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Abstract
Fluid simulations are notoriously difficult to predict and control. As a result, authoring fluid flows often involves
a tedious trial and error process. There is to date no convenient way of editing a fluid after it has been simulated.
In particular, the Eulerian approach to fluid simulation is not suitable for flow editing since it does not provide a
convenient spatio-temporal parameterization of the simulated flows. In this research, we develop a new technique
to learn such parameterization. This technique is based on a new representation, the Advected Radial Basis
Function. It is a time-varying kernel that models the local properties of the fluid. We describe this representation
and demonstrate its use for interactive three-dimensional flow editing.

1. Introduction

High-end visual effects require visually compelling simu-
lations of natural phenomena. While still an active area of
research, current computational fluid dynamics techniques
produce visually realistic simulations of large scale natural
phenomena such as explosions or ocean waves in reasonable
computation time.

The focus for physical simulation is shifting away from
computational techniques towards effective techniques for
authoring, controlling, and interacting with the results of
simulations. Turbulent flows are particularly difficult to un-
derstand and control due to their unpredictable nature. Small
changes in the initial conditions can drastically change the
resulting animation. This restricts the design of fluid flows
to a tedious trial and error process, where an artist will run
a “wedge” of different simulation parameters, and choose
the one that most closely matches what the artist intended.
To compound the difficulty, there is little an artist can do to
alter a flow after it has been computed.

Fluid flow calculations are usually performed on a fixed
Eulerian grid using finite differences or finite volume tech-
niques. In an Eulerian approach, the values of the simulation
are stored on a regular grid at fixed moments in time. The
advantage of this representation is that approximations to
differential quantities such as gradients and divergence are
easy to formulate and compute, which makes solving the

Navier-Stokes Equations straightforward. Unfortunately, for
the purpose of fluid editing, Eulerian representations suffer
from a lack of spatio-temporal relationship between com-
ponents of a fluid flow. It is difficult to quantify how dif-
ferent parts of the flow relate to each other over time. This
property is critical for fluid editing since any modification of
the flow at a particular time step must be propagated both
forward and backward in time. The Lagrangian approach to
fluid simulation does provide a clear spatio-temporal param-
eterization by modeling explicitly the motion of the particles
in the fluid. These particles move along characteristic curves
of the Navier-Stokes Equations called pathlines.

Our goal is to combine the advantages of the Eulerian
and Lagrangian representations to create a system for inter-
actively manipulating fluid flows. In this system, the fluid
can be manipulated as a deformable object. Our approach is
to convert Eulerian simulations into Lagrangian representa-
tions by advecting particles in the fluid. These particles are
used to reparameterize the fluid. The new parameterization is
based on a set of radial basis functions centered at each time
step around the particles. We call this new fluid representa-
tion the Advected Radial Basis Function (ARBF) model. The
power of the ARBF model is to allow the editing of the fluid
by interacting with the particles. As we change the position
of the particles, we also change the fluid they represent. Dur-
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ing the editing process, spatial and temporal constraints are
enforced to maintain the coherency of the flow.

We limit our discussion to buoyancy-driven flows. They
include explosions, rising smoke stacks, steam jets, and fires.
Buoyancy-driven flows are of particular interest for the en-
tertainment industry and often occur in physical domains
that are unbounded by solid walls.

The contributions of this paper include: a formalism of
the ARBF model, efficient algorithms for converting a fluid
flow between an Eulerian and an ARBF representation, and
an interactive method for editing fluid flows.

The rest of the paper is organized as follows. The fol-
lowing section presents an overview of related work. Sec-
tion 3 describes how we simulate buoyancy-driven flows.
Section 4 describes the ARBF representation and provides
efficient algorithms for converting between the standard Eu-
lerian and ARBF representations. Section 5 describes a sys-
tem for editing the results of a fluid simulation. Finally, Sec-
tion 6 presents results from our system and Section 7 con-
cludes our paper.

2. Related Work

In computer graphics, buoyancy-driven flows are often
simulated using Eulerian (grid-based) methods. Pre-
vious work has focused on simulating fire [NFJ02],
large-scale explosions [RNGF03], compressible and
pseudo-compressible explosions [FOA03, YOH00], and hot
gases [FSJ01, FM97b, SF93].

Because of their chaotic and turbulent nature, fluid sim-
ulations are difficult to control and direct. There have
been a few research efforts focussing on this issue. For
instance, [FM97a] describes a number of practical inter-
action techniques for controlling fluid flows. [Gat94] de-
scribes an interactive system where by combining several
divergence-free flow fields, a user can construct fluid-like
vector fields. The system of [Col02] allows interactive ma-
nipulations of a fluid simulation by applying forces or set-
ting specific boundary conditions. More recently, [TMPS03]
describes a novel system where a user can directly spec-
ify “keyframe” density distributions, and multiple shoot-
ing algorithm solves for body forces that generate these
keyframes. [FL04] and [MTPS04] follow up on this research
by proposing numerical techniques adapted to more complex
simulations. While these techniques allows the specification
of constraints before the fluid is simulated, our system allows
the manipulation of the fluid after it has been simulated. As
such, our method is designed to postprocess flows.

Lagrangian (gridless) techniques based on Smoothed Par-
ticle Hydrodynamics [Mon94] have also been used in com-
puter graphics [PTB∗03, MCG03, DG96]. While promising
for a number of applications, SPH techniques cannot yet
match Eulerian finite-difference techniques in terms of ef-
ficiency when the simulated fluid occupies a large portion

of the simulation space. However, from a user-interface de-
sign point of view, the explicit representations between fluid
particles over time is natural to comprehend and manipulate.
Recent work by [IH02] and [PSE∗00], for example, provides
direct manipulation techniques for controling Lagrangian
simulations. Therefore, we wish to combine the computa-
tional efficiency of Eulerian simulation with a Lagrangian
representation suitable for manipulation. The combination
of Eulerian and Lagrangian representation has been used for
quite some time in the digital effect community where Eu-
lerian representations resulting from simulations are turned
into a large sets of particles for the sake of rendering.

The Computational Fluid Dynamics community has
been using streamlines (steady flows) and pathlines (un-
steady flows) for visualizing flows. Flow visualization tech-
niques can be divided into three groups of techniques:
feature based [PVH∗03], dense [LHD∗04], or geometric
techniques [LDPV02]. With feature based techniques, the
flow is abstracted using a few features relevant to the
researcher such as vortices [JMT02, vWPSP96] or shock
waves [MRV96]. Dense techniques represent the flow using
a texture computed from the fluid motion. For instance, Lin-
ear integral convolution [CL96] can be used to create such
texture. Closer to our research, the geometric techniques use
geometric objects as a basis for flow visualization. Exam-
ples include streamlines, streaklines, and pathlines [Lan94].
Of particular relevance is the work by Turk et al [TB96] re-
lated to streamline placement for effective vizualization. In
our work, we are similarly interested in choosing pathlines
according to some criteria. Our goal however is not to visu-
alize flows but to learn a compact representation.

Our approach started from the realization that the SPH
representation and radial basis functions are the same model
used in two different fields: computational fluid dynamics
and machine learning. Radial basis functions have already
been used to solve complex computer graphics problems.
For instance, the technique has proved very helpful in mod-
eling implicit surfaces for applications such as shape trans-
formation [TO99] or surface reconstruction [DTS02].

3. Eulerian Fluid Simulation

The Navier-Stokes Equations that govern incompressible
buoyancy-driven fluid flows in a homogeneous medium are

∂u
∂t

+(u ·∇)u = ν∇2u−∇p+α(T −T0)y

−βρy+ εh(N×ω)
∇ ·u = 0

∂T
∂t

+(u ·∇)T = k∇2T,

where u is the fluid velocity field, p is the pressure field, ν
is the kinematic viscosity, T is the temperature field, T0 is
the reference ambient temperature, α is a scalar controlling

c© The Eurographics Association 2004.



Pighin et al / Modeling and Editing Flows Using Advected Radial Basis Functions

the amount of thermal advection, y is the unit vector point-
ing up ((0,1,0)), β is a scalar influencing gravity, and k is
the coefficient of thermal diffusion. The value ε controls the
amount of small scale details added to the flow through vor-
ticity confinement.

For rendering, we also advect a scalar density field ρ, that
represents dust or particles in the fluid

∂ρ
∂t

+(u ·∇)ρ = 0. (1)

The set, {u,T,ρ}, is a complete solution to the Navier-
Stokes Equations. We solve these equations on a uniform
grid using the semi-lagrangian method of [Sta99].

4. Lagrangian Model

In this section, we explain how we derive a Lagrangian rep-
resentation from an Eulerian fluid simulation. In a nutshell,
we convert the voxel based representation into a set of ra-
dial basis functions following selected pathlines in the flow.
These time-varying kernels provide a functional approxima-
tion of the flow that is suitable for flow editing.

In what follows, we first present our model and then ex-
plain how it can be fitted to an Eulerian fluid simulation.

4.1. Radial Basis Functions Model

Once a fluid simulation has been computed, we convert it
into a Lagrangian representation as a set of pathlines. A path-
line is the spatial curve traced by a massless particle pas-
sively advected by a flow over time. The Advected Radial
Basis Function (ARBF) representation consists of N parti-
cles that move along pathlines of a fluid simulation. Each
particle is the center of a Radial Basis Function (RBF), and
induces a scalar field for temperature and density in a local
area centered about the particle. The total scalar fields are
computed by summing over the contribution of each parti-
cle.

Let ci(t) be the center of the ith particle at time t. The RBF
centered at this particle, φi(t,x), is defined by

φi(t,x) = exp(−‖x−ci(t)‖2

σi(t)2 ),

where σi(t) is the time-dependent radius of the particle. We
chose a gaussian kernel for its smoothness. Its disadvantage
is its computational cost; it has led researchers [DG96] to
use a spline approximation. In our experience, by taking ad-
vantage of the radial symetry and limiting the support of the
kernel, we can sample the RBF approximation in a cube with
an edge of 50 voxels in a tenth of a second on a high perfor-
mance PC. This performance is adequate for the purpose of
this research.

The RBF model approximates the density and tempera-
ture fields as

T̂ (t,x) =
N

∑
i=1

W i
T (t)φi(t,x) (2)

ρ̂(t,x) =
N

∑
i=1

W i
ρ(t)φi(t,x), (3)

where N is the number of particles and W i
T (t) and W i

ρ(t) are
scalar weights. Thus the ARBF model consists of a set of N
time-dependent particles, {ci(t),σi(t),W i

T (t),W i
ρ(t)}N,T−1

i=1,t=0.

In the rest of this section, we explain how the ARBF pa-
rameters are estimated from an Eulerian flow.

4.2. Converting Eulerian to Lagrangian

Given a solution set to the Navier-Stokes Equations,
{u,T,ρ}, to fit the ARBF model to this solution in the least
squares sense would require solving the following minimiza-
tion problem:

Argmin{ci(t),σi(t),W i
T (t),W i

ρ(t)}
N,L−1
i=1,t=0

a∑
t

(

∑
j,k,l

(
T̂ (t,x j,k,l)−T (t,x j,k,l)

)2
)

+

b∑
t

(

∑
j,k,l

(
ρ̂(t,x j,k,l)−ρ(t,x j,k,l)

)2
)

,

where x j,k,l is the set of grid points in the computational
domain, L the number of steps in the simulation, and a and
b are scalar weights.

This optimization problem is highly non-linear, and the
ARBF representation has an enormous number of degrees
of freedom, making this minimization difficult. To further
complicating matters, the optimal number of particles N is
unknown, making this a combinatorial search problem as
well. Our approach is to break this problem into smaller parts
corresponding to different groups of variables. We solve se-
quentially for the following groups of variables:

1. Particle trajectories, {ci(t)}i,t , and number of particles,
N.

2. Particle radii, σi(t).
3. Weights, W i

ρ(t) and W i
T (t).

The four images in Figure 1 illustrate the ARBF fitting
algorithm. Figure 1 (a) shows a visualization of an Eulerian
simulation at a point in time. Figure 1 (b) shows a visualiza-
tion of the pathlines selected by our algorithm. Figure 1 (c)
shows a visualization of the radii of the radial basis function
at the same frame. Finally, figure 1 (d) shows a visualization
of the sampled ARBF model.

The rest of this section explains our fitting algorithm in
details, starting with a procedure for computing pathlines.
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(a) (b) (c) (d)

Figure 1: ARBF fitting: (a) fluid simulation, (b) pathlines of advected particles, (c) radial basis functions fitted to the fluid’s
volume, and (d) visualization after sampling the ARBF model.

4.3. Computing Pathlines

We have developed an algorithm for selecting a small set of
pathlines that best represents a simulated flow. This algoritm
is designed with two goals in mind. First, the position of the
particles must capture the volume of the fluid that has non-
zero density at all points in time. Second, we would like to
use as few particles as possible to end up with a compact
representation. Our algorithm is based on a data structure,
called the Occupancy Map, that keeps track of the particle
density at all points in time. We adaptively select pathlines as
long as they improve the coverage of the flow or until a user-
specified mean particle density is met. In what follows, we
first describe how we compute pathlines from the Eulerian
simulation. We then detail the pathline selection process.

Particle Advection. A pathline is the trajectory of a mass-
less particle in the fluid through time. Traditionnaly, path-
lines are generated by integrating the velocity field forward
in time [Lan94]. This method respects the definition of a
pathline but, in practice, it does not faithfully capture the
motion of the simulated fluid. The issue comes from the
discrepancies between the physical model described by the
Navier-Stokes Equations and their actual implementation in
the simulator. The simulator provides an approximate solu-
tion to these equations. To advect the particles in a way that
is compatible with the simulation, we compute at each time
step the three-dimensional displacement field d that corre-
sponds to the advection step. Given an initial position, x(0),
the pathline can be computed by integrating forward in time

∂x(t)
∂t

= d(t,x(t)). (4)

The displacement field is computed by seeding each voxel
with its position in space and advecting these values through
the simulator. By substracting at each voxel the resulting val-
ues from the seed values, we obtain our displacement field.

The Occupancy Map. In order to adaptively sample the
fluid’s volume with particles, we maintain a data structure
that indicates the sample density around each voxel. We call

this data structure the Occupancy Map. It stores at each voxel
and each point in time the volume of the largest axis aligned
cube centered at this voxel that does not contain any parti-
cles. Let us call Oi, j,k(t) the value of the occupancy map at
voxel i, j,k and time t. We define the “score” of a particle as

Score(ci) =
L−1

∑
t=0

OIdx(ci(t))(t),

where the function Idx maps spatial coordinates onto voxel
indexes. This score will be high when the pathline {ci(t)}t
passes through a region of the domain that has not been cov-
ered by previous pathlines. After a particle is traced, we con-
servatively update the occupancy map. At time t, we update
the cells in the occupancy map that are in a cube centered at
the position of the particle and whose volume is Oi, j,k(t).

With this data structure in hand, we can now describe our
adaptive pathline selection algorithm.

Adaptive pathline selection. The goal of this algorithm is
to select pathlines sequentially so that each pathline has the
largest possible score given the previously selected path-
lines. It is a greedy algorithm. We select pathlines by choos-
ing a voxel and assigning it an initial position that is uni-
formly distributed within the volume of the voxel. Only vox-
els that have a non-zero density at t = 0 are selected. To
evaluate if a particular voxel has a high probability of pro-
ducing a high-score particle, we maintain two statistics: the
variance of the particle scores at each voxel and the mean
of all the particles scores. The idea is to then choose voxels
that have high variance but to accept pathlines only if their
score is greater than the overall mean. When a voxel is se-
lected, we evaluate the score of a pathline starting from a
random location within the voxel. Whether we accept or re-
ject the particle, we use the score to update the statistics. The
pseudo-code given in Algorithm 1 describes this in detail.

Because the mean score is updated on Line 6, even if
the candidate pathline is rejected, this algorithm will al-
ways converge. Eventually, either the mean will decrease be-
low thresh on Line 13 and the algorithm will terminate, or
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Algorithm 1 Pathline selection.
Input: thresh

1: repeat
2: Choose grid cell i, j,k with highest vari, j,k .
3: Choose random point in cell i, j,k.
4: Trace new pathline c(t) starting from this point at t0.
5: Compute Score(c).
6: if Score(c) > mean then
7: Accept pathline c.
8: Update Oi, j,k(t) for all grid cells at all times.
9: else

10: Reject pathline c.
11: end if
12: Update mean and vari, j,k .
13: until mean < thresh

the mean will decrease enough that a new pathline’s score
will be accepted. In this way, the algorithm will select as
many pathlines as necessary to cover the simulation domain
with the given quality level indicated by the user parame-
ter thresh. In our experiments, we use a threshold equal to
27×L. This corresponds to a density of one particle for each
cube of length 3.

Since the mean and variances of the data are not known
at the beginning, we bootstrap the algorithm by tracing a
few particles in each voxel (10 in our experiments) without
keeping their pathlines.

4.4. Radius and Weights Estimation

Once a set of pathlines has been selected, the set of radii,
{σi(t)}i, for all particles at time t, is estimated based on the
distance from each particles to its neighboring particles at
each time step. For each particle, we compute the distance
to its closest neightbor, and we then assign to the particle
a radius proportional to this distance. In our experiments,
we found that multiplying this distance by a factor in the
range [1.5,2] yields good results. A variant of this algorithm
is to clamp the radius of the particles that are near the fluid’s
boundaries to avoid poor RBF reconstruction at the bound-
aries. This is particularly important if a small number of par-
ticles is used.

At each time step, we now have a set of radial basis func-
tions defined by their centers and radii. To complete the ap-
proximation defined by Equations 2 and 3, we need to esti-
mate the weights W i

ρ(t) and W i
T (t). It is straightforward to

estimate these values at each time step by solving

Argmin{W i
ρ(t)}N

i=1 ∑
j,k,l

(
ρ̂(t,x j,k,l)−ρ(t,x j,k,l)

)2

+µ∑
i

W i
ρ(t)2

with W i
ρ(t) ≥ 0

and
Argmin{W i

T (t)}N
i=1 ∑

j,k,l

(
T̂ (t,x j,k,l)−T (t,x j,k,l)

)2

+µ∑
i

W i
T (t)2

with W i
T (t) ≥ 0,

where µ is a regularization parameter set to .1 in our ex-
periments. This parameter could be estimated automatically
using a criteria such as generalized cross valivation [Orr99].
We require the weights to be positive since they are asso-
ciated with positive physical quantities in our system (see
Section 5). These minimization problems fall in the category
of quadratic programming problems. Note that these systems
are quite sparse because each kernel has a small support. Our
solver is based on a sparse interior point method [NW99].

Figure 2 illustrates the quality of the fit. More examples
are provided in the video. Some of the discrepancies visible
in the examples are due to the random perturbations used to
texture the fluids. Section 6 provides a quantitative evalua-
tion of the fitting error.

5. Interactive Pathline Editing

The ARBF representation provides a framework that makes
interactive flow editing possible. The main idea is to use the
particles as a set of handles through which the flow can be
manipulated as a deformable object. We consider the set of
pathlines as a pliable object that can be bent by moving par-
ticles. Bending the pathlines allows the smooth propagation
in time of editing operations. To maintain continuity in the
flow, we enforce two types of constraints. The first type tries
to keep the set of particles coherent at a specific time step;
these are spatial constraints. The second type are temporal
constraints: a modification at a specific point in time needs
to be propagated both forward and backward in time. We en-
force spatial constraints by using a Smooth Particle Hydro-
dynamic (SPH) system. This system operates by identifying
the RBF kernels in the ARBF model as SPH particles. We
enforce weak temporal constraints by propagating smoothly
in time changes in the particles positions. This propagation
is performed using hierarchical B-Spline interpolation. Each
editing operation includes 4 steps:

1. Selection of a group of particles, G.
2. Displacement of G.
3. Spatial constraint enforcement through an SPH simula-

tion.
4. Temporal propagation through B-Spline interpolation.

Steps 1 and 2 are performed by the animator; steps 3 and 4
are automatically handled by the system.

Our editing algorithm is related to the hierarchical full-
body motion algorithm system proposed by [LS99]. The dif-
ference is, where Lee et al alternate spatial and temporal con-
straint enforcements (or, using the terminology of [LS99],
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Figure 2: Comparison between data and model. Rows 1 and 3 show two raytraced simulated fluids. Rows 2 and 4 show the
respective sampled ARBF models.

intraframe and interframe constraints), our algorithm en-
forces the constraints sequentially. This choice stems from
fundamental differences between the SPH system, used to
enforce flow constraints, and the inverse kinematics system,
used to enforce body constraints. First, the SPH simulator is
significantly slower than the fast inverse kinematic system
used in [LS99]. Iterating the SPH system yields poor perfor-
mances. Second, the changes in the fluid introduced by the
SPH simulation is less intuitive than the ones introduced by
the IK system. In particular, running an SPH simulation at
a time step that is not the one currently displayed limits the
control that the animator has over the edited fluid. The rest
of this section gives more details on the SPH system and the
B-Spline interpolation scheme.

5.1. Smooth Particles Hydrodynamics
We use an SPH simulator to enforce spatial constraints. In
SPH, particle density ρ is a quantity that describes how many
particles occupy a region of space. Incompressible fluids are
difficult to simulate within an SPH framework since they
give rise to very stiff systems. However, we do not use SPH
to simulate the fluid but rather to create a system that reacts
to perturbations of the particles. To do this, we identify the
dust density ρ as the density of a compressible fluid. When
the positions of the particles are changed, the change in den-
sity creates a pressure differential that sets the particles in
motion. The ARBF representation translates into the SPH
framework by using c as the center, σ as the radius, W i

ρ(t) as
the mass, and φ as the kernel. Particle density, a scalar field
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denoted ρ(x), is then defined as

ρ(x) =
N

∑
i=1

Wi
ρ(t)φi(t,x).

This equation is the same as the RBF model approximating
the density field as described in Equation 2. We assimilate
a machine learning concept, radial basis functions, to a fluid
dynamics representation, smooth hydrodynamics particles.
Note that the variable t representing time in the original sim-
ulation is constant during the SPH simulations since these
are used to enforce spatial constraints. We will use τ to rep-
resent time in the SPH formulation. τ represents a fictitious
time and allows the integration of the SPH equations for a
fixed value of t. We now give the equation of motion for the
SPH framework. The acceleration of the particles follow the
pressure gradient:

∂2ci(τ)
∂τ2 =

−∇Pi(τ)
ρi(τ)

= −
N

∑
j=1

Wi
ρ(t)

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇φi(c j(τ)) (5)

and fluid pressure is defined via an Equation of State as

P(τ,x) = ρ(τ,x)
((

ρ(τ,x)
ρ0(x)

)A
−1

)
,

where ρ0 is a reference density, and A is an exponent chosen
to make the system more or less stiff (we use A = 7). For
notational convenience, we define Pi = P(τ,ci(τ)) and ρi =
ρ(τ,ci(τ)). This formulation is due to [Mon94].

We evaluate ρ(τ,x) by resampling the SPH formulation
using the new position of the particles {ci(τ)}i:

ρ(τ,x) =
N

∑
i=1

W i
ρ(t)φi(τ,x).

Note that W(t)i
ρ(t) is not a function of τ.

If we integrate each particle forward in fictitious time us-
ing this acceleration, the particles will eventually reach an
equlibrium where the particle density matches the distribu-
tion given by ρ0. To aid convergence, we also add to each
particle’s acceleration a viscosity term, −v∂(ci)/∂τ. For the
implementation of the SPH system, we follow the recom-
mendations of [Roy95].

The SPH system is used as follows. The original parti-
cle positions at time t are given, {ci(t)}i. Some particles are
then perturbed by the user to new positions, ci(τ0). We want
to adjust all particles to resatistfy the continuity equation at
time t. This is accomplished by setting ρ0 based on the orig-
inal positions {ci(t)}i of all particles, and integrate the par-
ticles in fictitious time using Equation 5.

5.2. Constraint Propagation Through Hierarchical
B-Spline Interpolation

Given a set of positional contraints {(p j
i ,t j)}, where p j

i is
the new position of particle i at time t j, we would like to
propagate this constraint backward and forward in time to
temporaly filter the modifications of the flow. This propaga-
tion is done by fitting a smooth function, s(t), to the sparse
set of displacements {(p j

i − ci(t j),t j)}, where ci(t j) is the
original position of the particle. We solve this scattered data
interpolation problem using hierarchical B-Spline interpo-
lation. We have found this technique to be very effective
for smoothly interpolating a set of constraints that are non-
uniformly sampled in time. For the implementation of hier-
archical B-Spline interpolation, we were inspired by [LS99].
In this framework, s is decomposed using a sequence of
functions, d0, . . . ,dn, modeling increasing levels of details,
such that s is approximated at level n by sn = d0 + . . .+dn.
sn is recursively derived from sn−1 using the constraints

dn(ti) = p j
i −ci(t j)− sn−1(t j).

In other words, we estimate dn so that it interpolates at the
constraint points the error made by the approximation at
level n− 1. In our implementation, we use the robust cubic
B-Spline fitting technique described in [LS99].

6. Results

Using the algorithm described in this paper, we fit the ARBF
model to Eulerian simulations. The supporting video illus-
trates some of these results whereas table 1 gives a quantita-
tive assessment.

To vizualize our results, we used two rendering algo-
rithms. The first one uses a set of hardware rendered particles
(GL_POINT S primitives) whose size is proportional to the
local density. For each voxel, we render 20 particles whose
locations are uniformely jiterred within the voxel. The sec-
ond one is a modified version of the POVray public domain
raytracer. Both renderers map temperatures onto colors us-
ing hand picked color maps. These color maps where deter-
mined by studying images of explosions. We tried a black
body radiation framework but we were disappointed by the
results.

The Eulerian simulations were generated using a mod-
ified version of an implementation of Jos Stam’s algo-
rithm [Sta03]. We found that the amount of turbulence in
these simulations strongly depends on two parameters: the
intial conditions and the scale of the vorticity confinement
force. To determine the inital conditions, we use a fractal
function for temperature, velocities, and densities. The user
specifies maximum values for all three field and the extent of
the initial volume (cube or sphere). The system then jitters
randomly these values at each voxel according to a simple
fractal pattern.

Table 1 describes numerically a few fitting experiments.
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Grid size Steps Particles Simulation (m) Advection (s) RBF (m) RMS-D RMS-T Compression

50×80×50 60 608 10.4 19.1 11.1 .026 2.65 285
50×60×50 60 428 7.4 9.2 4.5 .040 3.03 303
50×80×50 100 473 18.2 35.9 5.3 .023 1.86 366
50×80×50 100 473 18.6 23.9 3.8 .021 1.72 352
70×80×50 90 605 21.0 25.4 12.4 .025 1.90 401

Table 1: Fitting results. Timings for the ARBF fitting algorithm is split into two stages: an advection stage, corresponding to
the selection and calculation of the pathlines, {ci(t)}, and an RBF stage, corresponding to the calculations of the radial basis
function parameters {σi(t),W i

ρ(t),W i
T (t)}. The advection timings are given in seconds; the RBF timings in minutes.

All experiments were performed on a 2.4 GHz PC. We have
split the timings into an advection stage, corresponding to
the selection of the pathlines, and a fitting stage, correspond-
ing to the calculation of the RBF model. Note that RBF cal-
culations take much longer than the selection of the path-
lines. This is not surprising since advecting and evaluating a
particle can be done extremely quickly. However, solving for
the RBF weights is time-consuming. Surprisingly, the bulk
of the computation is not spent by the quadratic program-
ming routine; rather it is spent during set up. Setting up the
system of equations requires many evaluations of the basis
functions. We think a lot of these evaluations are actually re-
dundant and that a more careful implementation could speed
up this stage considerably. Column 6 and 7 of the results
table display the root mean square fitting error for the veloc-
ity and the temperature field. To avoid amortizing the error
over empty voxels, we did not include in the rms summation
voxels that were empty both in the simulation and the recon-
struction. Densities in the fluid are within the interval [0,1]
and the temperatures are within [293,4000]. The reconstruc-
tion errors are quite small in all the examples. Since in all
5 experiments we use the same density threshold to deter-
mine the number of particles, the reconstruction errors are
also quite similar.

We also evaluate the compression ratio obtained with
the ARBF model. At a given point in time, in an Eurelian
representation each voxel is described by 5 floating points
(a 3D velocity, density, and temperature), whereas for the
ARBF representation each particle is crescribed by 6 floating
point values (c(t), σ(t), W i

ρ(t), and W i
T (t)). The compression

amounts to factors of several hundreds in most cases. Even
though it is a lossy compression, it could be an interesting
way of storing fluid simulations. This is an application we
intend to explore more thoroughly.

Table 2 provides timing results for a few editing opera-
tions. We report timings for experiments on two different
flows. For each set, we performed editing operations involv-
ing varying numbers of particles. The second column shows
how many particles were selected during the manipulation.
The timings are all in seconds. The 3rd column gives the run-
ning time of the SPH simulator, the 4th covers the B-Spline

Total Edited SPH B-Spline Sampling Total
part. part.

700 700 0.00 0.97 0.14 1.11
700 166 1.33 0.83 0.14 2.30
700 5 1.01 0.50 0.14 1.65

346 700 0.00 0.66 0.72 1.38
346 70 0.22 0.53 0.72 1.47
346 9 0.18 0.45 0.72 1.35

Table 2: Editing results. This table shows timings during
editing operations. The timing has been split into three
stages. First, the SPH calculations, then the computation re-
lated to the Hierarchical B-Spline interpolation, and finally
the resampling of the ARBF to visualize the new flow. All
timing results are given in seconds.

propagation, the 5th column gives the time it took to resam-
ple the fluid, and the last one gives the total time. When all
particles are selected, there is no SPH computations. Also,
note that since we evaluate all kernels, the sampling time
does not depend on how many particles were selected. A
more efficient approach would be to only update the part of
the fluid that has been affected. The total computations time
are between [1.11, 2.30] seconds. This causes a noticeable
delay during editing but it does not hinder significantly the
interactivity of the process.

The video presents two editing sessions. In the first one,
the fluid is manipulated interactively and selected regions of
the fluids are moved around. In the second one, we show
how the same technique can be used to deform a flow to take
into account a newly introduced obstacle. We use a simple
procedure to bend the pathlines around the sphere. For each
pathline, we compute the point that comes closest to the cen-
ter of the sphere. If the RBF at this point intersects with the
sphere, we move it outside of the sphere so that the RBF
and the sphere become tangent. We then propagate these dis-
placements using the technique described in Section 5. The
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Figure 3: Fluid fitted around a sphere using the ARBF model.

image sequence in Figure 3 shows a few frames of the final
fluid, wrapping around the sphere after colision avoidance.

7. Conclusion

In this paper, we have presented a novel way to look at fluid
simulations. The representation we introduced is not com-
pletely new since both Eulerian fluid simulation and particle
systems are well known to the computer graphics commu-
nity. Our contribution lies elsewhere: by identifying a ma-
chine learning algorithm (radial basis function) to a compu-
tational fluid mechanics technique (smoothed particles hy-
drodynamics), we where able to manipulate Eulerian flows
in ways that would have been very difficult with a voxel-
based structure. We do not believe that the flow editing tool
we presented in this research is the ultimate solution for
the interactive manipulations of flows. However, we think it
could find its way in a palette of tools since it addresses some
interesting issues. In particular, it is useful to introduce very
quickly slight modifications in a flow. The example of the
collision with a sphere in the video is particularly represen-
tative.

Our approach is not without limitations. In particular, the
use of particles intrinsically limits the granularity of the rep-
resentation. We fit a finite number of particles to the fluid.
This number determines how much details we can model
within the fluid. It is particularly important for the editing
application: no editing operations in the current system can
affect the fluid at a scale smaller than the particles. One way
of addressing this issue is to use a multi-resolution particle
representation that would adaptively split particles to the res-
olution needed [DC99]. Also, we would like to find a more
physical way of enforcing interframe constraints. The inter-
polation of the constraints through hierarchical B-Spline in-
terpolation is oblivious of the physics of fluid particles. One
possibility would be to use the Bernoulli equation for un-
steady fluids as a model to relate the geometry of a pathline
to the forces acting on the particle.

The results of large turbulent Eulerian fluid simulations
can require a lot of disk space. The ARBF could be used to
compress these simulations.
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J.: Keyframe control of smoke simulations. ACM
Transactions on Graphics 22, 3 (July 2003), 716–723.

[TO99] TURK G., O’BRIEN J.: Shape transformation using
variational implicit functions. In SIGGRAPH 99 Con-
ference Proceedings (Aug. 1999), ACM SIGGRAPH,
pp. 335–342.

[vWPSP96] VAN WALSUM T., POST F., SILVER D., POST F.:
Feature extraction and iconic visualization. IEEE
Transactions on Visualization and Computer Graph-
ics 2, 2 (1996), 111–119.

[YOH00] YNGVE G. D., O’BRIEN J. F., HODGINS J. K.: An-
imating explosions. In Proceedings of SIGGRAPH
2000 (July 2000), pp. 29–36.

c© The Eurographics Association 2004.


