ciφ(‖m −m i‖),

where φ(r) are radially symmetric basis functions. A more general form of this interpolant also adds some
low-order polynomial terms to model global, e.g., affine, deformations (Lee, Chwa, Shin and Wolberg
1995, Lee, Wolberg, Chwa and Shin 1996, Nielson 1993). In our system, we use an affine basis as part
of our interpolation algorithm, so that our interpolant has the form:

f (m) =
∑

i

ciφ(‖m −m i‖) + Mm + t , (3)

To determine the coefficients ci and the affine components M and t , we solve a set of linear equations
that includes the interpolation constraints u i = f (m i), as well as the constraints

∑

i ci = 0 and
∑

i cim i
T = 0, which remove affine contributions from the radial basis functions.

Many different functions for φ(r) have been proposed (Nielson 1993). After experimenting with a
number of functions, we have chosen to use an exponential function φ(r) = e−r/64, with units measured
in inches.

Figure 1d shows the shape of the face model after having interpolated the set of computed 3D
displacements at 13 feature points shown in Figure 1 and applied them to the entire face.

5.1.3 Correspondence-based shape refinement

After warping the generic face model into its new shape, we can further improve the shape by specifying
additional correspondences. Since these correspondences may not be as easy to locate correctly, we do
not use them to update the camera pose estimates. Instead, we simply solve for the values of the new
feature points m i using a simple least-squares fit, which corresponds to finding the point nearest the
intersection of the viewing rays in 3D. We can then re-run the scattered data interpolation algorithm to
update the vertices for which no correspondences are given. This process can be repeated until we are
satisfied with the shape.

Figure 1e shows the shape of the face model after 99 additional correspondences have been specified.
To facilitate the annotation process, we grouped vertices into polylines. Each polyline corresponds to
an easily identifiable facial feature such as the eyebrow, eyelid, lips, chin, or hairline. The features can
be annotated by outlining them with hand-drawn curves on each photograph where they are visible.
The curves are automatically converted into a set of feature points by stepping along them using an
arc-length parameterization. Corresponding curves on different views are parameterized independently.
An alternative would be to parameterize one of the curves, chosen as a reference, and use the epipolar
geometry to parameterize the other curves. For each point on the reference curve, the epipolar geometry
associates a line on the other views. Intersecting these lines with the curve provides a parameterization.
Figure 1b shows annotated facial features using a set of curves on the front view.

5.2 Texture extraction

In this section, we describe the process of extracting the texture maps necessary for rendering photore-
alistic images of a reconstructed face model from various viewpoints.

8

Figure 2: Sampling the photographs. The texture value at a point on the model’s surface is deter-
mined by sampling the photographs where this point is visible.

The texture extraction problem can be defined as follows. Given a collection of photographs, the
recovered viewing parameters, and the fitted face model, compute for each point m on the face model
its texture color T (m).

Each point m may be visible in one or more photographs; therefore, we must identify the corre-
sponding point in each photograph and decide how these potentially different values should be combined
(blended) together. The photographs are sampled by projecting m using the recovered camera param-
eters. Figure 2 illustrates this process. There are two principal ways to blend values from different
photographs: view-independent blending, resulting in a texture map that can be used to render the face
from any viewpoint; and view-dependent blending, which adjusts the blending weights at each point
based on the direction of the current viewpoint (Debevec et al. 1996, Pulli, Cohen, Duchamp, Hoppe,
Shapiro and Stuetzle 1997). Rendering takes longer with view-dependent blending, but the resulting
image is of slightly higher quality (see Figure 5).

5.2.1 Weight maps

As outlined above, the texture value T (m) at each point on the face model can be expressed as a convex
combination of the corresponding colors in the photographs:

T (m) =
∑

k gk(m)Ck(xk, yk)
∑

k gk(m)
.

Here, Ck is the image function (color at each pixel of the k-th photograph,) and (xk, yk) are the image
coordinates of the projection of m onto the k-th image plane. The weight map gk(m) is a function that
specifies the contribution of the k-th photograph to the texture at each face surface point.

The construction of these weight maps is probably the trickiest and the most interesting component
of our texture extraction technique. There are several important considerations that must be taken into
account when defining a weight map:
1. Self-occlusion: gk(m) should be zero unless m is front-facing with respect to the k-th image and

visible in it.
2. Smoothness: the weight map should vary smoothly, in order to ensure a seamless blend between

different input images.

9

kI

(x ,y)k k

(u,v)

p

Figure 3: Geometry for texture extraction.

3. Positional certainty: gk(m) should depend on the “positional certainty” (Kurihara and Arai 1991) of
m with respect to the k-th image. The positional certainty is defined as the dot product between the
surface normal at m and the k-th direction of projection.

4. View similarity: for view-dependent texture mapping, the weight gk(m) should also depend on the
angle between the direction of projection of m onto the j-th image and its direction of projection in
the new view.
Previous authors have taken only a subset of these considerations into account when designing their

weighting functions. For example, Kurihara and Arai (Kurihara and Arai 1991) use positional certainty
as their weighting function, but they do not account for self-occlusion. Akimoto et al. (Akimoto, Suenaga
and Wallace 1993) and Ip and Yin (Ip and Yin 1996) blend the images smoothly, but address neither self-
occlusion nor positional certainty. Debevec et al. (Debevec et al. 1996), who describe a view-dependent
texture mapping technique for modeling and rendering buildings from photographs, do address occlusion
but do not account for positional certainty. (It should be noted, however, that positional certainty is less
critical in photographs of buildings, since most buildings do not tend to curve away from the camera.)

To facilitate fast visibility testing of points on the surface of the face from a particular camera pose,
we first render the face model using the recovered viewing parameters and save the resulting depth map
from the Z-buffer. Then, with the aid of this depth map, we can quickly classify the visibility of each face
point by applying the viewing transformation and comparing the resulting depth to the corresponding
value in the depth map.

5.2.2 View-independent texture mapping

In order to support rapid display of the textured face model from any viewpoint, it is desirable to blend
the individual photographs together into a single texture map. This texture map is constructed on a
virtual cylinder enclosing the face model. The mapping between the 3D coordinates on the face mesh
and the 2D texture space is defined using a cylindrical projection, as in several previous papers (Chen,
State and Banks 1995, Kurihara and Arai 1991, Lee, Terzopoulos and Waters 1995).

For view-independent texture mapping, we will index the weight map gk by the (u, v) coordinates of
the texture being created. Each weight gk(u, v) is determined by the following steps:
1. Construct a feathered visibility map F k for each image k. These maps are defined in the same

cylindrical coordinates as the texture map. We initially set F k(u, v) to 1 if the corresponding face
point m is visible in the k-th image, and to 0 otherwise. The result is a binary visibility map, which
is then smoothly ramped (feathered) from 1 to 0 in the vicinity of the boundaries (Szeliski and
Shum 1997). A cubic polynomial is used as the ramping function.

2. Compute the 3D point m on the surface of the face mesh whose cylindrical projection is (u, v) (see
Figure 3). This computation is performed by casting a ray from (u, v) on the cylinder towards the

10

(a)

(b)

(c)

Figure 4: Example of cylindrical texture. A cylindrical texture (part (a)) has been extracted from
the images shown in Figure 1. Part (b) and part (c) shows the projection of the front view and its
associated weight map respectively.

11

Figure 5: Comparison between view-independent and view-dependent texture mapping.
The view-independent rendering is shown on the left and the view-dependent rendering on the right.
Higher frequency details are visible in the view-dependent rendering.

cylinder’s axis. The first intersection between this ray and the face mesh is the point m . (Note that
there can be more than one intersection for certain regions of the face, most notably the ears. These
special cases are discussed in Section 5.2.4.) Let P k(m) be the positional certainty of m with respect
to the k-th image.

3. Set weight gk(u, v) to the product F k(u, v)P k(m).
For view-independent texture mapping, we will compute each pixel of the resulting texture T (u, v)

as a weighted sum of the original image functions, indexed by (u, v).
Figure 4 illustrates the extraction of a cylindrical texture map from the photographs in Figure 1a.
Certain areas of the head (e.g., top or back of the head) might not be visible in any of the photographs.

This results in areas or holes in the texture map that cannot be colored. However, we might need a texture
map that covers the whole 3D face model. We used a simple algorithm to fill these uncolored areas. Our
hole filling algorithm iteratively fills the holes in the texture map by expanding the filled area by one pixel
until all the pixels in the texture have been colored. The extrapolated pixels are colored by averaging
nearby filled pixels. An alternative is to construct an image pyramid of the texture (Gortler, Grzeszczuk,
Szeliski and Cohen 1996). The pyramid is processed in a first phase by filling in the missing pixels at
the boundary starting from the highest resolution and moving up in the pyramid. In a second phase,
the filled pixels are propagated down the pyramid to fill the missing color information.

5.2.3 View-dependent texture mapping

The main disadvantage of the view-independent cylindrical texture map described above is that its
construction involves blending together resampled versions of the original images of the face. Because of
this resampling, and also because of slight registration errors, the resulting texture is slightly blurry. This
problem can be alleviated to a large degree using a view-dependent texture map (Debevec et al. 1996)
in which the blending weights are adjusted dynamically, according to the current view.

For view-dependent texture mapping, we render the model several times, each time using a different
input photograph as a texture map, and blend the results. More specifically, for each input photograph,
we associate texture coordinates and a blending weight with each vertex in the face mesh. (The rendering
hardware performs perspective-correct texture mapping along with linear interpolation of the blending
weights.)

Given a viewing direction d , we first select the subset of photographs used for the rendering and

12

then assign blending weights to each of these photographs. (Pulli et al. (Pulli et al. 1997) select three
photographs based on a Delaunay triangulation of a sphere surrounding the object.) Since our cameras
were positioned roughly in the same plane, we select just the two photographs whose view directions d !

and d !+1 are the closest to d and blend between the two.
In choosing the view-dependent term V k(d) of the blending weights, we wish to use just a single

photo if that photo’s view direction matches the current view direction precisely, and to blend smoothly
between the nearest two photos otherwise. We used the simplest possible blending function having this
effect:

V k(d) =
{

d · dk − d ! · d !+1 if # ≤ k ≤ # + 1
0 otherwise

For the final blending weights gk(m ,d), we then use the product of all three terms F k(xk, yk)P k(m)V k(d).
View-dependent texture maps have several advantages over cylindrical texture maps. First, they can

make up for some lack of detail in the model. Second, whenever the model projects onto a cylinder
with overlap, a cylindrical texture map will not contain data for some parts of the model. This problem
does not arise with view-dependent texture maps if the geometry of the mesh matches the photograph
properly. One disadvantage of the view-dependent approach is its higher memory requirements and
slower speed due to the multi-pass rendering. Another drawback is that the resulting images are much
more sensitive to any variations in exposure or lighting conditions in the original photographs.

5.2.4 Eyes, teeth, ears, and hair

The parts of the mesh that correspond to the eyes, teeth, ears, and hair are textured in a separate
process. The eyes and teeth are usually partially occluded by the face; hence it is difficult to extract a
texture map for these parts in every facial expression. The ears have an intricate geometry with many
folds and usually fail to project without overlap on a cylinder. The hair has fine-detailed texture that
is difficult to register properly across facial expressions. For these reasons, each of these face elements
is assigned an individual texture map. The texture maps for the eyes, teeth, and ears are computed by
projecting the corresponding mesh part onto a selected input image where that part is clearly visible (the
front view for eyes and teeth, side views for ears). To keep the hair texture crisp, we render it using a
constant geometry and a single texture map. This geometry and texture are taken from a predetermined
facial expression.

The eyes and the teeth are usually partially shadowed by the eyelids and the mouth respectively. We
approximate this shadowing by modulating the brightness of the eye and teeth texture maps according
to the size of the eyelid and mouth openings. The modulating functions are quadratic polynomials of
the size of the openings. The coefficients of the functions were chosen by fitting this model to the actual
photographs used during modeling.

5.3 Modeling results

In this section, we present several results that illustrate our modeling and rendering techniques.
In order to test our technique, we photographed both a man (J.R.) and a woman (Karla) in a variety

of facial expressions. The photography was performed using five cameras simultaneously. The cameras
were not calibrated in any particular way, and the lenses had different focal lengths. Since no special
attempt was made to illuminate the subject uniformly, the resulting photographs exhibited considerable
variation in both hue and brightness. The photographs were digitized using the Kodak PhotoCD process.
Five typical images (cropped to the size of the subject’s head) are shown in Figure 1a.

Figures 6 and 7 show both the input images (on the top) and synthetic reproductions using view-
dependent texture mapping (at the bottom). Note that the hair of the female model is not faithfully
reproduced. The geometry of the hair is very intricate and cannot be accurately modeled using our
generic face model.

13

Input photographs

Rendered model

Figure 6: Modeling a joy expression (Karla).

14

Input photographs

Rendered model

Figure 7: Modeling a happy expression (J.R.).

15

1

w

w

0

α

α

ww*

0

2

1

Figure 8: Relationship between blending weights and expression parameters. This example
uses 3 basic expressions. The expression parameters represent a plane in the 3-dimensional expression
space.

6 Model-based face tracking

In this section, we present a novel face tracking technique that uses a realistic 3-dimensional face model.
The face model is a linear combination of a set of textured face meshes each corresponding to a facial
expression. The fitting process follows an analysis-by-synthesis approach, where renderings of the realistic
face model are compared to the target video frames.

The rest of this section is organized as follows. We first start by describing the face model and its
parameterization. Then, we describe how the model is fitted to a video sequence and show some tracking
results.

6.1 Model fitting

In this section, we describe how the face model is parameterized. We also discuss in detail the optimization
technique used to fit the model to a sequence of images.

6.1.1 3D face model

The model we propose to fit to the video is a linear combination of 3D texture-mapped models, each
corresponding to a particular basic facial expression. Examples of basic expressions are joy, anger, sad-
ness, surprise, disgust, pain. By locally varying the percentage of each basic expression in different parts
of the face, a wide range of expressions can be generated.

Our model represents a full human head, but only the facial mask is parameterized, while the rest
of the face (e.g., neck and hair) is constant. The face is parameterized by a vector of parameters p =
p1, ..., pn. These parameters form two subsets: the position parameters and the expression parameters.

The position parameters include a translation t , which indicates the position of the center of the
head, and a rotation R, which indicates its orientation.

We represent facial expressions in a vector space, where the dimensions are a set of expressions called
basic expressions. A facial expression is a linear combination of basic expressions. Such combination is
determined by a set of blending weights w1, ..., wm, one for each basic expression. We constrain these
weights to sum to 1; hence all the vectors of blending weights belong to the subspace

∑

k wk = 1. Since
this subspace has m− 1 dimensions, parameterizing expressions with these blending weights introduces
redundancy in our model. We use an alternative parameterization to reduce the number of parameters
that needs to be estimated. We parameterize the subspace by selecting an orthonormal basis of m − 1

16

vectors and a point in the subspace. These vectors provides a new parameterization of facial expressions
that we call expression parameters and write as α = (α1, ...,αm−1). These two parameterizations are
used for different purposes: the blending weights specifie the linear combination of basic expressions and
are used for rendering the face model, the expression parameters provide a more compact representation
of facial expressions and are used for analysis. The mapping between the vector of blending weights w
and the vector of expression parameters α can be expressed as the following transformation:

w = Qα + w∗ (4)

where Q is a matrix whose column vectors span the hyperplane
∑

k wk = 0, and w∗ is a vector belonging
to

∑

k w∗
k = 1. Figure 8 illustrates the relationship between the blending weights and the expression pa-

rameters. In practice, we choose w∗ to be a vector whose coordinates are all equal to 1
n which defines the

mean of the basic expressions. We explore different ways of defining the matrix Q that determines the
expression parameters. Each expression parameter represents a direction in the linear space of expres-
sions spanned by the basic expressions E1, ..., Em. A natural set of directions is the differences between
a particular expression, for instance E1, and the rest of the expressions: E2 − E1, ..., Em − E1. This pa-
rameterization does not take into account possible similarities between expressions and could result in
directions that are correlated. Choosing a set of orthogonal directions can improve the robustness of the
face parameters estimation. We used an orthogonalization technique (Gramm-Schmidt) to generate an
orthonormal basis. Because the sets of basic expressions we chose were small and contained fairly distinct
facial expressions, using an orthogonal basis improved only slightly the estimation of the parameters.
For a larger set of basic expressions, applying a principal component analysis to the basic expressions
might produce a small set of parameters for the principal uncorrelated directions.

To span a wider range of facial expressions, the face is split into several regions that can each be
controlled independently. We thus use a set of expression parameters {αl} for each region. The partition
we use in our experiments is shown in figure 9.

Rendering the model is done by linearly combining the basic expressions using 3D morphing. A con-
sensus geometry is computed by linearly interpolating the basic expression geometries using the blending
weights wk. The model is rendered multiple times, once for each basic expression. These renderings Î k

are then blended together using the weights wk to produce the final image Î :

Î =
∑

k

wkÎ k (5)

We use hardware rendering to render our face model. The blending weights are used to specify the
alpha channel of the images Î k. Gouraud shading then interpolates these values smoothly across each
triangle. To render correctly an expression blend that uses weights outside of the range [0..1] of alpha
values allowed by the hardware, we scale and shift the weights values to map the range of weights
[−0.5..1.5] into the alpha range [0..1]. During the final software compositing the alpha values read from
the frame buffer are transformed back into the original blending weights. We do not allow extrapolation
outside of the range [−0.5..1.5] to avoid generating unrealistic face blends.

6.1.2 Optimization procedure

Fitting a linear combination of faces to an image has already been explored by different research groups.
Edwards et al. (Edwards, Taylor and Cootes 1998) developed a model built out of registered face images.
In their work, a principal component analysis is applied to the set of faces to extract a set of parameters.
The dependencies between the parameters and the images generated by the model are approximated
by a linear function. This approximation is then used in an iterative optimization technique, using a
variant of the steepest descent algorithm. Jones and Poggio (Jones and Poggio 1998) constructed a
similar 2D model and use a more sophisticated fitting technique. They use a stochastic gradient method
that estimates the derivatives by sampling a small number of pixels. The technique we develop uses
second-order derivatives of the error function. We also investigate both analytical and finite-difference
computations of the partial derivatives.

17

Figure 9: Partition of the face. The different regions are rendered with different colors. The parts of
the face that are constant are rendered in red.

To fit our model to a target face image I t, we develop an optimization method whose goal is to
compute the model parameters p yielding a rendering of the model Î (p) that best resembles the target
image. An error function ε(p) is used to evaluate the discrepancy between I t and Î (p):

ε(p) =
1
2
‖I t − Î (p)‖

2
+ D(p) =

1
2

∑

j

[I t(xj , yj) − Î (p)(xj , yj)]2 + D(p)

where (xj , yj) corresponds to a location of a pixel on the image plane and D(p) is a penalty function
that forces each blending weight to remain close to the interval [0..1]. The penalty limits the range of
facial expressions and helps avoid unrealistic faces. The function D(p) is a piecewise-quadratic function
of the following form:

D(p) = c
∑

k

[min(0, wk)2 + max(0, wk − 1)2]

where c is a constant. This function is a sum of two terms: the first one limits the range of negative
values that the parameters can take, the second one limits the range of values above 1.

Fitting is done in several phases that optimize different sets of parameters. We start by estimating
the position parameters and then independently estimate the expression parameters in each region.
Treating these parameters independently allows us to apply different optimization methods to them.
All the parameters are estimated using variants of the Levenberg-Marquardt (LM) (Press et al. 1992)
algorithm to minimize the function ε.

The LM algorithm is a continuous optimization technique based on a second-order Taylor expansion
of ε. This iterative algorithm starts from an initial estimate of the parameters and computes at each
iteration a new set of values that reduces ε further. The parameters are updated by taking a step δp at
each iteration. This step is given by the expression:

[J (p)T J (p) + λI + H(p)]δp = −J (p)T [I t − Î (p)] −∇D(p) (6)

where I is the identity matrix, J(p) is the Jacobian of Î (p), ∇D(p) and H(p) are the gradient and
Hessian of D(p), respectively, and λ is a parameter used to tune the optimization.

6.1.3 Computing the Jacobian

We explore two ways of computing the Jacobian J (p). The first one uses finite differences and requires
sampling the error function multiple times at each iteration. The second one uses an analytical expression

18

of the Jacobian and does not require evaluating ε. On the one hand, the analytical Jacobian can be more
efficient than the finite-difference approximation if evaluating the error function is expensive. On the
other hand, using finite differences may produce better results if the error function is not smooth enough.
In our case, evaluating the error function is fairly time consuming because it involves rendering the 3D
face model. In our experiments, both methods produced very similar results. We preferred the analytical
method for its superior performances and used the numerical method to validate our computations.

Finite differences

We use central differences to approximate the value of the Jacobian. Each entry of the Jacobian matrix
is computed using the following formula:

∂Î

∂pi
(p) ≈ Î (p +∆piei) − Î (p −∆pie i)

2∆pi

where e i is the i-th vector of the canonical basis.

Analytical Jacobian

An alternative way of computing the Jacobian is to derive an analytical expression. This requires ex-
amining the dependencies Î with respect to its parameters. Let us consider a variation of one of the
face parameters pi. As pi varies, Î can change in two ways. First the position and the geometry of the
face model can change, resulting in a displacement or flow in image space. This phenomenon induces a
geometric term G in the Jacobian. Secondly, if pi is an expression parameter, the way the images Î k

are composited varies. We will call this second term the blending term B . Hence, the Jacobian J is a
sum of two terms:

J = G + B

or in terms of the columns of J :
∂Î

∂pi
= Gpi + Bpi

for a given parameter. Let us examine these two terms starting with G. The optical flow due to the
changes in the model position and geometry can be expressed using the chain rule:

Gpi =
∂Î

∂xj

∂xj

∂pi
+

∂Î

∂yj

∂yj

∂pi
,

The vector (∂
ˆI

∂xj
, ∂

ˆI
∂yj

) is the intensity gradient of image Î at pixel j. It is computed using a Sobel filter
(Ballard and Brown 1982). The blending term B can be derived by differentiating equation 5:

Bpi =
∑

k

∂wk

∂pi
Î k

Bringing the two terms together, we obtain the following expression for the Jacobian:

∂Î

∂pi
=

∂Î

∂xj

∂xj

∂pi
+

∂Î

∂yj

∂yj

∂pi
+

∑

k

∂wk

∂pi
Î k, (7)

Each term in the previous equation is a function defined over the image plane and can be represented
as an image. To compute the partial derivatives ∂xj

∂pi
and ∂yj

∂pi
, we need to study the dependencies between

the coordinates in the image plane (xj , yj) and the model’s parameters. The 2D point (xj , yj) is obtained
by projecting a 3D point, m j , onto the image plane. We can thus rewrite (xj , yj) = P (Rmj + t), where
P is a projection whose optical axis is the z-axis. The transformation P has two components Px and Py ,
so that xj = Px(Rmj + t) and yj = Py(Rm j + t). Using the chain rule, we obtain:

19

Figure 10: Tracking synthetic sequence. The bottom row shows the result of fitting our model to
the target synthetic images on the top row.

∂xj

∂pi
=

∂Px

∂m ′
j

T ∂m ′
j

∂pi

∂yj

∂pi
=

∂Py

∂m ′
j

T ∂m ′
j

∂pi

where m ′
j = Rmj + t . We detail the computation of the partial derivatives of P , Rmj + t and wk in

Appendix A.

6.2 Tracking results

The experiments we ran divided the face into three regions: the mouth region, the eye region, and the
forehead region as illustrated in Figure 9.

We tried different optimization variants and studied which ones were most appropriate for the differ-
ent parameters. For the position parameters, the analytical Jacobian produced good results and allowed
faster computations. For the expression parameters, the finite differences Jacobian produced better re-
sults than the analytical version. This difference can be explained in terms of the difference in behavior
of the error function with respect to these two sets of parameters. The behavior of the error function
with respect to the position parameters is fairly smooth, while its behavior with respect to the expression
parameters is not.

The initial values of the parameters for the first frame are specified interactively. The estimated
parameters are then used as initial values for the second frames. For subsequent frames, we used a
simple prediction scheme to determine the initial values: the parameters are linearly extrapolated using
the results from the two previous frames.

We also noticed that there were important color differences between the target images and the
renderings of the model. These differences were introduced by the different optical systems used to
capture the data: several film cameras were used to build the 3D model textures, and a camcorder was
used to record the video footage. Our optimization technique would try to compensate for these color
differences by adjusting the expression parameters. We reduced this problem using bandpass filtering on
both the target images and the model renderings when estimating the expression parameters.

To test our fitting method, we generated a synthetic animation sequence using the face model em-
ployed for the analysis. Once the sequence has been fit, we can compare the ground truth values of

20

3.4

3.6

3.8

4

4.2

4.4

4.6

0 10 20 30 40 50 60 70 80

Figure 11: Tracking synthetic sequence: RMS error.

the parameters with the estimated values. The synthesized sequence uses three basic expressions: anger,
neutral and joy. These expressions were blended uniformly over the whole face. The fitted model in-
cluded the same basic expression. The initial guess was determined by hand for the position and set
to the correct facial expression (neutral). Figure 10 offers a side by side comparison of target frames
and rendered models. The expression weights are compared in Figure 12, Figure 13, and Figure 14 for
the eye region, the mouth region and the forehead region respectively. The estimated values appear
to be pretty far from the true values. The weights associated with the anger expression seems to be
the hardest to estimate. However, the resulting rendered facial expressions are very close to the target
expressions. This can be explained by the fact that many combinations of the basic expressions produce
very similar renderings. The comparisons between position parameters are shown in Figures 15 and 16.
For the position parameters, the estimated values are fairly close to the true values.

Figure 17 illustrates some tracking results using our technique on some input video. The model used
4 basic expressions: sleepy, joy, sulky, and neutral. Each frame took on the average 2 minutes to be fitted
at a 300 by 300 resolution. Although this performance is very far from permitting real time tracking, all
the applications we explore can be done as postprocessing on a video. A limitation of our approach is
seen in the second column, where the shape of the left eyebrow in the fitted model does not match that
in the target frame. This problem occurs because this particular eyebrow shape is not included in the
linear space spanned by the set of basic expressions.

The plots in Figure 18 show the tracked parameter values as a function of frame number for the
tracking sequence illustrated in Figure 17. Figure 19 illustrates the evolution of the root mean square
error for the same sequence as a function of frame number.

We tested the robustness of our technique by performing different tests with a synthetic animation
sequence. We considered the sequence displayed in Figure 10 and performed some alterations on the
frame. These alterations include scaling the colors and the adding noise. We performed further test
using 4 or 5 expressions in the model instead of the 3 expressions that were used to generate the
synthetic sequence. In all these tests, the model was fitted successfully to the video frames.

Our experience with this technique showed that the estimation of the face position and orientation
is relatively easy compared to the estimation of the expression parameters. In particular, as the number
of expression parameters (i.e., the number of blended expressions) grows, the technique is less and less
reliable. In our examples, we had to choose a set of expressions that would be a good match for the
input video. This limited the length of the video sequences that we could process.

A set of mpeg files illustrating this tracking technique through several experiments can be found at
the following url: http://grail.cs.washington.edu/projects/realface/tracking.html

21

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Anger

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Neutral

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Joy

Figure 12: Tracking synthetic sequence: eyes region.

22

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Anger

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Neutral

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Joy

Figure 13: Tracking synthetic sequence: mouth region.

23

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Anger

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Neutral

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

estimated
true

Joy

Figure 14: Tracking synthetic sequence: forehead region.

24

-0.15

0.04

0.23

0.42

0.62

0.81

1

0 10 20 30 40 50 60 70 80

estimated
true

-0.15

0.04

0.23

0.42

0.62

0.81

1

0 10 20 30 40 50 60 70 80

estimated
true

q0 q1

-0.15

0.04

0.23

0.42

0.62

0.81

1

0 10 20 30 40 50 60 70 80

estimated
true

-0.15

0.04

0.23

0.42

0.62

0.81

1

0 10 20 30 40 50 60 70 80

estimated
true

q2 q3

Figure 15: Tracking synthetic sequence: rotation (represented as a quaternion).

25

-0.50

0.66

1.83

3.00

4.16

5.33

6.50

0 10 20 30 40 50 60 70 80

estimated
true

tx

-2.55

-1.38

-0.22

-0.95

2.12

3.28

4.45

0 10 20 30 40 50 60 70 80

estimated
true

ty

-161

-160

-159

-158

-157

-156

-155

-154

0 10 20 30 40 50 60 70 80

estimated
true

tz

Figure 16: Tracking synthetic sequence: translation.

26

Figure 17: Tracking example. The bottom row shows the result of fitting our model to the target
images on the top row.

7 Summary

In this paper, we explore the synthesis of realistic face animations from face images and videos.
We have presented a modeling technique to generate realistic texture-mapped 3-dimensional models

from photographs. Our technique consists of fitting a generic face model to a set of photographs. The
model is iteratively fitted by manually specifying a set of correspondences. We presented a simple min-
imization technique to recover the camera parameters for each photograph. Finally, we discussed the
extraction of view-independent and view-dependent texture maps.

Compared to other face modeling technique such as 3D scanning our technique has the advantage of
requiring less expensive capture equipment. Moreover, 3D scanners usually only provide fairly limited
texture information (e.g., a 512 x 256 texture map for a Cyberware scanner). These advantages come
at the expense of user intervention. The need for user intervention cannot be avoided until reliable
automatic techniques are developed.

We have also introduced a novel technique for estimating the head’s position and the facial expression
from video footage. We use a realistic face model in an analysis-by-synthesis approach. Our model is a
linear combination of 3D face models, which can be generated by photogrammetric techniques or 3D
scanning. We use a continuous optimization technique to fit the model and give an analytical derivation
of the computations. The quality of the model allows better tracking results than with other methods.
Because it is based on an analysis-by-synthesis approach, this technique provides a parametrization of
the face that can be used for both rendering and analyzing face images. This property could be leveraged
in a model-based coding video system, such as MPEG-4, where a small set of Face Animation Parameters
(FAPS) are transmitted to render a face image.

8 Future directions

In this paper, we presented techniques that we believe bring the state of the art in face animation a step
further towards realism. There are however important future research areas that need to be explored in
order to create a synthetic actor indistinguishable from a real person.

Automatic modeling. Our modeling technique requires the user to specify a set of annotations on
face photographs. Automating this process would represent a major improvement. This is a challenging
problem in particular for the areas of the face that have little texture information such as the cheeks,
but recent results on 2D face modeling in computer vision (Lanitis et al. 1995) give us cause for hope.
Blanz and Vetter (Blanz and Vetter 1999) propose a fully automatic technique using a model built from
a linear combination of 3D texture-mapped models.

27

(a)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140 160

sleepy
joy

sulky
neutral

(b)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160

q0
q1
q2
q3

(c)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160

t0
t1
t2

Figure 18: Parameter plots for sample tracking sequence. The estimated values of the face
parameters are plotted as a function of the frame number. Plot (a) displays the expression weights for
the mouth area, plot (b) the rotation parameters and plot (c) the translation parameters. The plots for
the position parameters have been shifted so that they have the same origins.

28

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

0 20 40 60 80 100 120 140 160

RMS

Figure 19: Error plot for sample tracking sequence. The RMS error is shown as a function of
frame number.

Texture relighting. Currently, extracted textures reflect the lighting conditions under which the
photographs were taken. Relighting techniques should be developed for seamless integration of our face
models with other elements. Relighting images of real scenes is a difficult problem since it requires
estimating the reflectance properties of the objects in the scene. Yu and Malik (Yu and Malik 1998)
tackle this problem for images of buildings taken under different illumination conditions. More recently
Blanz and Vetter (Blanz and Vetter 1999) developed a technique to extract a 3D face model from a
single photograph. They use the Phong illumination model to extract the face albedo from the photo.
Although this model seems to work quite well for analyzing face images, for synthesizing face images a
more complex model would probably be necessary. Such model was developed recently at the university
of Berkeley (Debevec et al. 2000) and has led to very promising results.

Speech animation. The example animation we created features a character reacting to a narration.
We chose this particular setting because it is difficult to animate a speaking character with our current
system. Animating speech using our technique would require the modeling of multiple mouth positions.
It is unclear how many positions would be necessary to produce realistic results: on the one hand
hundreds of visemes could be necessary (Bregler, Covell and Slaney 1997); on the other hand traditional
cell animation uses only a dozen different positions (Thomas, Johnston and Johnston 1995). Beyond
the modeling issue, animating speech through a keyframe animation system would be very tedious.
Automatic lip-synching to a video or voice recording would be a much more effective approach (Bregler
et al. 1997).

Human Hair. There are typically about 100,000 hair strands on the average person’s head, each
with a diameter from 40 to 120 microns. This intricate geometry is not well approximated by a polygonal
model unless they are fairly short. As a consequence, our modeling technique does not allow us to model
hair faithfully. Moreover, since hair is semi-transparent and can be highly specular it is challenging
to render realistically. Recent research on synthesizing artificial human hair include Watanabe and
Suenaga (Watanabe and Suenaga 1992), Anjyo et al. (Anjyo, Usami and Kurihara 1992), and Rosenblum
et al. (Rosenblum, Carlson and III 1991). All these approaches model single strands of hair and try to
simulate the reflectance and dynamic properties of hair. Unfortunately they do not generate convincing
photorealistic hair renderings.

9 Conclusion

The synthesis of realistic facial animations is a formidable endeavor. Approaching realism requires an
ever increasing attention to small details. The images and animations we synthesized in the scope of
this work are a step further towards the creation of synthetic actors that are indistinguishable from real

29

actors. Producing similar results with a physically-based approach would be hard to achieve since it
would require a very accurate simulation of the human face. Our technique has the additional advantage
that it does not require expensive hardware capture equipment such as a 3D scanner. We believe image-
based approaches are very promising for synthesizing realistic face images and realistic face motions.

Analyzing face images to estimate face motions proved to be also very difficult. In particular, the
non-rigid deformations introduced by changes in facial expressions are quite complex to recover. By using
a realistic model of the face, we were able to solve this problem without making simplifying assumption
about the human face.

References

Akimoto, T., Suenaga, Y. and Wallace, R.: 1993, Automatic creation of 3D facial models, IEEE Computer
Graphics and Applications 13(5), 16–22.

Ali: 1995, Alias V7.0.
Anjyo, K., Usami, Y. and Kurihara, T.: 1992, A simple method for extracting the natural beauty of

hair, SIGGRAPH 92 Conference Proceedings, ACM SIGGRAPH, pp. 111–120.
Ballard, D. and Brown, C.: 1982, Computer Vision, Prentice-Hall, Englewood Cliffs, New Jersey.
Black, M. and Yacoob, Y.: 1995, Tracking and recognizing rigid and non-rigid facial motions using local

parametric models of image otions, Proceedings, International Conference on Computer Vision,
pp. 374–381.

Blake, A. and Isard, M.: 1998, Active Contrours: The Application of Techniques from Graphics, Vision,
Control Theory and Statistics to Visual Tracking of Shapes in Motion, Addison Wesley.

Blanz, T. and Vetter, T.: 1999, A morphable model for the synthesis of 3d faces, SIGGRAPH 99 Con-
ference Proceedings, ACM SIGGRAPH.

Bregler, C., Covell, M. and Slaney, M.: 1997, Video rewrite: driving visual speech with audio, SIGGRAPH
97 Conference Proceedings, ACM SIGGRAPH, pp. 353–360.

Cascia, M. L., Isidoro, J. and Sclaroff, S.: 1998, Head tracking via robust registration in texture map
images, Proceedings, IEEE Conference on Computer Vision and Pattern Recognition.

Chen, D., State, A. and Banks, D.: 1995, Interactive shape metamorphosis, 1995 Symposium on Inter-
active 3D Graphics, ACM SIGGRAPH, pp. 43–44.

Choi, C., Aizawa, K., Harshima, H. and Takebe, T.: 1994, Analysis and synthesis of facial image sequences
in model-based image coding, IEEE Transactions on Circuits and Systems for Video Technology
4(3), 257–274.

Choi, C. S., Kiyoharu, Harashima, H. and Takebe, T.: 1994, Analysis and synthesis of facial image
sequences in model-based image coding, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 4, pp. 257 – 275.

Covell, M.: 1996, Eigen-points: control-point location using principal component analysis, Proceedings,
Second International Conference on Automatic Face and Gesture Recognition, pp. 122–127.

Cyb: 1990, 4020/RGB 3D Scanner with Color Digitizer.
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W. and Sagar, M.: 2000, Acquiring the

reflectance field of a human face, SIGGRAPH 2000 Conference Proceedings, ACM SIGGRAPH,
pp. 35–42.

Debevec, P., Taylor, C. and Malik, J.: 1996, Modeling and rendering architecture from photographs:
A hybrid geometry- and image-based approach, SIGGRAPH 96 Conference Proceedings, ACM
SIGGRAPH, pp. 11–20.

Decarlo, D. and Metaxas, D.: 1998, Deformable model-based shape and motion analysis from images us-
ing motion residual error, Proceedings, First International Conference on Computer Vision, pp. 113–
119.

30

Devernay, F. and Faugeras, O.: 1994, Computing differential properties of 3d shapes from stereoscopic
images without 3d models, Proceedings, IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 208–213.

E. Ostby, Pixar Animation Studios: 1997, Personal communication.
Edwards, G., Taylor, C. and Cootes, T.: 1998, Interpreting face images using active appearance models,

Proceedings, Third Workshop on Face and Gesture Recognition, pp. 300–305.
Essa, I. and Pentland, A.: 1997, Coding, analysis, interpretation, and recognition of facial expressions,

IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 757–763.
Faugeras, O.: 1993, Three-dimensional computer vision: A geometric viewpoint, MIT Press, Cambridge,

Massachusetts.
Fua, P. and Miccio, C.: 1998, From regular images to animated heads: a least square approach, Proceed-

ings, European Conference on Computer Vision, pp. 188–202.
Golub, G. and Van Loan, C.: 1996, Matrix Computation, third edition, The John Hopkins University

Press, Baltimore and London.
Gortler, S., Grzeszczuk, R., Szeliski, R. and Cohen, M.: 1996, The Lumigraph, SIGGRAPH 96 Confer-

ence Proceedings, ACM SIGGRAPH, pp. 43–54.
Guenter, B., Grimm, C., Wood, D., Malvar, H. and Pighin, F.: 1998, Making faces, SIGGRAPH 98

Conference Proceedings, ACM SIGGRAPH, pp. 55–66.
Hager, G. and Belhumeur, P.: 1996, Real-time tracking of image regions with changes in geometry and

illumination, Proceedings, Computer Vision and Pattern Recognition, pp. 403–410.
Hallinan, P.: 1994, A low-dimensional representation of human faces for arbitrary lighting conditions,

Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 58–66.
Hanrahan, P. and Kruger, W.: 1993, Reflection from layered surfaces due to surface scattering, SIG-

GRAPH 93 Conference Proceedings, pp. 165–174.
Inc, B. S. T.: 1993, Beginning Reading Software, Sierra On-Line, Inc.
Ip, H. and Yin, L.: 1996, Constructing a 3D individualized head model from two orthogonal views, The

Visual Computer 12, 254–266.
Jones, M. and Poggio, T.: 1998, Hierarchical morphable models, Proceedings, International Conference

on Computer Vision, pp. 820–826.
Kass, M., Witkin, A. and Terzopoulos, D.: 1987, Snakes: Active contour models, Proceedings, First

International Conference on Computer Vision, pp. 259–268.
Koch, R., Gross, M., Carls, F. R., von Büren, D., Fankhauser, G. and Parish, Y.: 1996, Simulating facial

surgery using finite element methods, SIGGRAPH 96 Conference Proceedings, ACM SIGGRAPH,
pp. 421–428.

Kurihara, T. and Arai, K.: 1991, A transformation method for modeling and animation of the human
face from photographs, in N. M. Thalmann and D. Thalmann (eds), Computer Animation 91,
Springer-Verlag, Tokyo, pp. 45–58.

Lanitis, A., Taylor, C. and Cootes, T.: 1995, A unified approach for coding and interpreting face im-
ages, Fifth International Conference on Computer Vision (ICCV 95), Cambridge, Massachusetts,
pp. 368–373.

Leclerc, Y. and Bobick, A.: 1991, The direct computation of height from shading, Proceedings, IEEE
Conference on Computer Vision and Pattern Recognition.

Lee, S., Chwa, K., Shin, S. and Wolberg, G.: 1995, Image metamorphosis using snakes and free-form
deformations, SIGGRAPH 95 Conference Proceedings, ACM SIGGRAPH, pp. 439–448.

Lee, S., Wolberg, G., Chwa, K. and Shin, S.: 1996, Image metamorphosis with scattered feature con-
straints, IEEE Transactions on Visualization and Computer Graphics 2(4).

Lee, Y., Terzopoulos, D. and Waters, K.: 1995, Realistic modeling for facial animation, SIGGRAPH 95
Conference Proceedings, ACM SIGGRAPH, pp. 55–62.

31

Lengagne, R., Fua, P. and Monga, O.: 1998, 3d face modeling using stereo and differential constraints,
Proceedings of the Third International Conference on Automatic Face and Gesture Recognition.

Li, H., Roivainen, P. and Forchheimer, R.: 1993, 3-d motion estimation in model-based facial image
coding, IEEE Transactions on Pattern Analysis and Machine Intelligence 15(6), 545–555.

Matsino, K., Lee, C., Kimura, S. and Tsuji, S.: 1995, Automatic recognition of human facial expressions,
Proceedings of the IEEE, pp. 352–359.

Moffitt, F. and Mikhail, E.: 1980, Photogrammetry, 3 edn, Harper & Row, New York.
Nielson, G.: 1993, Scattered data modeling, IEEE Computer Graphics and Applications 13(1), 60–70.
Parke, F.: 1972, Computer generated animation of faces, Proceedings ACM annual conference. .
Parke, F.: 1974, A parametric model for human faces, PhD thesis, University of Utah, Salt Lake City,

Utah. UTEC-CSc-75-047.
Pighin, F., Hecker, J., Lischinski, D., Szeliski, R. and Salesin, D.: 1998, Synthesizing realistic facial

expressions from photographs., SIGGRAPH 98 Conference Proceedings, ACM SIGGRAPH, pp. 75–
84.

Pighin, F., Szeliski, R. and Salesin, D.: 1999, Resynthesizing facial animation through 3d model-based
tracking, Proceedings, International Conference on Computer Vision.

Press, W., Flannery, B., Teukolsky, S. and Vetterling, W.: 1992, Numerical Recipes in C: The Art of
Scientific Computing, second edn, Cambridge University Press, Cambridge, England.

Proesman, M., Gool, L. V. and Oosterlinck, A.: 1996, Active acuisition of 3d shape for moving objects,
International Conference on Image Processing.

Pulli, K., Cohen, M., Duchamp, T., Hoppe, H., Shapiro, L. and Stuetzle, W.: 1997, View-based rendering:
Visualizing real objects from scanned range and color data, Proc. 8th Eurographics Workshop on
Rendering.

Rosenblum, R., Carlson, W. and III, E. T.: 1991, Physically-based facial modeling, analysis, and anima-
tion, Journal of Visualization and Computer Animation 2(4), 141–148.

Schodl, A., Ario, A. and Essa, I.: 1998, Head tracking using a textured polygonal model, Workshop on
Perceptual User Interfaces, pp. 43–48.

Slama, C. (ed.): 1980, Manual of Photogrammetry, fourth edn, American Society of Photogrammetry,
Falls Church, Virginia.

Szeliski, R. and Kang, S.: 1994, Recovering 3D shape and motion from image streams using nonlinear
least squares, Journal of Visual Communication and Image Representation 5(1), 10–28.

Szeliski, R. and Shum, H.: 1997, Creating full view panoramic image mosaics and texture-mapped models,
SIGGRAPH 97 Conference Proceedings, ACM SIGGRAPH, pp. 251–258.

Terzopoulos, D. and Waters, K.: 1993, Analysis and synthesis of facial image sequences using physical an
anatomical models, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 569–579.

Thomas, F., Johnston, O. and Johnston, C.: 1995, The Illusion of Life, Hyperion.
Thórisson, K.: 1997, Gandalf: An embodied humanoid capable of real-time multimodal dialogue with

people, First ACM International Conference on Autonomous Agents.
Turk, M. and Pentland, A.: 1987, Eigenfaces for recognition, Journal of Cognitive Neuroscience 3(1), 71–

87.
Vannier, M., Marsh, J. and Warren, J. O.: 1983, Three-dimentional computer graphics for craniofa-

cial surgical planning and evaluation, SIGGRAPH 83 Conference Proceedings, Vol. 17, ACM SIG-
GRAPH, pp. 263–273.

Vetter, T. and Blanz, V.: 1998, Estimating coloured 3d face models from single images: an example
based approach, Proceedings, European Conference on Computer Vision, pp. 499–513.

Watanabe, Y. and Suenaga, Y.: 1992, A trigonal prism-based method for hair image generation, IEEE
Computer Graphics and Applications 12(1), 47–53.

32

Williams, L.: 1990, Performance-driven facial animation, SIGGRAPH 90 Conference Proceedings,
Vol. 24, pp. 235–242.

Yu, Y. and Malik, J.: 1998, Recovering photometric properties of architectural scenes from photographs,
SIGGRAPH 98 Conference Proceedings, ACM SIGGRAPH, pp. 207–217.

A Least squares for pose recovery from photographs

To solve for a subset of the parameters given in Equation (2), we use linear least squares. In general,
given a set of linear equations of the form

aj · x − bj = 0, (8)

we solve for the vector x by minimizing
∑

j

(aj · x − bj)2. (9)

Setting the partial derivative of this sum with respect to x to zero, we obtain
∑

j

(aja
T
j)x − bjaj = 0, (10)

i.e., we solve the set of normal equations (Golub and Van Loan 1996)

∑

j

aja
T
j

x =
∑

j

bjaj . (11)

More numerically stable methods such as QR decomposition or Singular Value Decomposition (Golub
and Van Loan 1996) can also be used to solve the least squares problem, but we have not found them
to be necessary for our application.

To update one of the parameters, we simply pull out the relevant linear coefficient aj and scalar
value bj from Equation (2). For example, to solve for m i, we set

a2k+0 = wk
i (xk

i η
krk

z − skrk
x), b2k+0 = wk

i (sktkx − xk
i)

a2k+1 = wk
i (yk

i η
krk

z − skrk
y), b2k+1 = wk

i (sktky − yk
i).

For a scalar variable like sk, we obtain scalar equations

a2k+0 = wk
i (rk

x ·m i + tkx), b2k+0 = wk
i

(

xk
i + xk

i η
k(rk

z ·m i)
)

a2k+1 = wk
i (rk

y ·m i + tky), b2k+1 = wk
i

(

yk
i + yk

i η
k(rk

z ·m i)
)

.

Similar equations for aj and bj can be derived for the other parameters tkx, tky , and ηk. Note that the
parameters for a given camera k or 3D point i can be recovered independently of the other parameters.

Solving for rotation is a little trickier than for the other parameters, since R must be a valid rotation
matrix. Instead of updating the elements in Rk directly, we replace the rotation matrix Rk with R̃Rk

(Szeliski and Shum 1997), where R̃ is given by Rodriguez’s formula (Faugeras 1993):

R̃(n̂ , θ) = Î + sin θX (n̂) + (1 − cos θ)X 2(n̂), (12)

where θ is an incremental rotation angle, n̂ is a rotation axis, and X (v) is the cross product operator

X (v) =

0 −vz vy

vz 0 −vx

−vy vx 0

 . (13)

33

A first order expansion of R̃ in terms of the entries in v = θn̂ = (vx, vy, vz) is given by Î + X (v).
Substituting into Equation (2) and letting q i = Rkm i, we obtain

wk
i

(

xk
i + xk

i η
k(r̃k

z · q i) − sk(r̃k
x · q i + tkx)

)

= 0 (14)

wk
i

(

yk
i + yk

i η
k(r̃k

z · q i) − sk(r̃k
y · q i + tky)

)

= 0,

where r̃k
x = (1,−vz, vy), r̃k

y = (vz , 1,−vx), r̃k
z = (−vy, vx, 1), are the rows of [Î +X (v)]. This expression

is linear in (vx, vy, vz), and hence leads to a 3×3 set of normal equations in (vx, vy, vz). Once the elements
of v have been estimated, we can compute θ and n̂ , and update the rotation matrix using

Rk ← R̃(n̂k, θk)Rk.

B Analytical Jacobian for face tracking

We detail further the computation of the analytical Jacobian started in section 2.3. The partial derivatives
of P , Rmj + t and wk with respect to a parameter pi are examined.

Partial derivatives of P

P is a mapping from 3D to 2D that takes a point m = (X, Y, Z) as a parameter.

∂Px

∂m
=

f
Z
0

−f X
Z2

 and
∂Py

∂m
=

0
f
Z

−f Y
Z2

Partial derivatives of Rmj + t

The partial derivative with respect to pi can be expanded as:

∂(Rmj + t)
∂pi

=
∂R

∂pi
m j + R

∂mj

∂pi
+

∂t

∂pi

This expression depends on the nature of pi.

• If pi is a blending weight (pi = αl): since the model geometry is a linear combination of the basic
expressions geometry, the point mj is a linear combination of points from the basic expressions:
mjk. We can then apply the following derivations:

∂(Rmj + t)
∂αl

= R
∂mj

∂αl
= R

∂(
∑

k wkmjk)
∂αl

= R
∑

k

∂wk

∂αl
mjk

• If pi = R: we replace the rotation matrix R with R̂R; where R̂ is parameterized by an angular
velocity ω = (ωx,ωy,ωz), and is given by Rodriguez’s formula:

R̂(n̂ , θ) = I + sinθX (n̂) + (1 − cosθ)X 2(n̂)

where θ = ‖ω‖, n̂ = ω/θ and X (n̂) is the cross product operator:

X (ω) =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

A first order approximation of R̂ is given by I +X (ω). The rotation R̂R is parameterized by the
vector ω. We are thus interested in computing the partial derivatives of Rm j + t according to
some ωl, component of ω:

∂(Rmj + t)
∂ωl

=
∂R

∂ωl
mj =

∂(I + X (ω))
∂ωl

Rm j =
∂X (ω)
∂ωl

Rmj

34

Once a step in the LM algorithm has been computed, the rotation R is updated using

R ← R̂R

• If pi = tx, or pi = ty, or pi = tz, then the partial derivative is equal to (1, 0, 0), or (0, 1, 0), or
(0, 0, 1) respectively.

Partial derivatives of wk

Clearly:
∂wk

∂pi
= 0, if pi is not an expression parameter.

If pi is an expression parameter, for instance αl, then the partial derivative can be computed by differ-
entiating equation (1):

∂wk

∂αl
= Q(k, l)

35

