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1. Introduction and Motivation

Research activities in the field of human-computer interaction 
increasingly addressed the aspect of integrating features that 
characterize different types of emotional intelligence. Human emotions 
are expressed through different modalities such as speech, facial 
expressions, hand or body gestures, and therefore the classification 
of human emotions should be considered as a multi-modal pattern 
recognition problem. In recent time, a multitude of approaches have 
been proposed to enhance the training and recognition of multiple 
classifier systems (MCSs) utilizing multiple modalities to classify 
human emotional states. The work summarizes the progress of 
investigating such systems and presents aspects of the problem namely 
fusion architectures and training of statistical classifiers based on 
only marginal informative features. Furthermore, it describes how the 
effects of missing values, e.g. due to missing sensor data or classifiers 
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exploiting reject options in order to circumvent false classifications, 
can be mitigated. Another aspect is the usage of partially supervised 
learning, either to support annotation or to improve classifiers. Parts 
of these aspects are then exemplified using two recent examples of 
emotion recognition, showing a successful realization of MCSs in 
emotion recognition.

Research in affective computing has made many achievements 
in the last years. Emotions begin to play an increasingly important 
role in the field of human-computer interaction, allowing the user to 
interact with the system more efficiently (Picard, 2003) and in a more 
natural way (Sebe et al., 2007). Such a system must be able to recognize 
the users’ emotional state, which can be done by analyzing the facial 
expression (Ekman and Friesen, 1978), taking the body posture and 
the gestures into account (Scherer et al., 2012) and by investigating the 
paralinguistic information hidden in the speech (Schuller et al., 2003; 
Oudeyer, 2003). Furthermore, biophysiological channels can provide 
valuable information to conclude to the affective state (Cannon, 1927; 
Schachter, 1964).

However, the emotions investigated so far were in general acted 
and the larger part of research was focused on a single modality, 
albeit the problem of emotion recognition is inherently multi-modal. 
Obviously, the entire emotional state of an individual is expressed and 
can be observed in different modalities, e.g. through facial expressions, 
speech, prosody, body movement, hand gestures as well as more 
internal signals such as heart rate, skin conductance, respiration, 
electroencephalography (EEG) or electromyog ram (EMG). Recent 
developments aim at transferring the insights obtained from single 
modalities and acted emotions to more natural settings using multiple 
modalities (Caridakis et al., 2007; Scherer et al., 2012; Zeng et al., 2009; 
Chen and Huang, 2000). The uncontrolled recording of non-acted data 
and the manifold of modalities make emotion recognition a challenging 
task: subjects are less restricted in their behavior, emotions occur more 
rarely and the emotional ground truth is difficult to determine, because 
human observers also tend to disagree about emotions.

In this chapter, MCSs for the classification of multi-modal features 
are investigated, the numerical evaluation of the proposed emotion 
recognition systems is carried out on the data sets of the 1st AVEC 
challenge (Schuller et al., 2011) and a data set recorded in a Wizard-
of-Oz scenario (Walter et al., 2011). Combining multi-modal classifiers 
is a promising approach to improve the overall classifier performance 
(Schels and Schwenker, 2010). Such a team of classifiers should be 
accurate and diverse (Kuncheva, 2004). While the requirement to the 



classifiers to be as accurate as possible is obvious, diversity roughly 
means that classifiers should not agree on misclassified data. In our 
studies, various modalities and feature views have been utilized on 
the data to achieve such a set of diverse and accurate classifiers.

The rest of this chapter is organized as follows: In Section 2, 
we will present the latest approaches to improve the recognition of 
emotion. Section 3 describes real-world data collections for affective 
computing. Furthermore, adequate features are described together 
with a numerical evaluation. Finally, Section 4 concludes.

2. Multi-modal Classification Architectures and 
Information Fusion for Emotion Recognition

2.1 Learning from multiple sources

For many benchmark data collections in the field of machine learning, 
it is sufficient to process one type of feature that is extracted from 
a single representation of the data (e.g. visual digit recognition). 
However, often in many real-world applications, different independent 
sensors are available (e.g. microphone and camera) and it is necessary 
to combine these channels to obtain a good recognition performance 
and to achieve a robust architecture against sensor failure.

To create a classifier system, which is able to handle different 
sources of information, three widely used approaches have been 
proposed and evaluated in the literature, namely early fusion, mid-
level fusion and late fusion (Dietrich et al., 2003). Using early fusion, 
the information is combined on the earliest level by concatenating 
the individual features to a higher dimensional vector, as depicted 
on the left-hand side of Figure 1. The converse strategy is to combine 
the independent streams as late as possible, which is called late 
fusion or multiple classifier system (MCS), see the right-hand side of 
Figure 1. The third approach, which recently gains more attention, 
is known as mid-level fusion (Scherer et al., 2012; Eyben et al., 
2012; Glodek et al., 2012; Dietrich et al., 2003) and combines 
the channels in an intermediate abstraction level, as for example 
conducted in a combined hidden layer of an artificial neural network. 
The corresponding classifier architecture is shown in the middle of 
Figure 1.

The selection of an optimal architecture is strongly related to the 
respective problem. An important clue for choosing the appropriate 
architecture could be drawn by judging the dependency and 
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information-gain of the features, and the complexity of the classifier 
function. Concatenating features of different sources is advantageous 
because the classification task may become separable. However, 
extending the dimensionality also implicates to run into the so-called 
curse of dimensionality (Bishop, 2006). Furthermore, in the application 
of emotion recognition, early fusion is not intuitive as the individual 
sources are likely to have different sampling rates. 

Further, it is often necessary to compensate failing sensors that 
may occur for example when subjects move away from the camera or 
when physiological sensors lose contact to the subject’s skin. Hence, 
it is intuitive to combine the individual features as late as possible in 
an abstract representation. 

The mid-level fusion is a good compromise between the two 
extremes. Figure 2 shows a layered classifier architecture for recognizing 
long-term user categories. According to the key concept, the patterns 
are always classified based on the output of the proceeding layer 
such that the temporal granularity likewise the level of abstractness 
constantly increases. According to the theory, the architecture is able to 
recognize classes which are not directly observable (e.g. the affective 
state) based on the available evidences (Glodek et al., 2011; Scherer 
et al., 2012). 

MCSs are widely used in the machine learning community 
(Kuncheva, 2004). The performance of an MCS not only depends on 
the accuracies of the individual classifiers, but also on the diversity of 
the classifiers, which roughly means that classifiers should not agree 
on the set of misclassified data. MCSs are highly efficient pattern 
recognizers that have been studied by various numerical experiments 
and mathematical analysis, and lead to numerous practical applications 

Figure 1. Schematic depiction of different classifi er architectures: early fusion, mid-level 
fusion and late fusion (left to right).



such as activity recognition (Glodek et al., 2012), EEG analysis (Schels 
et al., 2011) and classification of bio-acoustic signals (Dietrich et al., 
2003) to mention just a few examples. There are different techniques 
in the literature to attain diverse ensemble classifiers. The individual 
classifiers can, for example, be trained on different subsets of the 
training data (Breiman, 1996). Another way is to conduct multiple 
training runs on the data using different base models or different 
configurations of a model (model averaging). Furthermore, different 
subsets of the available feature space (so-called feature views) are 
often used to construct individual classifiers, which are then treated 
as independent data streams.

In order to formally reflect that the accuracies of individual 
classifiers in real-world scenarios and especially in non-acted affective 
computing are generally low, it is useful to implement mechanisms 
to increase the robustness and to assess the quality of a decision for a 
sample. While the robustness can be achieved using the aforementioned 
ensembles of classifiers, the self-assessment of classifiers can be 
obtained by defining an appropriate uncertainty measure. Common 
ways to establish uncertainty measures are to use probabilistic or 
fuzzy classifiers, or to use the degree of agreement of an ensemble of 
classifiers, i.e. the more the individual classifiers agree on a specific 
value or label, the more confident this decision can be seen as. 
When combining multiple decisions, the uncertainty can be used as 
a weight in the fusion (Glodek et al., 2012).

Especially in real-world scenarios, it has been proven to be 
successful to stabilize weak decisions by integrating individual results 
over time (Glodek et al., 2012). Hereby, the confidence of the classifier 
can also help to assess weak decisions. This integration could also 
slow down the sample rates to match the sample rates of the sensory 
channels.

Figure 2. Layered (mid-level) classifi cation architecture to recognize dispositions in human-
companion interaction. The level of abstraction increases in each layer to obtain high-level 
symbolic information.
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Human emotions occur in many variations and are often not 
directly accessible even for human experts when annotating affective 
corpora. Hence, a severe issue in affective computing is that the 
labeling procedure is inevitably expensive and time consuming. 
It would be desirable to incorporate unlabeled data in the overall 
classification process. This can be done either to improve a statistical 
learning process or to support a human expert in an interactive labeling 
process (Meudt et al., 2012). In order to integrate unlabeled data in 
a supervised machine learning procedure, two different partially 
supervised learning approaches have been applied, namely semi-
supervised learning and active learning. Semi-supervised learning refers 
to group of methods that attempt to take advantage of unlabeled 
data for supervised learning (semi-supervised classification) or to 
incorporate prior information such as class labels, pair-wise constraints 
or cluster membership (semi-supervised clustering). Active learning or 
selective sampling (Settles, 2009) refers to methods where the learning 
algorithm has control on the data selection, e.g. it can select the most 
important/informative examples from a pool of unlabeled examples, 
then a human expert is asked for the correct data label. The aim is to 
reduce annotation costs. In our application—the recognition of human 
emotions in human-computer interaction—we focus more on active 
learning (Schwenker and Trentin, 2012; Abdel Hady and Schwenker, 
2010). An iterative labeling process is displayed in Figure 3, where a 
machine classifier proposes labels for different areas in a recording 
for an expert to acknowledge. Based on this, new propositions can be 
made by the system.

In affective computing, it is not likely that it is necessary to make 
a decision for every given data sample extracted from a short time 
analysis. Additionally data samples are delivered relatively often 
compared to the expected lengths of the observed categories. Hence, 
it is intuitive to use techniques of sample rejection, i.e. deciding (yes 
or no) whether a certain confidence level has been achieved or not. 
Various attempts have been made to introduce confidence-based 
rejection criteria. Commonly thresholds-based heuristics are used 
on probabilistic classifier outputs utilizing a distinct uncertainty 
calculus, for instance doubt and conflict values computed through 
Dempster’s rule of combination in the very well-known Dempster-
Shafer theory of evidence (Thiel et al., 2005). Fusion architectures 
which are making use of reject options not only have to deal with 
missing signals and different sample rates but also with missing 
decisions due to rejection.

For these reasons and also as mentioned above, a classification 
architecture that is designed for a real-world application has to 



be robust against missing data. This can be achieved by temporal 
smoothing of the results as seen in Figure 4. There, the blue short 
lines represent decisions for the audio channel in word granularity, 
the orange dots represent decisions for video frames and the short 
green lines are decisions based on physiological signals such as skin 
conductance. When a line is drawn in a lighter color, the sample is 
rejected due to a low respective confidence. But still a decision for 
every time step is returned by exploiting the hypothesis that the lateral 
differences over time are low. Further, it is possible to stack multiple 
layers of classifiers in order to assess more complex categories based 
on simpler observations. When using, for example, statistical models 
that can incorporate time series, this architecture can reflect high level 
concepts that are not directly observable in the data.

Based on this, we propose a classifi cation architecture, as depicted 
in Figure 5, for the recognition of affective states in human-computer 
interaction. Here, every individual channel is classifi ed separately with 
the usage of an uncertainty measure. Based on this, a sample reject 
mechanism is applied in order to prevent false classifi cations. The 
subsequent temporal integration is used not only to further improve 
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Figure 3. Depiction of the individual channels in an affectively colored human-computer 
interaction. Furthermore, a semi-automatic annotation process is depicted: The labels 
encircled in green are set by the human annotator and the system proposes the red labels 
additionally.

(Color image of this fi gure appears in the color plate section at the end of the book.) 
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Figure 4. Example for the classifi cation of arousal in human-computer interaction. The strong 
colors represent decisions that were used in the fusion (solid line), whereas the lighter dots 
represent rejected samples.

Figure 5. Multiple classifi er architecture, which is making use of the reject option. The 
classifi cation result of each channel has to pass a rejection step, in which decisions with low 
confi dences are fi ltered out. The outcome is temporally fused and combined.

classifi cation but also to reconstruct missing values. Finally a classifi er 
combination is conducted. 

2.2 Base classifiers

In our architectures, linear classifiers, artificial neural networks (e.g. 
multilayer perceptrons (MLPs)) and support vector machines (SVMs) 

(Color image of this fi gure appears in the color plate section at the end of the book.) 



were used as base classifiers. Linear classifiers are advantageous for 
noisy data and to avoid over-fitting, because the decisions are based on 
a rather simple function, namely the linear combination of the features. 
We obtained the mapping by computing the Moore-Penrose pseudo-
inverse function. MLPs are based on a superposition of multiple 
functions (e.g. linear or sigmoid functions), which are represented 
by the neurons in the hidden layer (Haykin, 1999). As a result, the 
complexity of the MLP can be conveniently adjusted by varying the 
number of hidden neurons. 

The SVM is a supervised learning method following the maximum 
margin paradigm. The classical implementation of the SVM is a typical 
representative of a kernel method, and therefore the so-called kernel 
trick can be applied. The kernel trick conducts a mapping to a new 
feature space that allows classification using non-linear hyper-planes. 
Within our study, we used the Gaussian radial basis function (RBF) 
kernel, which transforms the input data into the Hilbert space of 
infinite dimensions and is calibrated by a width parameter. However, 
due to noise or incorrect annotations, it is convenient to have a non-
rigid hyper-plane, being less sensitive to outliers in the training. 
Therefore, an extension to the SVM introduces a so-called slack term 
that tolerates the amount of misclassified data using the control 
parameter. A probabilistic classification output can be obtained using 
the method proposed in Platt (1999). Detailed information of these 
algorithms can be found for instance in Bishop (2006).

Furthermore, Markov models such as the hidden Markov model 
(HMM) have proven to be a suited method for emotion algorithms 
(Glodek et al., 2011). The HMM is a stochastic model, applied for 
temporal/sequential pattern recognition, e.g. speech recognition and 
recognition of gestures. It is composed of two random processes, a 
Markov chain with hidden states for the transitions through the states 
and a second random process modeling the observations. The transition 
probabilities and also the emission probabilities for the outputs are 
estimated using the Baum-Welch algorithm. Given the parameters of an 
HMM and an observed output sequence, the most likely state sequence 
can be computed (Viterbi algorithm) and the posteriori probability for 
the observation sequence can be estimated (forward algorithm). This 
probability can be utilized to classify sequences, by choosing the most 
likely model (Rabiner, 1989).

3. Experiments

In the following section, several of the aspects presented in the previous 
sections are evaluated using non-acted emotional data sets.
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3.1 Data collection

We will put focus on two different data sets, namely the EmoRec II 
collected at the Ulm University and the AVEC 2011 dataset. 

3.1.1 EmoRec II

A simulation of a natural verbal human-computer interaction was 
implemented as a Wizard-of-Oz (WOZ) experiment (Kelley, 1984). 
The WOZ experiment allows the simulation of computer or system 
properties in a manner such that subjects have the impression that they 
are having a completely natural verbal interaction with a computer-
based memory trainer. The design of the memory trainer followed the 
principle of the popular game “Concentration”. The variation of the 
system behavior, in response to the subjects, was implemented via 
natural spoken language, with parts of the subject’s reactions taken 
automatically into account. 

In order to induce target emotions during the experiment, we 
considered the following affective factors that are implemented as 
natural language dialog:

 • Delaying the response of a command
 • Non-execution of the command
 • Simulate incorrect speech recognition
 • Offer of technical assistance 
 • Lack of technical assistance
 • Propose to quit the game ahead of time
 • Positive feedback

The procedure of emotion induction is structured in differentiated 
experimental sequences (ESs) in which the user is passed through VAD 
octants (valence: positive, negative, neutral; arousal: low, high, neutral; 
dominance: low control, high control, neutral) by the investigator 
(compare Figure 6). Audio, video and physiological data (namely 
electromyography, skin conductance level) were recorded. 

Within this study, we focus on the recognition of the emotional 
octants in ES-4 and ES-6. The database comprises eight subjects with 
an average age of 63.5 years.

3.1.2 AVEC 2011 Data Collection

The second data collection used in this study has been provided 
within the Audio/Visual Emotion Challenge (AVEC) 2011 of the ACII 
2011 workshop. Overall three sub-challenges were proposed: an audio 



challenge on word-level, a video challenge on frame-level and an 
audiovisual also on video frame-level.

The data was recorded in a human-computer interaction scenario 
in which the subjects were instructed to interact with an affectively 
colored artificial agent. Audio and video material was collected from 
13 different subjects in overall 63 recordings. The recorded data was 
labeled in four affective dimensions: arousal, expectancy, power and 
valence. The annotations of the raters have been averaged for each 
dimension, resulting in a real value for each time step. Subsequently, 
the labels are binarized using a threshold equal to the grand mean of 
each dimension. Two to eight raters annotated every recording. Along 
with the sensor data and the annotations, a word-by-word transcription 
of the spoken language was provided which partitions the dialog into 
conversational turns. For the evaluation of the challenge, only arousal 
was taken into account as classification of the other dimensions yielded 
poor results.1 (Schuller et al., 2011); McKeown et al., 2010) for a detailed 
description of the data set.)

3.2 Features

In the following, the proposed method for the classification from 
multiple sources is described. We begin with the description of the 
individual modalities and extracted features.

3.2.1 Audio Features

From the audio signal, the following features have been applied:
 • The fundamental frequency values are extracted using the f0 tracker 

available in the ESPS/waves+2 software package. Besides the 
track, the energy and the linear predictive coding (LPC) of the 
plain wave signal is extracted (Hermansky, 1990). All three 
features are concatenated to a 10-dimensional early fusion feature 
vector.

Figure 6. Experimental sequences the subject is guided through for the recordings.

 1 http://sspnet.eu/avec2011/
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 • The Mel frequency cepstral coefficient (MFCC) representation is 
inspired by the biological known perceptual variations in the 
human auditory system. The perception is modeled using a 
filter bank with filters linearly spaced in lower frequencies and 
logarithmically in higher frequencies in order to capture the 
phonetically important characteristics of speech. The MFCCs 
are extracted as described in Rabiner and Juang (1993).

 • The perceptual linear predictive (PLP) analysis is based on two 
perceptually and biologically motivated concepts, namely the 
critical bands, and the equal loudness curves. Frequencies below 
1 kHz need higher sound pressure levels than the reference, 
and sounds between 2 and 5 kHz need less pressure, following 
the human perception. The critical band filtering is analogous 
to the MFCC triangular filtering, apart from the fact that 
the filters are equally spaced in the Bark scale (not the Mel 
scale) and the shape of the filters is not triangular, but rather 
trapezoidal. After the critical band analysis and equal loudness 
conversion, the subsequent steps required for the relative spectral 
(RASTA) processing extension follow the implementation 
recommendations in Zheng et al. (2001). After transforming 
the spectrum to the logarithmic domain and the application 
of RASTA filtering, the signal is transformed back using the 
exponential function.

3.2.2 Video Features

We investigated a biologically inspired model architecture to study 
the performance of form and motion feature processing for emotion 
classification from facial expressions. The model architecture builds 
upon the functional segregation of form and motion processing in 
primate visual cortex. Initial processing is organized along two mainly 
independent pathways, each specialized for the processing of form as 
well as motion information, respectively. 

We have directly utilized the two independent data streams for 
visual analysis of facial features in (Glodek et al., 2011) and already 
achieved robust results for automatic estimation of emotional user 
states from video only and audio-visual data. Here, we extended 
the basic architecture by further subdividing the motion-processing 
channel. We argue that different types of spatio-temporal information 
are available in the motion representation, which can be utilized for 
robust analysis of facial data. On the global scale the overall, external, 

 2 http://www.speech.kth.se/software/



motion of the face is indicative for pose changes and non-verbal 
communication signals, e.g., head movements during nodding or 
selective shifts of attention through pose changes. On the other hand,on 
the local scale, the internal facial motions are indicative of fine-grained 
changes in the facial expression and emotional exposition. Examples 
are, e.g., eye blinks, smiles or mouth openings. We reasoned that the 
segregation of this information should be helpful to further improve 
the analysis of emotion data and, thus, process the visual input 
stream along three independent pathways. In order to make use of 
more detailed task-related information, we propose here an extended 
model architecture which aims at first segregating form and motion, 
as briefly outlined above, and further subdivides the motion stream 
into separate representations of global and local motion, respectively. 
An overview of the outline of the architecture is presented in Figure 7. 
Motion and form features are processed along two separate pathways, 
composed of alternating layers of filtering (S) and non-linear pooling 
(C) stages. In layer S1, different scale representations of the input 
image are convolved with 2D Gabor filters of different orientations 
(form path) and a spatio-temporal correlation detector is used to build 
a discrete velocity space representation (motion path). The initial 
motion representation is then further subdivided to build separate 
representations of global and local facial motion. Global motion is 
approximated by the best-fit affine motion. To achieve this, the facial 
region is detected by searching for horizontally oriented barcode like 
structures within a Gabor-filtered input image (Dakin and Watt, 2009)
which is refined into facial regions-of-interests around eyes, nose 
and mouth. These regions are excluded from the successive random 
sampling process used for the estimation of the affine transformation 
parameters representing the global flow (affine flow).The residual or 
local flow is then calculated by subtracting the affine flow from the 
unmodified flow to provide the input representation for extracting 
local motion responses. All three streams, or channels, are then further 
processed in parallel by hierarchical stages of alternating S- and 
C-filtering steps. Layer C1 cells pool the activities of S1 cells of the 
same orientation (direction) over a small local neighborhood and two 
neighboring scales and speeds, respectively. The layer S2 is created 
by a simple template matching of patches of C1 activities against a 
number of prototype patches. These prototypes are randomly selected 
during the learning stage (for details, see (Mutch and Lowe, 2008). In 
the final layer C2, the S2 prototype responses are again pooled over a 
limited neighborhood and combined into a single feature vector which 
serves as input to the successive classification stage.

Multi-Modal Classifi er-Fusion for the Recognition of Emotions 85
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Figure 7. Visual feature extraction. Motion and form features are processed along two separate 
pathways, one form- and one motion pathway. The initial motion representation is further 
subdivided to build separate representations of global and local facial motion. All three 
streams, or channels, are further processed in parallel by hierarchical stages of alternating 
S- and C-fi ltering stepsand fi nally combined into a single feature vector which serves as 
input to the successive classifi cation stage.

Figure 8  demonstrates the capability of the approach to analyze 
differential features in non-verbal communication represented in 
segregated channels of visual motion information. In the case shown, 
the subject moves the head to point out disagreement or even disgust. 
This expressive communicative feature is encoded in the global 
affine flow pattern showing head motion to the right (color coded in 
accordance to the color map in Figure 8, right). The local motion activity 
overall depicts a brief moment in which the person opens her eyes 
(upward motion of eye lids (color code)) and also the chin region 
moves left-downwards while closing the mouth. Both motion features 
are now available to feed forward into the emotion classifier network 
for analyzing the motion related non-verbal communication behavior. 
Notice that in the residual flow pattern overall motion is reduced and 
solely local motion that is caused by facial expression remains (in the 
shown example caused by eye-, mouth- and cheek-movement).
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(Color image of this fi gure appears in the color plate section at the end of the book.) 



3.2.3 Physiological Features

The physiological signals were acquired using a NEXUS-32 polygraph, 
a flexible 32 channel monitoring system. Three physiological channels 
were recorded: the electromyogram (EMG) of the corrugator supercilii 
and zygomaticus major, and the skin conductance (SCL). 

To measure the SCL, two electrodes of the sensor are positioned 
on the index finger and the ring finger. Since the sweat glands are 
innervated exclusively sympathetically, i.e. without influence of 
the parasympathetic nervous system, the electrodermal activity is 
considered a good indicator of the “inner” tension of a person. This 
aspect can be reproduced particularly impressively by the observation 
of a rapid increase in skin conductance within one to three seconds due 
to a simple stress stimulus (e.g. deep breathing, emotional excitement 
or mental activity).

Electrical muscle activity is also an indicator of general psycho-
physiological arousal, as increased muscle tone is associated with 
increasing activity of the sympathetic nervous system, while a 
decrease in somatomotor activity is associated with predominantly 
parasympathetic arousal. We used two channel EMGs for corrugator 
and zygomaticus muscles. EMG responses over facial muscle regions 
like corrugator supercilii, which draws the brow downward and 
medial ward to form a frown, and zygomaticus major, which elevates 

Figure 8. Segregation of motion into separate channels of global and local motion. Four small 
images, in reading order: A still image from the input sequence (input), localized eye-nose-
mouth regions (facial regions of interest), optical fl ow calculated between two successive 
frames (unmodifi ed fl ow) and estimation of the affi ne fl ow transformation parameters 
representing the global fl ow (affi ne fl ow).Right image: The residual, or local, fl ow is calculated 
by subtracting the affi ne fl ow from the unmodifi ed fl ow, which reduces the overall motion 
energy. Residual fl ow caused by facial expressionremains (in theexample caused by eye-, 
mouth- and cheek-movement).
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the corner of the mouth superiorly and posteriorly to produce a 
smile, can effectively discriminate valance (pleasure) and intensity of 
emotional states.

In general, a slow low- or band-pass fi lter is applied together with 
a linear piecewise detrending of the time series at a 10-s basis. From 
the subject’s respiration, the following features (Boiten et al., 1994) are 
computed (low-pass fi ltered at 0.15 Hz): mean and standard deviation 
of the fi rst derivatives (10-s time window), breathing volume, mean and 
standard deviation of breathe intervals and Poincaré plots (30-s time 
window each). The EMG signals were used to compute the following 
features (band-pass fi ltered at 20–120 Hz, piecewise linear detrend): 
mean of fi rst and second derivatives (5-s time window) (Picard, 2003) 
and power spectrum density estimation (15-s time window) (Welch, 
1967). The following features are extracted from the skin conductance 
(SCL) (low-pass fi ltered at 0.2 Hz): mean and standard deviation of 
fi rst and second derivative (5-s time window).

3.3 Statistical evaluation

In this section, the statistical evaluation of the architecture is described 
for the mentioned data. All reported results originate from leave one 
subject out experiments.

3.3.1 EmoRec II

Classification of Spoken Utterances
The MFCC features have been calculated using 40-ms windows and 
were averaged to form 200-ms blocks such that all features have 
a uniform alignment. The three available features were separately 
classified using a SVM with an RBF kernel function and a probabilistic 
output function. For the individual features, accuracies from 52.5% to 
57.9% were accomplished. Furthermore, these results were combined 
using the average of the confidence values and a temporal fusion of 
10 s was conducted. This resulted in an accuracy of 55.4% (compare 
Table 1).

Classification of Facial Expressions
We classified the facial expressions using a multivariate Gaussian. 
In order to render a stable classification, a bagging procedure was 
conducted and a reject option was implemented: hereby 99% of the test 
frames were rejected with respect to the confidence of the classifier. 
An accuracy of 54.5% was achieved and only 52.3% without reject 
option (see Table 1).



Classification of Biophysiological Signals
The described features were partitioned into different sets defined by 
the feature type and window size. This results in four different feature 
sets. Each of the sets was classified by a perceptron using bagging. 
Furthermore, a reject option of 80% is used. The setting results in 
accuracies ranging from 69.5% to 50.2%. Without reject option, the 
accuracies were lower.

These intermediate results were combined based on a new 
superordinate time window of 60 s with an offset of 30 s: first the 
confidences of the individual channels are averaged followed by the 
combination of the channels, resulting in accuracies of 59.7% (55.6% 
without reject; compare Table 1).

Multi-modal Combination
The intermediate results of the unimodal classifiers are combined 
to obtain the final class membership. The final time granularity was 
set to 60 s to evaluate all combinations of modalities. If no decision 
can be made (e.g. due to rejection of samples), the overall window is 
rejected. The weights for the classifiers have been chosen equally for 
all classifier combinations. An additional study, putting a weighting 
with focus on audio and physiology according to the respective 
performance, was conducted. The results are shown in Table 2 and vary 
around an accuracy of 60%. The highest accuracy is achieved using 
solely audio and video. Generally, the standard deviations are high. 
When all available sources are combined, the mean accuracy slightly 
drops, but on the other hand, the standard deviation decreases. Further 
details can be found in Schels et al. (2012).

Table 1. Accuracy of each unimodal classifi er. Results in percent with standard deviation.

Feature Accuracy Accuracy (reject)

MFCC 40 ms 57.1% (2.4%) n/a

MFCC 200 ms 57.9% (2.1%) n/a

ModSpec 52.5% (2.2%) n/a

Fusion of Audio channel 55.4% (4.6%) n/a

EMG (5 s) 56.5% (10.7%) 69.5% (14.0%)

EMG (20 s) 50.2% (11.0%) 52.4% (24.6%)

SCL (5 s) 52.8% (4.5%) 44.1% (3.4%)

Respiration (20 s) 52.6% (8.4%) 44.6% (17.0%)

Fusion of physiology channel 55.6% (14.5%) 59.7% (13.0%)

Facial Expression 52.3% (4.4%) 54.5% (4.5%)
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3.3.2 AVEC 2011 Data Collection
For each label dimension and for each audio feature, a bag of 
hidden Markov models (HMMs) have been trained (Breimann, 1996; 
Rabiner, 1989). The hidden states and the number of mixture 
components of the HMM have been optimized using a parameter 
search, resulting in the selection of three hidden states and two 
mixture components in the Gaussian mixture model (GMM) having 
full covariance matrices. 

The evaluation of the optimization process further inferred that 
some features appear to be inappropriate to detect certain labels. It 
turned out that only the label arousal can draw information from all 
features, expectancy and power performed better using only the energy, 
fundamental frequency and the MFCC features. The label valance 
favored only the MFCC features. For each label, the log-likelihoods 
of every HMM, trained on the features, are summed. To obtain more 
robust models, we decided to additionally use five times as many 
models per class and summed the outcome as well.

Furthermore, the assumption was made that the labels are changing 
only slowly over time. We therefore conducted the classification on 
turn basis by collecting the detections within one turn and multiplied 
the likelihoods to obtain more robust detections. A schema visualizing 
the applied fusion architecture is shown in Figure 9. The results of 
this approach are reported in Table 3.

Within the video challenge, the n-SVM was employed as base 
classifier (Schölkopf et al., 2000). The implementation was taken from 
the well-known LibSVM repository. We concatenated 300 form and 300 
motion features and used them to train a n-SVM using a linear kernel 
and probabilistic outputs according to Platt (1999). Due to memory 
constraints, only 10.000 randomly drawn samples were used.

Again a parameter search was applied to obtain suitable parameters, 
resulting in setting n = 0.3 for arousal and power and n = 0.7 for 
expectancy and valence. Based on the results of all label dimensions, 

Table 2. Accuracies of every multi-modal combination. Results in percent with standard 
deviation.

Combination Accuracy

Audio (1) + Video (1) 62.0% (15%)

Video (1) + Physiology (1) 59.7% (13.4%)

Audio (1) + Physiology (1) 60.2% (9.3%)

Video (1) + Audio (1) + Physiology (1) 60.8% (9.1%)

Video (1) + Audio (2) + Physiology (3) 61.5% (12.6%)



an intermediate fusion was conducted using an MLP to obtain the 
final prediction. A schema illustrating the architecture used is shown 
in Figure 10. The results are reported in Table 3.

Considering the audiovisual challenge, we used the same approach 
for each modality as described in the earlier sections but omitted the 
last layer in which the class decision was performed. The probabilistic 
outputs of the video stream are collected using averaging and 
multiplication with a subsequent normalization such that the decisions 
are on word level. The HMM log-likelihoods of the label dimensions 
are transformed and normalized such that they are ranging between 
zero and one.

By concatenating the results of all label dimensions, a new 
12-dimensional feature vector is obtained. The new features are then 
used to train an intermediate fusion layer based on an MLP.

Like in the audio challenge, the final decision is done on a turn 
basis by collecting the outputs within one turn and fusing them using 

Figure 9. Architecture of the audio classifi er. For each label, a bag of HMMs have been 
trained on selected feature sets.

Multi-Modal Classifi er-Fusion for the Recognition of Emotions 91

Table 3. Classifi cation results of the AVEC 2011 development data set. The weighted 
accuracy (WA) corresponds to the correctly detected samples divided by the total 
number of samples. The unweighted accuracy (UA) is given by the averaged recall 
of the two classes.

Arousal Expectancy Power Valence

WA UA WA UA WA UA WA UA

Audio 66.9 67.5 62.9 58.5 63.2 58.4 65.7 63.3

Visual 58.2 53.5 53.5 53.2 53.7 53.8 53.2 49.8

Audio/Visual 69.3 70.6 61.7 60.1 61.3 59.1 68.8 66.4
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Figure 10. For the video-based classifi cation, form and motion features are concatenated 
and used to train n-SVM for each label dimension. The outputs of the classifi ers are used 
to train an intermediate fusion layer realized by MLPs.

Figure 11. Overall architecture of the audiovisual classifier system, the outputs of all 
modalities are integrated on word level and used to train a multilayer neural network for 
each label dimension.

multiplication. Figure 11 shows the audiovisual classifier system, while 
the results are given in Table 3. 

4. Conclusion and Future Work

Classifying the emotion is generally a difficult task when leaping from 
overacted data to realistic human-computer interaction. In this study, 
the problem was investigated by combining different modalities. The 
result of the evaluation shows that the usage of different modalities 



can reduce the testing error. On the other hand, the variances of the 
classification are relatively high. 

Rejecting samples when classifying such kind of data turns out to 
be a sound approach leading to more robust results, especially when 
the distribution of the classes in the data is heavily overlapping. In 
future work, it could be promising to implement an iterative classifier 
training procedure, where the training data can be rejected.

The results presented in Tables 1 to 3 are preliminary and must 
be further evaluated in several directions: 

 1. Feature extraction techniques as described in the previous 
sections have been successfully applied to the recognition of 
Ekman’s six basic emotions for benchmark data sets consisting 
of acted emotional data. In these data sets, emotions shown 
by the actors are usually over-expressed and different from 
the emotional states that can be observed in the AVEC data set. 

 2. The classifier architecture is based on the so-called late fusion 
paradigm. This is a widely used fusion scheme that can be 
implemented easily just by integrating results of the pre-trained 
classifier ensemble by fixed or trainable fusion mappings, but 
more complex spatio-temporal patterns on an intermediate 
feature level cannot be modeled by such decision level fusion 
scheme. 

 3. The emotional states of the AVEC2011 data set are encoded by crisp 
binary labels, but human annotators have usually problems to 
assign a confi dent crisp label to an emotional scene (e.g. single 
spoken word or a few video frames) or disagree, and thus dealing 
with fuzzy labels or labels together with a confidence value 
during annotation and classifi er training phase could improve 
the overall recognition performance.
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