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Abstract
In this paper, we address the problem of Language Identification
(LID) on short duration segments. Current state-of-the-art LID
systems typically employ total variability i-Vector modeling for
obtaining fixed length representation of utterances. However,
when the utterances are short, only a small amount of data is
available, and the estimated i-Vector representation will con-
sequently exhibit significant variability, making the identifica-
tion problem challenging. In this paper, we propose novel tech-
niques to modify the standard normal prior distribution of the
i-Vectors, to obtain a more discriminative i-Vector extraction
given the small amount of available utterance data. Improved
performance was observed by using the proposed i-Vector esti-
mation techniques on short segments of the DARPA RATS cor-
pora, with lengths as small as 3 seconds.
Index Terms: Language identification, i-Vector, short duration
segments, RATS

1. Introduction
Language Identification (LID) refers to the problem of automat-
ically identifying the source language from a given speech ut-
terance. Over the years, several techniques have been proposed
for this problem, ranging from those which leverage phonotac-
tic information, such as PRLM and PPRLM [1], to more recent
acoustic modeling approaches, which focus on spectral char-
acteristics of utterances. Acoustic modeling approaches typi-
cally reduce an utterance to a representation which captures the
variability of its Gaussian Mixture Model (GMM) supervectors.
Joint Factor Analysis (JFA) [2], which maps the GMM super-
vectors into separate source and channel variability factors, is
one of the popular approaches in this domain.

Total variability i-Vector modeling [3, 4], an approach
which evolved from JFA, has gained popularity as an elegant
framework to obtain a fixed dimensional representation of vari-
able length speech utterances. It hypothesizes that both source
and channel variabilities of the utterances lie in a single low di-
mensional subspace, known as the total variability or i-Vector
space. Every utterance is represented as an i-Vector, which
is the posterior expectation of its corresponding GMM super-
vector representation projected onto the total variability space.
Compensation methods such as Linear Discriminant Analysis
(LDA), Within Class Covariance Normalization (WCCN) [5]
and Nuisance Attribute Projection (NAP) [6] have been sug-
gested to tackle the problem of inter-session variability in the
i-Vector space. Classification is then performed on extracted i-
Vectors to find target classes using classification tools such as
PLDA [7, 8], SVM [9] or Neural Networks [10].

When the utterances used for classification are of signifi-

cantly long duration, the i-Vectors exhibit low intra-class vari-
ability and result in compact clusters which are fairly separa-
ble. However, one of the major challenges faced by these sys-
tems is the significant performance degradation on short dura-
tion segments. This challenging task of accurate classification
on short duration utterances using i-Vector framework has pre-
viously been addressed in [11–14], and in [15], where a novel
UBM fusion approach is adopted. In this paper, we propose to
tackle this problem by constraining the prior distribution of the
i-Vector estimates to restrict their variability.

The remainder of this paper is organized as follows : Sec-
tion 2 describes the baseline i-Vector extraction scheme. In sec-
tion 3, we motivate the use of a different prior, and derive the ex-
pressions for i-Vector estimation under modified prior assump-
tions. Section 4 describes the proposed techniques for param-
eter selection of modified prior distribution. The experimental
setup has been laid out in section 5. The obtained results are
summarized in section 6. Conclusion and discussion of future
avenues are given in section 7.

2. Baseline system
2.1. Total Variability i-Vector Modeling

Suppose we are given a UBM consisting of C components and
parameter set Λ = {λ1,λ2, ...,λC}, where each mixture com-
ponent c is characterized by λc = {ρc,µc,Σc}. Then, for an
utterance yj with feature sequence [yj,1, yj,2, ... , yj,L], the
zeroth and first order centered Baum Welch statistics, N j

c and
F j
c respectively, for each component c are obtained as follows :

N j
c =

L∑
t=1

P (c|yj,t,λc) (1)

F j
c =

1

N j
c

L∑
t=1

P (c|yj,t,λc) (yj,t − µc) (2)

After concatenating the statistics for each UBM compo-
nent, we obtain the diagonal matrix of occupancy counts N,
and the supervector F. In total variability i-Vector modeling,
it is hypothesized that the E [F] = Tx, where T is the total
variability matrix of low rank and x is known as the i-Vector.
More specifically, total variability i-Vector modeling can be re-
interpreted as a classic factor analysis based generative model-
ing problem, where it is assumed that the prior distribution of
i-Vectors and the distribution of F conditioned on the i-Vector
are Gaussian [16] :

P (x) = N (0, I) , P (F |x) = N
(
Tx,N−1Σ

)
(3)
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Given prior assumptions of (3), the MAP estimate of x given F
is given as

E [x|F ] =
(
I + TtΣ−1NT

)−1
TtΣ−1NF (4)

The estimate given by (4) represents the mean of the pos-
terior distribution of x given F, and is adopted as the i-Vector
representation of the utterance.

2.2. Simplified i-Vector Modeling

The i-Vector extraction procedure corresponding to (4) is com-
putationally very expensive. For a UBM with C components,
feature dimension D and i-Vector dimension K, the computa-
tional complexity isO(K3+K2C+KCD) [17]. Li et al [16]
addressed this problem by suggesting a simplified i-Vector ex-
traction procedure, which achieves a significant speedup in i-
Vector extraction, reducing the complexity to O(K3 +KCD),
at the cost of only a negligible degradation in accuracy. In this
framework, for an utterance with n frames, the F vectors are
first normalized by occupancy counts :

F j
c ←

√
mj

cF
j
c , where mj

c =
N j

c∑C
c=1N

j
c

(5)

Then, the covariance of the conditional distribution of F is sim-
plified as n−1Σ. In the simplified framework, i-Vectors are now
estimated as :

E [x|F ] =
(
I + TtΣ−1nT

)−1
TtΣ−1nF (6)

We use the i-Vector extraction in (6) as our baseline estimate.

3. I-Vector Extraction With Prior
Modification

3.1. Motivation

The implicit assumption on i-Vectors estimated from the data is
that utterances belonging to the same class would map to sim-
ilar i-Vectors. Therefore, it is ideally expected that the collec-
tion of i-Vectors in data would form a set of compact, sepa-
rable clusters, each of which corresponds to a particular class.
However, the i-Vector extraction procedure fails to make this
assumption explicit. The hypothesized standard normal prior
on i-Vectors only serves as a check on the magnitude of the ob-
tained i-Vectors. It does not promote any form of clustering for
i-Vectors to be estimated from the data.

As the utterance length increases, typically the within-class
variability in estimated sufficient statistics reduces, and the ob-
tained i-Vectors tend to form clusters. However, this is not
the case for i-Vectors estimated from short duration data, be-
cause of significant within-class variability in estimated suffi-
cient statistics. In such cases, it might be beneficial to make
the assumption about presence of distinct clusters in the data
explicit through the prior itself.

Suppose there are M classes in the data, with correspond-
ing prior probabilities {PC(i)}Mi=1. We hypothesize that that
i-Vectors from class i form a cluster with mean µi and co-
variance Ci. Then, the hypothesized prior distribution on
the i-Vectors without any label information is a GMM prior∑M

i=1 PC(i)N (µi,Ci). If the label corresponding to an i-
Vector estimate is known to be i, the hypothesized prior distri-
bution on the i-Vector is normal distributionN (µi,Ci). There-
fore, the assumption is that there are as many Gaussian mixtures
in the prior distribution as there are classes in the data. While

the derivations that follow extend to arbitrary number of mix-
tures, we use same number of mixtures as there are classes, for
our analysis in this paper.

In Sections 3.2 and 3.3, we derive expressions for estimat-
ing i-Vectors under these prior assumptions. Then, various tech-
niques for selecting appropriate parameters for the prior distri-
bution are proposed in section 4.

3.2. General Gaussian prior

Under assumption of Gaussian prior with arbitrary mean µ and
an arbitrary covariance matrix C :

P (x) = N (µ,C) , P (F|x) = N
(
Tx, n−1Σ

)
(7)

Then, the posterior distribution of x is given as :

P (x|F) = P (F|x)P (x)

∝ exp

[
−1

2
(F−Tx)t Σ−1n (F−Tx)

− 1

2
(x− µ)t C−1 (x− µ)

]
∝ exp

[
xtTtΣ−1nF− 1

2
xtTtΣ−1nTx

− 1

2
xtC−1x + xtC−1µ

]
∝ exp

[
xt (TtΣ−1nF + C−1µ

)
− 1

2
xt (TtΣ−1nT + C−1)x

]
∝ exp

[
−1

2

(
x− l−1b

)t
l
(
x− l−1b

)]
(8)

where

b = TtΣ−1nF + C−1µ, l = C−1 + TtΣ−1nT (9)

Therefore, P (x|F) = N
(
l−1b, l−1

)
, and hence i-Vectors are

estimated as :
E [x|F] = l−1b (10)

3.3. Gaussian Mixture Prior

Under Gaussian Mixture prior assumption with class probabili-
ties PC(i), means µi, covariances Ci :

P (x) =

M∑
i=1

PC(i)N (µi,Ci) (11)

Using a similar approach to (9), we can derive that the posterior
distribution is given by

P (x|F) =

M∑
i=1

PC(i)N
(
l−1
i bi, l

−1
i

)
(12)

where,

bi = TtΣ−1nF + C−1
i µi, li = C−1

i + TtΣ−1nT (13)

The estimated i-Vector x is then given as :

E [x|F] =

M∑
i=1

PC(i) l
−1
i bi (14)
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3.4. Prior reweighting

The i-Vector estimates given by (10) and (14) are combinations
of terms given by observed statistics and prior parameters. Ad-
ditional flexibility can be gained on balancing the impact of the
imposed prior against the observed data by introducing a param-
eter λ, which controls the relative weights of each term in the
i-Vector estimate. The i-Vector estimates for general Gaussian
prior using parameter λ are obtained as :

E [x|F] =
(
C−1 + λTtΣ−1nT

)−1 (
λTtΣ−1nF + C−1µ

)
(15)

For GMM prior, the i-Vectors are obtained as :

E [x|F] =

M∑
i=1

PC(i)
(
C−1

i + λTtΣ−1nT
)−1

(
λTtΣ−1nF + C−1

i µi

)
(16)

Adjusting λ allows us to control the degree of penalization
on deviations from the prior assumption. A value of λ < 1
would emphasize the prior, penalizing the deviations from mix-
ture means more severely. A value of λ > 1 would emphasize
the data term higher, relaxing the penalty imposed by the prior.

The results reported in Section 6 correspond to the choice of
λ that gave best results. Typically, a choice of λ in the range of
0.1 to 0.4 was found to be optimal, indicating that emphasizing
the prior was useful.

4. Prior Parameter Selection
4.1. GMM prior parameters derived from long duration
segments

We hypothesize that i-Vectors estimated from long duration seg-
ments exhibit low within-class variability, and i-Vectors from
these utterances can be used to estimate mixture means and co-
variances µi and Ci for GMM-prior based estimation.

Therefore, for this approach, we first obtain i-Vectors for
the long duration training examples according to standard nor-
mal prior. Then, we evaluate mean and covariance estimates
µi and Ci for each class i, i ∈ {1, 2, ...,M}. These parame-
ters, along with class priors PC(i) are then used for estimating
i-Vectors, using equation (16). This approach is motivated by
the idea that the i-Vector estimate for an utterance is unlikely to
belong to a region which does not lie close to one of the clus-
ters observed in training data from long duration segments. The
imposed prior acts as a filter to reduce the density of posterior
estimate in regions that are unlikely. For reporting the results
in Section 6, we refer to this approach as the GMM i-Vector
approach.

4.2. Classifier output based re-estimation

4.2.1. Gaussian Mixture Re-estimation

Suppose we have performed one stage of classification on a
given test utterance already, and the probabilities of the utter-
ance belonging to a particular class are available from the clas-
sifier output. Then, we can use can substitute mixture weights
in GMM prior by the class probabilities from classifier out-
put, as opposed to using class priors, to estimate the i-Vector
once again for another stage of classification. This GMM prior
not only penalizes the estimate for being far away from clus-
ters observed in long duration training data, it also attempts to
nullify the influence of mixtures corresponding to classes that

were deemed unlikely for the utterance by the classifier. For re-
porting results in Section 6, we refer to this approach as GMM
Re-estimation approach.

4.2.2. Score combination of individual class priors

A closer look at (16) reveals that i-Vector estimate under GMM
prior is just a weighted linear combination of estimates under
assumption of single Gaussian prior corresponding to individ-
ual mixture components, weighted by PC(i). Therefore, the
procedure suggested in Section 4.2.1 amounts to re-estimating
the i-Vector under assumption of a single Gaussian correspond-
ing to each class i ∈ {1, 2, ...,M}, and then combining the
estimates using available class probabilities as weights.

This motivates the idea that the combination can also be
performed at score level, rather than the i-Vector estimate level.
Therefore, in this approach, for each utterance, we obtain M
i-Vector estimates, {xi}Mi=1, where xi is obtained using a sin-
gle Gaussian prior corresponding to class i, with mean µi and
covariance Ci, according to (15). Then, we perform classifica-
tion separately on each of the obtained estimates xi, to obtain
probabilities sij = P (xi ∈ classj).

Let PC(i) denote the class probabilities available from
first-pass classification. Then, we obtain updated score as the
weighted sum of all the scores {sij}Mi=1 as follows :

P̂C(i) =

M∑
i=1

PC(i)sij (17)

For reporting results in Section 6, we refer to this approach
as Score Re-estimation approach.

5. Experimental Setup
We used the DARPA Robust Automatic Transcription of Speech
(RATS) data corpus [18] for our experiments, which consists of
noisy audio recordings from six classes : five target languages
and a class corresponding to 10 non-target languages. For each
frame, we obtained 22-dimensional MFCC vectors, concate-
nated with delta coefficients, resulting in a 44-dimensional fea-
ture vectors. A UBM of 2048 components was trained on all
available speech data, and an i-Vector dimension of 400 was
used. WCCN was applied on the i-Vector space for inter-
session variability compensation. The i-Vectors were subse-
quently classified by training an SVM with a fifth order poly-
nomial kernel. The training data consisted of collection of seg-
ments of length 30s, 10s and 3s. The test set DEV2 consisted
of 1335 samples of duration 3s. In the next section, the follow-
ing measures are reported on samples of the DEV2 set : EER,
DCF, Pmiss for 10% False Alarm rate (denoted by P 10

miss), and
classification accuracy.

6. Results
For our experiments, we used the simplified i-Vector extraction
scheme [16] as our baseline. First, we performed three sepa-
rate experiments by using 30s, 10s and 3s data respectively for
obtaining T and Σ parameters through EM. We then used the
obtained estimates to extract i-Vectors on 3s training utterances
to train the SVM. Experimental results (not reported in this pa-
per) showed that duration matched training for SVM achieved
best results. The results obtained using duration matched SVM
training have been reported in Baseline row of Table 1. The
column DT in Table 1 indicates the duration length of training
samples (in seconds) used for EM procedure.
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It is apparent from the table that using 30s segments for EM
training gave the best results. This is intuitive since the EM al-
gorithm used for estimation of subspace parameters T and Σ
also depends on intermediate evaluation of i-Vectors, which are
highly variable for short duration data. Once we have the best
subspace estimate trained on longer duration data, the classi-
fier is best trained on short duration segments, as mismatch in
distributions between training and test sets affects the SVM ad-
versely.

Having established the best baseline result, we then applied
the various methods suggested in section 4 for i-Vector extrac-
tion. For the GMM i-Vector approach (Section 4.1), we ob-
tained µi and Ci estimates from 30s training set, and the class
priors PC(i) were obtained as proportion of training data be-
longing to class i. For GMM Re-estimation (Section 4.2.1)
and Score Re-estimation (Section 4.2.2), we used SVM out-
puts from the best baseline system corresponding to 30s EM
training as class probabilities, and performed the suggested re-
estimation and scoring. The results have been summarized in
Table 1 below.

System DT EER DCF P 10
miss Accuracy

3 17.89 17.76 25.85 65.47
Baseline 10 16.71 16.45 24.41 68.31

30 15.40 15.21 22.19 69.74
GMM i-Vector (4.1) 30 15.27 14.98 20.76 69.44

GMM Re-estimation (4.2.1) 30 16.32 15.82 22.32 70.11
Score Re-estimation (4.2.2) 30 15.14 15.07 21.28 69.96

Table 1: Experimental Results

It can be seen that a noticeable performance gain was ob-
served in P 10

miss using the GMM i-Vector estimation technique,
along with minor gains in EER and DCF. However, the classifi-
cation accuracy decreased slightly. One of the possible factors
that limits the performance gained using this approach is related
to the extraction of point-estimate representation of i-Vectors
from the posterior distribution. Although the modification in
prior attempts to concentrate the density of posterior distribu-
tion near the clusters observed in 30s training data, the SVM
classification step requires point estimates, which are obtained
by evaluating the mean of the posterior distribution. However,
the mean of a GMM distribution is not guranted to lie in a re-
gion of high density, and therefore i-Vector estimates obtained
using this prior are not necessarily confined to clusters observed
in the training data.

While the GMM Re-estimation approach for second classi-
fication pass resulted in higher classification accuracy, it was
only achieved at the cost of significant degradation in EER,
DCF and P 10

miss values. The intuition behind the observed
degradation is that if the classifier assigns very high probability
for the wrong class in first pass of classification, then the re-
estimated i-Vector gets heavily biased towards the cluster mean
of that class. Hence, the confidence in the wrong label increases
further, which affects EER, DCF and P 10

miss negatively, but does
not affect classification accuracy since the obtained label value
does not change after re-estimation. However, if the true class
gets assigned a reasonably high probability in the first pass, then
the re-estimation process might help guiding the updated esti-
mate towards the cluster mean of the true class by removing the
contribution of unlikely classes from the estimate.

The Score Re-estimation technique resulted in moderate
gains in EER, DCF, P 10

miss as well as classification accuracy,
showing that score level combination was more helpful than i-
Vector estimate level combination.

7. Conclusion and Future Direction
In this paper, we have described novel approaches to tackle
the problem of i-Vector variability of short duration segments
by modifying prior distributions of the i-Vectors. We derived
an expression for i-Vector estimation by assuming the prior to
be Gaussian distributed with arbitrary mean and covariance, or
modeled by a GMM. We used the class mean and covariance es-
timates from longer duration segments to obtain GMM prior for
shorter duration segments, using either class prior probabilities
or available class probability estimates of a classifier as mixture
weights.

Currently, we use standard normal priors within the EM es-
timation scheme for obtaining total variability subspace param-
eters T and Σ, and use modified priors only for i-Vector ex-
traction with pre-calculated T and Σ estimates. However, the
baseline results in Table 1 show that better estimates of T and
Σ obtained using longer duration segments had a remarkable
impact on the system performance. Therefore, as future work,
we plan to extend the use of prior modification in EM training.
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