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Abstract

NPCEditor is a system for building a natural language
processing component for virtual humans capable of en-
gaging a user in spoken dialog on a limited domain.
It uses statistical language classification technology for
mapping from a user’s text input to system responses.
NPCEditor provides a user-friendly editor for creating
effective virtual humans quickly. It has been deployed
as a part of various virtual human systems in several ap-
plications.

1. Virtual Humans

Imagine talking to a computer system that looks and acts al-
most human—it converses, it understands, it can reason, and
exhibit emotion. As an example, recall such computer char-
acters created by Hollywood moviemakers as the librarian in
Time Machine, the holographic professor in I Robot, and of
course, the holodeck characters in numerous Star Trek: The
Next Generation episodes. Once the realm of science fiction,
limited, domain-specific versions of these kinds of charac-
ters are now achievable using AI and computer graphics
technology. Such simulations, called virtual humans (VH),
open up new horizons for entertainment, teaching, and learn-
ing. Virtual humans can serve as colleagues or adversaries in
training simulations helping a student to study language and
culture (Johnson, Vilhjalmsson, and Marsella 2005) or hone
her negotiation skills (Traum et al. 2005). They can help to
train physicians in treating psychological disorders (Kenny,
Parsons, and Rizzo 2009). They work as virtual guides (Jan
et al. 2009), museum docents (Swartout et al. 2010), or even
engage the user in a gunfight (Hartholt et al. 2009). Also see
the insert box.

A typical VH system is rather complex and may consist
of several components including speech recognition, ges-
ture recognition, language understanding, dialogue manage-
ment, emotion reasoning, planning, inference, verbal and
non-verbal output, body simulation, realistic graphics, and
mixed reality displays (Gratch et al. 2002). So, before a
virtual character is ready to interact, it has to be designed
and VH system components have to be assembled and de-
ployed. Therefore, we distinguish four types of VH technol-
ogy users:
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Designers author the VH system using available tools.
They create scenarios, develop the look and behavior of
the agents, including the interactive dialogue behavior.

Administrators deploy the system, maintain it in working
order so that others can interact and view the VHs.

Interactors talk to the VH. There are really two types of
interactors, demoers who work with the Administrators
and are familiar with the system, and players who are not.
Players are the primary target of the interaction. In the
case of Demoers, it is the audience that is the primary tar-
get of interaction and demoers are presenting the system
to the audience.

Audience members observe others interact with the virtual
human. As said above, when interactors are demoers then
the audience is the primary target of the interaction, how-
ever there may be an audience member acting as sec-
ondary target even when the interactors are players.
For virtual human systems to become widespread there

are two main requirements. First, the advances in technol-
ogy must reach the level of reliability and efficiency that
makes the interactions with virtual humans seamless and re-
alistic. Second, this technology has to be implemented and
packaged in software that is accessible to the training or en-
tertainment system designers who are not technical experts
in the underlying AI technology.

In this paper we focus on the natural language process-
ing (NLP) parts of a virtual human system, including nat-
ural language understanding and generation, and dialogue
management. We describe NPCEditor1—an NLP system
that supports all of the above user types. At the core of the
system is a statistical text classification algorithm developed
specifically for the task of understanding the interactor’s lan-
guage. In the paper we summarize the algorithm and some
experimental results that show its effectiveness. NPCEditor
packages the text classifier in a GUI-based application that
allows creation of useful VH systems with minimal train-
ing. In the paper we outline the system design and character
creation and deployment process. More details on the user
interface for the technology and how it is used can be found
elsewhere (Leuski and Traum 2010). NPCEditor has been
used extensively in a number of projects both internally in

1NPC stands for Non-Player Character



Twins Ada and Grace, the Museum Guides

A well-informed guide or interpreter can have a tremendous
influence on the quality of a museum visitors experience. The
best guides not only provide information but also engage the
visitor in an interactive exchange that can lead to deeper un-
derstanding and promote excitement about museum content.
Unfortunately, human museum guides are often in short sup-
ply. Many studies have shown that people react to virtual
humans in much the same way that they react to real peo-
ple (Reeves and Nass 1996; Gratch et al. 2007). Could vir-
tual humans be used to create museum guides that can engage
visitors with museum content?

Ada and Grace are two virtual museum guides that we re-
cently deployed at the Boston Museum of Science as a part of
the InterFaces exhibit (Swartout et al. 2010). They are life-
sized, photo-realistic characters that interact in natural lan-
guage, complete with gestures, and other forms of non-verbal
communication. Ada and Grace can answer questions on a
number of topics, including their personal background, gen-
eral facts about virtual human technology, and the exhibits
on computers, robotics, and communication in the Cahners
ComputerPlace exhibit hall of the museum.

Visitor: good morning

Ada: Hello!

Visitor: what are your names

Ada: My name’s Ada.

Grace: And I’m Grace. We’re your Virtual Museum
Guides. With your help, we can suggest exhibits
that will get you thinking! Or answer questions
about things you may have seen here.

Ada: What do you want to learn about?

Visitor: what can you tell me about?

Grace: Let’s see. What are you interested in? Do you
want to learn more about computers, robots, cell
phones, hands-on activities...

Visitor: I’m interested in robots

Grace: Here at ComputerPlace you can command a
robot to do a Mars mission, and program an-
other one at Robot Park. You can remote con-
trol a robot soldier, or figure out how robots
climbs walls. You can even make a robotic dog
dance, or use one to navigate a virtual world.
And don’t forget the one that remembers meet-
ing you. What do you want to do first?

Visitor: where is the mars yard

Ada: The Mars Yard is just to your right, and includes
Mission Control.

Visitor: can we colonize mars

Ada: Mars isn’t exactly paradise. It has little oxygen
and no food for humans to survive. It can get
extremely cold and has harmful radiation. But,
Grace and I, being computers, we can visit just
fine.

Visitor: where do you go to school

Ada: Even though we can’t go to school, we are the
product of a lot of education.

Grace: The museum gathered up what they wanted to us
to know about computer place and sent it over
to the University of Southern California. There
the Institute for Creative Technologies added V
Human knowledge to the stack, then uploaded it
all into our database.

Ada: Not exactly a college education, but scientists
from both Boston and Southern California have
loaned us theirs, until we figure out how to join
all of you in the classroom.



our group and externally by other teams at the institute and
outside organizations. We describe some of the VH systems
that use NPCEditor and have been deployed at training lo-
cations, shows, virtual worlds, and museums.

2. Scientific Contribution: Cross-Language

Retrieval for Dialogue Response Selection

There are many NLP technologies that might be applied to
virtual human language interaction. The choice depends in
large part on the required capabilities: Does the VH have a
firm agenda or is it more flexible? Does it lead the interac-
tion or react? Does it need to perform deep inference on the
meaning of what is said, or can it stay close to the surface?
Will the responses need to be computed on the fly based on
current context, or can they be pre-computed or authored?

NPCEditor has been used primarily to construct question-
answering characters. These characters play the role of
interviewees and respond to questions in character. There
are many kinds of interviews (doctor-patient, police-suspect,
reporter-witness, information seeker-expert, and so forth)
and thus question-answering characters have broad applica-
bility. For example, imagine that you are playing the role
of a detective in the game of “Clue.”2 An owner of a large
house has been murdered and you interrogate the guests of
the house. The house guests and witnesses are played by vir-
tual humans. Each character should be capable of answering
a number of questions on a limited set of topics that are po-
tentially relevant to the event and it should be able to deflect
all other questions.

A question answering virtual human is characterized by
a collection of responses relevant to a particular topic. This
approach gives complete control over the virtual persona’s
knowledge and expressions to the scriptwriter who creates
the responses. It allows the writer to specify the character of
the virtual persona, what information it can deliver and the
form of that delivery. When an interactor comes up to the
virtual character and asks it a question, the system driving
the character analyzes the interactor’s question and selects
the appropriate response from the collection.

This approach also simplifies the overall VH system: a
bare-bones system would consist of an ASR module for
speech processing, the NPCEditor system to process the in-
teractor’s utterances and select the character response, and a
rendering engine, capable of presenting the animated char-
acter on the screen and playing back prerecorded responses.

Automatic question answering has been studied exten-
sively in recent years. It is generally defined as an informa-
tion retrieval (IR) problem where a user places her request in
a form of a question and expects a relevant and succinct re-
sponse, e.g. “How tall is mount Everest?”—“Mount Everest
is 29029 feet tall.” One example of such a system is START
from MIT (Katz 1988). It uses well-defined information
databases and carefully crafted question parsing rules to find
the required answer. Web-based question answering systems
and systems studied in the context of the question-answering
track at the Text REtrieval Conference (TREC) attempt to

2“Clue” is official trademark of Hasbro Inc.

answer user’s questions by finding and parsing relevant para-
graphs in large text collections (Voorhees 2003).

In contrast to the fact-based question answering scenario
where the goal is to provide the most relevant answer, we fo-
cus on the answer’s appropriateness. In our example about
an investigation, an evasive, misleading, or an “honestly”
wrong answer from a witness character would be appropri-
ate but might not be relevant. Alternatively, different char-
acters may have different knowledge about the event and re-
spond differently to the same question. We try to highlight
that distinction by talking about question-answering char-
acters as opposed to question-answering systems or agents.
Another difference is that question-answering systems rely
on the question text to be lexically and grammatically cor-
rect and well-formed, while our system is primarily used
to reply to spontaneous spoken language, which is much
more likely to include disfluencies and non-standard con-
structions. A third difference is that the input for our system
comes from an automatic speech recognition (ASR) mod-
ule that sometimes introduces errors into the transcription.
These errors can affect the interpretation performance sig-
nificantly. A virtual human should be robust to both disflu-
encies in conversational English and to the errors introduced
by the ASR module.

Similar requirements exist for automatic phone reserva-
tion and call routing systems (Gorin, Riccardi, and Wright
1997). For example, Chu-Carroll and Carpenter describe a
system that answers a phone call, asks a caller some ques-
tions, and routes the call to the appropriate destination (Chu-
Carroll and Carpenter 1999). The system uses a vector-
based text classification approach to analyze the caller’s re-
sponses and map them to the destinations in the organiza-
tion. Our NPCEditor system maps text of the question di-
rectly to texts of the answers and uses a novel text classifi-
cation approach based on statistical language modeling that
significantly outperforms vector-based approaches (Leuski
et al. 2006).

Text classification has been studied for several decades,
and numerous approaches exist (Lewis et al. 1996). It is
the task of assigning pieces of text to one or more classes
based on the training data. The traditional text classifica-
tion approach for our task is to define each answer as a class
and define the corresponding questions as the training text
pieces. Generally, a text string is represented as a feature
vector where individual words serve as feature elements.
When a new question arrives, it is tokenized, converted into
a feature vector representation, compared to the vectors of
the known questions, and the answer corresponding to the
best matching group of questions is returned. The disadvan-
tage of this approach is that it completely ignores the content
of an answer. The main difference between our text classi-
fication and a traditional text classification approach is that
we match a user’s question to known answers and not to
the known questions. Our experiments show that taking the
answer text into account during classification improves the
effectiveness of the classification significantly.

Let us explain the theory behind our classification ap-
proach. Our task can be described as follows: given a
question about a particular topic, find an answer about the



same topic. The key achievement of IR is an ability to
match two strings of text based on content similarity. That
is how a search system works—a text representation is com-
puted for documents and a query, a matching algorithm is
applied, and the best match is returned to the person who
entered the query. One technique for text content represen-
tation that has recently gained wide usage in IR (Ponte and
Croft 1997) uses the notion of a statistical language model: a
probability distribution P (W ) over all possible word strings
W = w1, ..., wn. Here is how it works: a content topic can
be described by different text strings, some are more likely
to be used than others. For example, the prhase “green and
round” is much more likely to be used when describing an
apple than the phrase “blue and square.” So if we can de-
fine the probability of observing each possible text string in
connection with a given topic, we will have a very detailed
representation for the topic. It is reasonable to assume that
language models of similar topics will also be similar. If
we can estimate a language model from the question string
and another language model for an answer string, we can
compare the content of the question and the answer by com-
paring the corresponding language models.

Before we describe the details of the method, we have
to make an observation: We cannot compare question and
answer language models directly because the former is the
probability distribution over questions and the latter is the
probability over answers. These distributions are likely to be
different even when matching to the same topic. For exam-
ple, due to grammar rules, some strings (e.g. strings contain-
ing “wh” words) are much more likely to appear as questions
than answers. Moreover questions and answers are “gener-
ated” by different entities—the interactor and the character
(or, the scriptwriter) who may have different styles of ex-
pression reflected in the bias of the language model. These
differences allow us to talk about questions and answers as
samples from two different languages.

Here is where some training data can be useful. If for
each answer in a character database we have some ques-
tions that can be answered by that answer, we can train the
system to “translate” from the language of questions to the
language of answers. When we see a new question Q we
use that training data to estimate the language model of the
answer to the question PQ(A) and then compare that lan-
guage model to language models of the character answers
and return the best match. This approach is very similar to
the cross-language information retrieval task, e.g., where a
search system has to find Chinese documents in response to
an English query (Grefenstette 1998). The training data that
pairs sample questions with the answers serves as “parallel
corpora” and the translation rules are derived implicitly from
that mapping.

There are different ways to compare two probability dis-
tributions. NPCEditor uses the Kullback-Leibler (KL) di-
vergence D(PQ(A)||P (A)) defined as

D(PQ(A)||P (A)) =
�

A
PQ(A) log

PQ(A)
P (A)

(1)

which can be interpreted as the relative entropy between two
distributions. Note that the Kullback-Leibler divergence is a

dissimilarity measure, we use −D(PQ(A)||P (A)) to rank
the answers.

Normally a topic is represented by a single text string (W).
It is impossible to determine the language model from such
a sample explicitly. The goal is to estimate the probabil-
ity of such a string, P (W ), as accurately as possible. The
problem of estimating the joint probability P (w1, ..., wn)
of several words occurring together to form a string of text
W has received a lot of attention in recent years among re-
searchers in the IR community. The main challenge is to
take into account the interdependencies that exist among the
individual words while still making the computation feasi-
ble. Several different methods were suggested starting from
the most trivial technique where all words are assumed to be
distributed identically and independently from each other—
the unigram model:

P (w1, ..., wn) =
n�

i=1

P (wi) (2)

Other approaches include Probabilistic Latent Semantic In-
dexing (PLSI) (Hofmann 1999) and Latent Dirichlet Allo-
cation (LDA) (Blei et al. 2003), where the authors model
text collections by a finite set of k topics and the overall text
probability is viewed as a mixture of the individual topic
language models.

Lavrenko (Lavrenko 2004) suggests a more general ap-
proach where the word interdependencies are defined by an
unknown vector parameter θ and the words are taken as
conditionally independent. This step allows him to relax
the independence assumption of the unigram model so that
the probability distribution depends on the co-occurrence of
words. Lavrenko treats the vector θ as a random variable
and suggests several techniques for estimating its probabil-
ity distribution from experimental data. He calls it a Rele-
vance Model approach and shows how PLSI and LDA can
be viewed as special cases of the approach. His experi-
ments and studies conducted by other researches (e.g., (Wei
and Croft 2006)) established the relevance model approach
as one of the top performing techniques in information re-
trieval.

While Lavrenko suggests several methods for estimating
the probability distribution of vector θ, one of these tech-
niques is most often used in the experiments. Its advantages
are the small number of parameters to estimate (i.e., one)
and relative computational efficiency. Specifically, given a
collection of known questions Q, the language model of a
new question Q = q1, ..., qn is defined as follows:

P (q1, ..., qn) =
1
|Q|

�

s∈Q

n�

i=1

ps(qi) (3)

where |Q| is the number of questions in the database and
ps(qi) is the probability of observing word qi in string s.
There are several ways of estimating the latter value. We
use Maximum Likelihood Estimation (MLE) with Jelinek-
Mercer smoothing (Bahl, Jelinek, and Mercer 1990):

ps(q) ∼= πs(q) = λπ
#s(q)
|s| + (1− λπ)

�
s #s(q)�

s |s|
(4)



#s(q) is the number of times word q appears in string s,
|s| is the number of words in string s, and λπ is a tunable
parameter that can be determined from the training data.

An astute reader may notice that equation 3 is similar to
the unigram model: it is an average of unigram models of
individual questions in the training data. It allows us to take
into account the word co-occurrence in the training data and
incorporate this into model estimation.

Equation 3 assumes that all words qi come from the same
vocabulary. We can show that in the case of two different vo-
cabularies, the conditional probability P (a|Q) of observing
a word a in answer language given an interactor’s utterance
Q can be estimated as:

P (a|Q) =
P (a, q1, ..., qn)
P (q1, ..., qn)

(5)

=
�

s πAs(a)
�m

i=1 πQs(qi)�
s

�m
i=1 πQs(qi)

The matching criteria in Equation 1 can be written as

D(PQ(A)||P (A)) =
�

a

P (a|Q) log
P (a|Q)
πA(a)

(6)

In summary, given a character database {Qs,As} and
a question Q, we use Equations 3, 4, and 5 to compute
Equation 6 for each answer A in the database and re-
turn the answer with the highest value −D(PQ(A)||P (A)).
See (Leuski et al. 2006; Leuski and Traum 2008) for more
details.

The final parameter is the classification threshold on the
KL-divergence value: only answers that score above the
threshold value are returned from the classifier. The thresh-
old is determined by tuning the classifier on a randomly cho-
sen subset of the training data.

Non-lexical Features

So far we have described how a textual answer is selected
in response to a textual question. There are several other
cases in which the NPCEditor uses the same classification
algorithm to go beyond this scenario. First, in some appli-
cations we may use the cross-language information retrieval
approach to convert between text and a semantic language.
In some systems, we use the NPCEditor to recognize fea-
tures such as speech acts or impact on interpersonal vari-
ables (Roque and Traum 2007), while in other systems, the
NPCEditor can be used to interpret the meaning of an ut-
terance in a semantic representation, rather than selecting
the answer to respond (Gandhe et al. 2008). Likewise, the
NPCEditor can be used to translate a semantic representa-
tion of a response into text (Leuski and Traum 2008).

In some applications additional context information might
be available as well as text. For example, in the Gunslinger
system (Hartholt et al. 2009) the interactor meets with three
different virtual humans. The system uses NPCEditor, an
ASR module, and a vision component, which (among other
things) detects where the interactor is looking. NPCEditor
annotates the ASR output with a token corresponding to the
interactor’s gaze target. The classifier treats such annota-
tions as words in a piece of text associated with the question

but separate from the actual question text. Thus a question
becomes a multi-field data structure. One of these fields con-
tains the original text, the other fields contain label tokens.
These label tokens have special vocabulary different from
the question text vocabulary, so a separate language model
is estimated for each field. The question-answer similarity
score becomes a weighted sum of similarities between the
answer language model and the language models for each
field in the question data structure:

D(PQ(A)||P (A)) =
�

i

αi

�

w∈Vi

P (w|Qi) log
P (w|Qi)

πAi(w)
(7)

here Qi and Ai are the ith field of the question and the
answer, the outer summation goes over every field of in-
terest, while the inner summation iterates over vocabulary
for the ith field. The parameters αi allow us to vary the
importance of different fields and can be determined from
the training data. Thus NPCEditor can be trained to re-
spond differently to the same question,—e.g., “What is your
name?”,—depending on who is the interactor is looking at.
NPCEditor’s user interface allows the designer to define ar-
bitrary annotation classes or categories and specify some of
these categories as annotations to be used in classification.

Dialogue Management

The text classification algorithm returns a ranked list of ap-
propriate answers for a given question. This list can be
empty when the classifier believes that no known answer
is appropriate to the question. Alternatively, this list may
contain multiple answers while only one answer has to be
returned. The dialogue manager is tasked with choosing the
one response that is returned back to the user. NPCEditor
contains a rule-based dialogue manager that interacts with
the rest of the system via a simplified API:
• The classifier selects multiple answers: the dialogue man-

ager returns the least recently used answer, breaking ties
by the classifier score.

• The classifier selects no answer: the classifier believes
that there is no appropriate response in the character
database for the user’s question. We call such a question
“off-topic”. The dialogue manager returns one of the an-
swers that the designer specifies as an “off-topic” answer,
e.g., “Say this again?” or “I do not know anything about
it.”

• The system returns several off-topic responses in a row:
the dialogue manager tries to bring the user back to do-
main of conversation by prompting her with a question,
e.g., “Why don’t you ask me about my technology?” We
encourage the character designers to add a variety of off-
topic and prompt utterances to the character database.
For simple question-answering characters, variations of

the above approach are sufficient to generate useful behav-
ior. However, this approach is less suited to dialogues where
the decision of what to say is based more on context and/or
character/scenario goals than reactions to a new question.
NPCEditor can also support more complex dialogue phe-
nomena, as long as the basic paradigm of selecting pre-
authored outputs can be maintained. This “advanced” func-
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Figure 1: a) NPCEditor system design. b) Character editor screen.

tioning is still rather primitive, however, requiring the de-
signer to program the dialogue manager rather than provid-
ing graphical support and easy to follow design guidelines
(see Section 6 for planned future directions).

An advanced character designer can create her own re-
sponse handling strategies using the Groovy scripting lan-
guage3. For example, in the Gunslinger project the inter-
actor’s experience follows a predetermined script that goes
through several states. There is a greeting and smalltalk
state, where the interactor meets two virtual characters and
gets to know them. It is followed by another state, where
the characters confide their problem to the interactor. It is
followed by another state when the third character comes on
stage, and so on. The interactor’s behavior and how she re-
sponds to the characters determines the story development,
the ordering of states, and the topic of conversations. For
each dialogue state the Gunslinger designers specify a sub-
set of the character lines that are appropriate for that state.
They train a text classifier for each state and switch between
the classifiers as the interactor’s experience transitions be-
tween states.

The dialogue manager also keeps a model of the interactor
and updates it as the interaction progresses. For example, at
the beginning of the experience the characters are polite to
the interactor and would pause to listen when the interactor
tries to speak. Later on, if the interactor says something that
upsets them, the characters may become more hostile and
hush the interactor if she tries to interrupt them.

3. Practical Contribution: System for

Character Development and Deployment

While the cross-language information retrieval models de-
scribed in the previous section have been shown to be ef-

3http://groovy.codehaus.org/

fective (see Section 4), it can still be daunting for a system
developer to master the equations, create the requisite train-
ing data, and train a classifier. It may also be a challenge
for a system administrator to connect this module to other
parts of a VH system, so that interactors can successfully
communicate with the virtual human. One of the goals of
NPCEditor is to preserve the effectiveness of the technical
approach while hiding the complexity from the users. To this
end, NPCEditor creates a unified development and run-time
interface, that allows easy character authoring and deploy-
ment. To create a character, a designer only has to populate
the language database and push a single button to train the
classifier. To integrate the module into a VH system an ad-
ministrator has to fill out a form as simple as an account
form in an email client.

NPCEditor is written in Java and should run on any plat-
form that supports Java 6. It has been extensively tested on
Microsoft Windows and Mac OS X. The initial version was
developed in 2004-2005 and subsequently maintained and
extended by the first author.

Figure 1a shows the block diagram of the NPCEditor sys-
tem. The character database stores information about the
virtual characters. A character designer can store multi-
ple characters in the same database so the interactor(s) may
have a conversation with several virtual humans at the same
time. Each virtual human character is associated with a set
of responses it can produce. The designer enters sample
questions and links them to the responses. The classifier
trainer component generates classifiers using the methods
described in Section 2 that map from the interactor’s ques-
tions to the character’s responses. The designer also selects
one of the provided dialogue manager components. A dia-
logue manager is a rule-based subsystem that uses the clas-
sification results and the dialogue history to select the actual
response. Finally, the character designer sets up the charac-



ter server by registering network identities for each character
with the communication module and enabling conversation
logging. The character server monitors the network, ac-
cepts incoming messages, processes the requests, and sends
out character responses. Multiple people can interact with
the virtual human at the same time. For this purpose the
server maintains a list of conversations.

The overall architecture is modular and extensible. Sev-
eral parts of the NPCEditor functionality can be extended
via external plugins. These include supported network pro-
tocols, dialogue management, text pre-processing for classi-
fication, classification optimization function, and supported
file formats.

NPCEditor provides monitoring and control functionality
over the individual system components using a GUI charac-
ter editor. An NPCEditor window consists of several tabbed
panels each corresponding to a particular function. These
panels are listed below, along with how they are used by the
user classes defined in Section 1.

1. Utterances: a character designer specifies answers and
sample questions, assigns them to individual characters,
and links them to each other.

2. Settings: a designer creates and modifies annotation cat-
egories and labels, assigns colors to labels, and specifies
whether a category should be used as a non-lexical feature
for classification.

3. People: a designer specifies available characters and edits
the character properties. An administrator uses the panel
to specify how the characters are connected to the net-
work.

4. Classifier: a designer has to train the classifier param-
eters after creating or modifying the character language
database. The training process is as simple as pressing a
single button on the Classifier panel. However the panel
also provides some advanced classifier tuning capabilities
for expert designers.

5. Conversations: an administrator can monitor the existing
conversations.

6. Chat: an interactor can pose arbitrary questions to the
characters in the database and observe how the classifier
ranks the available responses. Also, the audience can see
details of the system performance. An administrator and
designer can debug the characters.

Figure 1b shows an NPCEditor window with the utter-
ance editor panel selected. There are two main areas here:
the question editor is on left and the answer editor is on the
right. Both the question and the answer editors follow the
master-detail interface pattern: each lists all the utterances
in a table and provides controls for editing the selected ut-
terance. Specifically, a developer can define the utterance
text, speaker, assign a text-based identifier and annotation
labels. To link a question to an answer, the developer selects
the question and the answer in the corresponding lists and
assigns the link value using the popup menu at the bottom
of the window. More details about the interface and uses
may be found in (Leuski and Traum 2010).

4. Evaluation

We have evaluated NPCEditor in a number of off-line and
on-line experiments. We have tested the classification ac-
curacy, robustness to errors in the classifier input, and user
engagement in interactions with a virtual human. In this
section we summarize some of these experiments. More
details about the experimental setup and the results can be
found elsewhere (Leuski et al. 2006; Artstein et al. 2009;
Leuski and Traum 2008; Kenny, Parsons, and Rizzo 2009).
Evaluations of the performance of characters built using the
NPCEditor are briefly described in Section 5.

Classification Accuracy

In the first set of experiments we have evaluated the classi-
fication accuracy or how often the first answer returned by
the system was appropriate. As the baseline we used a text
classification approach based on Support Vector Machines
(SVM). We represented questions as vectors of term features
and the linked answers defined the question classes. We
tokenized the questions and stemmed the tokens using the
KStem algorithm (Krovetz 1993) in exactly the same way as
we tokenize the text to compute language models. We used a
tf × idf weighting scheme to assign values to the individual
term features (Allan et al. 1998). Finally, we trained a multi-
class SVM (SV Mstruct) classifier with an exponential ker-
nel (Tsochantaridis et al. 2004). We also experimented with
a linear kernel function, various parameter values for the ex-
ponential kernel, and different term weighting schemes. The
reported combination of the kernel and weighting scheme
showed the best classification performance. Such an ap-
proach is well-known in the community and has been shown
to work well in numerous applications (Joachims 1998). We
believe it provides us with a strong baseline.

As the second baseline we used the language model ap-
proach described in Section 2, but we compared questions
to questions instead of comparing them to answers. This is
equivalent to single-language retrieval without the transla-
tion effect of the question-answer mapping. Specifically, in
Equation 5 we use the likelihood over question terms and
sum over all sample questions. Given an input question, this
technique retrieves the most similar sample question, and we
return the answer linked to that question.

To evaluate the systems we used the language database
from the SGT Blackwell virtual human (see Section 5). The
database contains 1,261 questions and 60 answer classes.
We divided the collection of questions into training and test-
ing subsets following the 10-fold cross-validation schema
and calculated the effectiveness of each approach.

accuracy impr. over SVM avg. prec.
SVM 53.13
SLM 57.80 8.78 63.88
CLM 61.99 16.67 65.24

Table 1: Comparison of three different algorithms for an-
swer selection on SGT Blackwell data. Each performance
number is given in percentages.

We use two evaluation metrics to compare the systems’



performance. Firstly, we calculate the classification accu-
racy or how often the first answer returned by the system
was appropriate. Table 1 shows the accuracy numbers for
the two baselines (we call them “SVM” and “SLM”) and
the NPCEditor classification (“CLM”). The NPCEditor clas-
sification approach is 17% more accurate than the SVM
baseline. It is also more accurate than the SLM baseline.
The differences shown are statistical significant by t-test
(p < 0.05).

Secondly, recall that both SLM and CLM methods are
ranking techniques. They order the answers in the database
by their expected appropriateness. Both methods may re-
turn several candidate answers depending on the threshold
value. Thus, an interactor may get a different response if
she repeats the question (if there is more than one good an-
swer). We want to measure the quality of the ranked list of
candidate answers. As our second evaluation metric we use
interpolated average precision—a well-known IR measure
that for every appropriate answer in the list of candidates
computes the proportion of appropriate answers among all
preceding answers and averages those values. We show
the average precision numbers for the SLM and CLM runs.
The average precision scores are significantly higher for the
cross-language approach than for the single-language ap-
proach. It indicates that the CLM approach tends to rank ap-
propriate answers above non-appropriate answers more of-
ten than the SLM approach.

We have repeated the experiment on 7 other virtual char-
acters with smaller language databases. We observed that
our system is more effective on problems with more answer
classes.

Classifier Robustness

In the second set of experiments we evaluated the classifier
robustness to input errors. Recall that in a typical VH system
the text input to the classifier comes from an ASR module,
which may contain speech recognition errors. We thus ex-
amined the impact of ASR quality on answer quality. We re-
cruited 20 participants to interview the SGT Blackwell char-
acter. Each participant asked 20 questions. We computed
the Word Error Rate (WER) for each ASR-transcribed ques-
tion. A word error rate is the ratio of the total number of
word errors in a string (substitutions, deletions, and inser-
tions) to the number of words in the correct string. Note that
WER can be greater than 100%. The average WER score
was 37.33%.

We applied the NPCEditor classification approach to both
ASR and human transcribed data and recorded the selected
answers. We asked three human raters to judge the appropri-
ateness of the selected responses using a 1-6 scale (Gandhe
et al. 2004). The Cronbach’s alpha value, measuring the
inter-rater agreement, was above 0.91 indicating high con-
sistency among the judges.

To judge the impact of ASR errors on classification ap-
propriateness, we computed the cumulative average appro-
priateness score (CAA) as a function of WER: for each
WER value t we average the appropriateness scores for all
questions-answer pairs with WER score less than or equal
to t, as shown in equation 8, where p is a question-answer

pair, A(p) is the appropriateness score for p, and E(qp) is
the WER score for the ASR output of a spoken question
qp. CAA(t) is thus the expected value of the appropriateness
score if the WER is at most t.

CAA(t) =
1

|S(t)|
�

p∈S(t)

A(p), S(t) = {p|E(qp) ≤ t} (8)

We computed two sets of CAA(t) values: one using the
appropriateness scores A for ASR-transcribed questions and
the other using the appropriateness score for the human tran-
scribed questions. We examined the differences between
these scores at different values of WER. We observed that
the differences are small and not statistically significant un-
til WER reaches 60%. After that point the CAA score is sig-
nificantly lower on the ASR transcribed data (by t-test with
p < 0.05). We concluded that the classifier performance is
not significantly affected by the input errors if the amount of
error does not exceed 60%.

Interaction Quality

Kenny and his colleagues (Kenny, Parsons, and Rizzo 2009)
study virtual humans for clinician training. They have built
a virtual human using NPCEditor that plays a role of a pa-
tient with a psychiatric problem and they wanted to assess
whether a virtual patient would respond to the clinician in-
terview as a real patient would. They wanted to see if 1)
clinicians could elicit proper responses from questions rel-
evant for an interview from a virtual patient and 2) to eval-
uate psychological variables such as openness and immer-
sion of the participant and believability of the character as
a patient. They have engaged 15 test subjects from a med-
ical school including medical students, psychiatry residents
and fellows. Each subject conducted a 15 minute interview
with the virtual patient trying to diagnose her condition and
filled out a set of questionnaires before and after the inter-
view. The researchers analyzed the data from the interview
transcripts and from the questionnaires and found that the
subjects were generally immersed in the interviews, they de-
scribed the virtual patient character as believable and engag-
ing, and they did ask and received responses covering all
aspects of a typical patient interview. The study showed a
feasibility of using virtual patients for training.

5. Applications

NPCEditor has been used as the language processing com-
ponent for over a dozen virtual humans at ICT (some with
multiple versions), and several dozen elsewhere. Over a
dozen different developers have so far used the system to
create or extend characters. The system has been deployed
and administered in museums, in virtual worlds, at trade
shows and conferences, and in mobile vans by people not
involved in their development. Thousands of people have in-
teracted with these systems, and even more have seen them
as audience to live interactions. In this section we describe
some of the installations, highlighting their unique features.

SGT Blackwell Originally created as a showcase of VH
technology, SGT Blackwell was introduced at the 2004
Army Science Conference. He is a life-size 3D US Army



soldier projected onto a transparent screen in a mixed-reality
environment. Conference attendees acted as audience with
ICT demoers who spoke to SGT Blackwell. The original
domain had 83 responses on different topics covering his
identity, origin, language and animation technology, design
goals, our university, the exhibition setup, and some mis-
cellaneous topics, such as “what time is it?” and “where
can I get my coffee?” After a lot of positive feedback from
the attendees, several subsequent versions were built, using
the NPCEditor. An extended version with additional domain
items was used for demos both at ICT and by the office of
the US Army’s Director for Research and Laboratory Man-
agement, with external administrators and demoers. It was
also selected as a part of the Smithsonian’s National Design
Triennial, Design Life Now exhibit in 2006. The system was
installed at the Cooper-Hewitt Museum in New York from
December 2006 to July 2007 (and later at two other muse-
ums), where SGT Blackwell was administrated by Museum
staff and interacted directly with over 100,000 visitors. Lim-
ited versions of SGT Blackwell were also created specially
for the Director for Research and Laboratory Management
to interact with at the opening and closing of the 2006 Army
Science conference, as well as a cameo appearance with
SGT Star at the 2008 conference. An example of dialogue
with SGT Blackwell can be found in (Leuski et al. 2006).
Preliminary evaluation of Blackwell in the Cooper-Hewitt
can be found in (Robinson et al. 2008).

SGT Star Interactive SGT Star was funded by the US
Army Accessions Command, who wanted a mobile, life-
sized, face to face version of their web character from
goarmy.com4. SGT Star is like SGT Blackwell a life-size
rendering of an Army soldier that answers questions on top-
ics including Army careers, training, education and money
for college5. He can also handle queries about the technol-
ogy behind his development and explain how his creation fits
in with plans for future Army training environments. There
are approximately 320 answers in his repertoire. The origi-
nal version was used by Accessions command at trade shows
and has since been ported to several “Army Adventure Vans”
in which Army educational personnel interact with SGT Star
about Science and Army careers. The character database
was constructed by a linguist in our lab, with consultation
from scriptwriters and Army SMES and is administered and
interacted with by the vans’ Army staff. More about SGT
Star, including a longitudinal evaluation at several conven-
tions can be found in (Artstein et al. 2009).

Virtual Patients for Clinical Training Since 2006, the
NPCEditor has been used to create virtual characters ex-
hibiting psychological conditions who can interact verbally
and non-verbally with a clinician in an effort to teach the
clinician interpersonal skills such as interviewing and diag-
nosis. Three virtual patient characters were developed by
a separate team at the institute without the direct involve-

4The website version was developed by Next IT Corporation
and does not share any technology with the ICT version.

5A video of an early version of the SGT Star character can
be found at our website: http://projects.ict.usc.edu/
nld/group/videos/early-version-sgt-star.

ment of the NPCEditor creators. Each character database
contained up to 200 responses. Users were medical and psy-
chology students (Kenny, Parsons, and Rizzo 2009) .

Army Communication Skills Training Since 2006
NPCEditor has been successfully used by the Program Ex-
ecutive Office (PEO) Simulation, Training, and Instrumenta-
tion (STRI), US Army, as a natural language understanding
and processing component in a number of interactive train-
ing systems that teach soldiers communication and culture-
specific conversational skills. We have received very posi-
tive feedback about NPCEditor from designers and develop-
ers of the training systems. These systems have been fielded
in 19 training installations. As of this writing, more than
3,000 soldiers (commissioned and noncommissioned) have
received training using the system. An independent analysis
has shown that the US Army has achieved significant sav-
ings (as much as $30 million) in training systems research
and development costs by reusing this existing system and
have realized greater flexibility in the ability to respond to
theater driven changing training requirements6. The design-
ers and administrators are Army or contracted personnel out-
side ICT, and the interactors are soldiers, using the systems
for training.

Virtual World Guides Since 2008, NPCEditor has been
used to develop several AI avatars in online virtual worlds
including Second Life and Active Worlds. These characters
are used for aides in educational settings as well as guides
of the virtual space. These characters have been designed
and administrated at ICT, but the interactors were people in
the virtual worlds who came to visit the areas and interact
with the characters. In contrast to the other characters de-
scribed in this section, the online virtual world characters do
not use speech recognition but the native virtual world chat
and IM facilities. Probably the most advanced of these is
LT Moleno, a staff duty officer, who patroled the US Army
Welcome island in Second Life for over a year. He answered
questions about the island and conducted interactive tours of
the island facilities. Over 4,000 visitors interacted with LT
Moleno. More details on LT Moleno can be found in (Jan et
al. 2009).

Gunslinger The Gunslinger project (Hartholt et al. 2009)
is a mixed-reality interactive-entertainment experience that
combines physical props with virtual humans. The partic-
ipant physically walks into a saloon room situated some-
where in Wild West and interacts with three life-sized vir-
tual human characters projected onto screens built into the
saloon walls. The characters listen and talk to the partici-
pant and to each other. They observe and react to partici-
pant’s location in the room and his actions. For example,
they notice when the participant takes out his gun and may
comment on it. NPCEditor handles both the language un-
derstating and dialogue management parts of the system. It
uses a state-based dialogue manager which tracks the par-
ticipant’s progress through the scenario and handles normal
conversation flow. The dialogue manager allows different
responses to interactor interruption and allows the characters
to exhibit initiative and start their own discussion topics.

6Personal communication. The report is not publicly available.



The character database and the dialogue manager script
were created by the Gunslinger group at the institute. The
system is setup for a single interactor, however hidden cam-
eras at the set allow an audience to observe the interaction
remotely.

InterFaces In the fall of 2008 the InterFaces exhibit
opened up at the Boston Museum of Science7. The stars
of the exhibit are Ada and Grace—two virtual docents
who have approximately 400 answers for questions about
computers, robots, and communications, as well as them-
selves and exhibits in the museum’s Cahners Computer
Place (Swartout et al. 2010)8. The target audience for the
exhibit are children from ages 7 to 14. NPCEditor drives
language understanding and dialogue management for both
characters. The system is operated by the museum volun-
teers and one of the volunteers generally serves as the des-
ignated interactor.

Virtual Human Toolkit NPCEditor is being used to cre-
ate virtual humans in more and more diverse applications. It
is now part of a Virtual Human Toolkit that is a collection of
modules, tools and libraries that allow developers to create
their own virtual humans. The toolkit is available without
cost for academic research purposes9. In September 2008
we conducted a 3 day workshop, where approximately 30
attendees, mostly graduate students from universities across
the country, designed and built 6 different characters for a
game of “Clue” over two afternoons. Each character had ap-
proximately 30 to 40 responses. This illustrates how quickly
a novice character designer can develop a useful virtual hu-
man.

6. Future Work

One of the weakness of the classification-based language
processing is the requirement to collect sufficient language
data. The character designer has to define all possible an-
swers, specify sample questions for the answers, and link
them together. We have experimented with characters that
have as many as 400 answers and 2,000 questions in their
language databases. Our partners in the Army have devel-
oped characters with 2,000 answers and more than 20,000
questions. The classification approach scales well for larger
datasets. However, creating and expanding the language re-
sources while maintaining consistency in the data can be-
come very tedious. We plan to incorporate ideas from active
learning into NPCEditor to help with linking of questions
and answers. We are exploring techniques for automatic
question and answer generation from descriptive text. We
are also interested to investigate solutions for mining rele-
vant language data from chat archives or world wide web.

We have shown that the classification approach is robust
to the errors in the input text when conditions permitting.
However, the ASR performance degrades in noisy environ-

7http://www.mos.org/interfaces/
8A video of the characters is available at our web-

site: http://projects.ict.usc.edu/nld/group/
videos/jillian-talking-ada-and-grace

9For more information, see our website: http://
vhtoolkit.ict.usc.edu/

ments or when dealing with heavily accented speech. We
are looking into alternative representations for the input text
to improve the classifier robustness even further. For exam-
ple, our recent experiments show that incorporating phonetic
information into the input for the classifier provides small
but significant improvement in quality. We are also explor-
ing how to integrate multiple ASR hypotheses into the input
representation.

NPCEditor started as a text classification tool for context-
free question-answering dialogue where any question can
be asked at any time and the answer depends only on the
question content. This type of interaction works well for
kiosk-like applications in museums or show exhibits. As we
are exploring other VH application domains there is a grow-
ing need to support more sophisticated dialogue behaviors.
There are two way that we can approach this. Firstly, we can
integrate complex dialogue handling into NPCEditor itself.
Currently NPCEditor allows a designer to incorporate con-
text information by defining multiple states for a single char-
acter, specify a classifier for each state, and indicate when
the inter-character state transitions occur. It integrates the
classifier technology with a dialogue scripting module facil-
itating creation of characters with complex behavior. One
of our goals is to continue the development of NPCEditor,
refining the support for complex dialogue strategies. We are
looking into building components to visualize the dialogue
state network, tools for debugging the dialogue transitions
and state information.

Secondly, we can leave the dialogue management to a spe-
cialized component. We have built systems where we use
the NPCEditor language classification capability to convert
from the text input into a semantic representation and pass
this information to a specialized dialogue manager (Leuski
and Traum 2008; Gandhe et al. 2008). Currently this con-
nection is one-way: there is no feedback from the dialogue
manager for the classifier. We are experimenting with tech-
niques for integrating dialogue context information into the
classification process with the hope that it will increase the
accuracy of the classification.

7. Conclusions

In this paper we presented NPCEditor, a system for building
and deploying virtual characters capable of engaging a user
in spoken dialog on a limited domain. NPCEditor has been
used mainly for question answering characters where an in-
teractor asks questions and the character responds. However
other types of dialogue have also been successfully imple-
mented, for example, the Gunslinger system, in which char-
acters take the initiative and question the user. The dialog
may have other forms as long as character responses can be
fully specified a priori.

NPCEditor contains a state of the art cross-language in-
formation retrieval-based classifier that is robust to noisy in-
put from speech recognition results. It contains a develop-
ment environment that includes a user-friendly GUI to sup-
port several classes of user, from developer to interactor and
audience. NPCEditor has been successfully evaluated in the
laboratory and field-tested and proved to be an effective and
versatile system in a number of different applications.
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