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Abstract—In this paper, we present considerations for natu-
ral language processing for a lifelong learning companion. In
the context of these considerations, we review related work in
automated assessment of learner writing and present an idea
for augmenting keyword spotting with syntactic information.
However, the extra information given by syntax is offset by
parser errors and added burden on the author. The results
suggest that while standard keyword spotting is a quick
approach to adding NLU capabilities it has inherent limitations.
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I. INTRODUCTION

The goal of the Technologies for Accelerated Continuous

Learning (TACL) project [1] is to scale up traditional intelli-

gent tutoring systems (ITSs) from isolated learning episodes

or contexts, such as supporting learners solving a set of

problems, to longer periods of time resulting in a lifelong

learning companion. Collins and Halverson [2] argue for

lifelong learning in their recent book, Rethinking Education

in the Age of Technology. One message of the book is that

in the rapidly changing modern world, learning should be

considered a survival skill. Collins and Halverson state this

in practical terms: “To earn a decent wage in the future

will require lifelong learning and expertise with information

technologies.” (p.5).

A lifelong learning companion can support learners in a

number of ways and in particular, we are focusing on pro-

moting self-explanation and providing a longitudinal model

of the learner’s strengths and weaknesses. Chi et al. [3]

discovered that better learners were found to spontaneously

self-explain while studying worked out examples. That is,

they were observed to “generate many explanations which

refine and expand the conditions for the action parts of

the example solutions, and relate these actions to principles

in the text” (p. 145). Further, Chi et al. [4] found that

expert human tutors are able to elicit self-explanations from

learners and produce similarly positive learning outcomes.

This is important because it implies that it is possible to

scaffold these productive metacognitive activities for all

learners, not just the very best.

Given the scarcity of expert human tutors especially in

informal learning, we seek to design an ITS, the TACL

system, to prompt learners to produce self-explanations. Our

first design decision was to use reflective writing as the target

medium of these self-explanations versus spoken language.

Similar to [5], our long term goal is a journal that encourages

learners to reflect upon daily learning experiences.
Another design decision was making the self-explanation

process a group activity, and in particular having peers

review each other’s reflective writing. Each learner writes

and then reviews essays reflecting upon a target learning

experience. These roles encourage learners to think critically

and take an active role in the activity. Walker et al. [6]

discuss the benefits of peer tutoring in more detail, and [7]

describes the general benefits of group learning exercises.
Although there is benefit to teaching learners to organize

and present information clearly, we chose to focus solely

on the content of the learner writing. In the study described

here, we used a corpus of answers to qualitative physics

questions ([8]) such as the one below quoted from [8, p. 2]:

Question: Suppose you are in a free-falling el-

evator and you hold your keys motionless right

in front of your face and then let go. What will

happen to them? Explain.

Here, the goal is for the learner to express a set of required

concepts and avoid expressing misconceptions. For the ques-

tion above, an example concept is prin-force-grav-vert-down

referring to the downwards direction of gravitational force,

and a sample of writing matching this concept is “The

only force acting upon them is gravitational force, which

is downwards.”. In this context, the grading process consists

of determining the presence or absence of relevant concepts

and misconceptions in answers to such questions.
We use natural language understanding (NLU) to au-

tomate grading and update an open learner model. An

open learner model allows learners to view visualizations

of the model’s estimations of their progress with the goal

of supporting self-assessment and enhancing learning [9].

A screenshot of our lifelong learner modeling prototype is

shown in figure 1. It shows the estimate of the learner’s

competence for a set of domain concepts for one document
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(left side), and over several documents / times (right side).

In future work, we could supplement the open learner model

with textual feedback and hints for improvement.

Following work such as [10] and [11], we could use

such grades to assign reviewers to documents. Ideally the

assignment would result in material that is beneficial for

the reviewer to read as well as resulting in high quality

reviews. Determining how to maximize the effectiveness

of peer review is an active research area with many open

issues (e.g., see the recent special issue of Learning and

Instruction [12]). However, it seems likely that performance

of a potential reviewer should be considered when assigning

reviewers.

The goals below are motivated by our use of NLU, but

are written to apply generally to NLU for lifelong learning.

• accessible to non-AI-experts To build a lifelong learn-

ing system for a nontrivial part of a learner’s life (e.g.,

all the typical first year courses at a university) each

domain cannot constitute an individual research project

in terms of time and expertise required. Resources for

a domain must be quick to develop and not require an

expert in NLU.

• rapid to develop Although developing a domain inde-

pendent NLU framework is a worthwhile investment,

not every group has the resources for such a task. In

this case, the time required to build the NLU framework

becomes an important factor.

• adjustable If the NLU system erroneously penalizes

or rewards a learner in its scoring, then it should be

possible to adjust the system with the aim of fixing

the error. Non-AI-experts in a lifelong learning context

might be willing to accept errors if they can make

adjustments without involving the original developers.

• accurate The exact meaning of this requirement de-

pends on how the NLU is used. An open learner model

puts the most pressure on the NLU. Once learners see

their learner model updated after an essay is submitted,

they are going to want to know how this update was

calculated (i.e., they will want a scrutable learner model

[13]). The automated grading can also be used behind

the scenes to assign reviewers, and trigger feedback

and suggestions. High accuracy for these tasks may not

be required. Any improvement over random reviewer

assignment is welcome, and if feedback and suggestion

messages are worded appropriately, learners may not

even be aware of NLU errors. Of greater concern is

omitting relevant feedback and suggestions, but even

here the peer learning context may allow the writer

to identify the problem and fix it despite lack of an

automated feedback or suggestion message.

In the next section, we use these NLU considerations in

reviewing a set of robust NLU techniques from the area of

automated scoring of written text. In section III, we discuss

Figure 1. A concept-based learner model with a snapshot (left) and a
visualization of growth over time (right). Both use mocked-up data.

keyword spotting and in particular the idea of allowing

authors to specify syntactic information in keyword patterns.

We present an evaluation of the idea in section IV and

discuss the results in section V. Unfortunately, the extra

information given by syntax is offset by parser errors and the

added burden on the author. The results suggest that while

standard keyword spotting is a quick approach to adding

NLU capabilities it has inherent limitations.

II. AUTOMATED SCORING OF LEARNER WRITING

Techniques used for automated assessment of short an-

swers and essays are highly relevant to lifelong learning.

Such material covers many domains (e.g., reading compre-

hension tests contain passages on various subjects) and the

resulting grades must be scrutable (i.e., accuracy less than

human agreement is suspect).

Information retrieval approaches reduce text segments to

vectors of numbers and calculate their similarity. These

are sometimes referred to as “bag of words” approaches

because they do not consider the position of words in a

text. To assess learner contributions, their writing can be

compared against texts that exemplify specific aspects of

the correct answer or a misconception. If the similarity

score is above a threshold set by the developers, the learner

text is labeled as having the target concept/misconception.

A particularly popular information retrieval approach for

educational applications is Latent Semantic Analysis (LSA).

Examples of LSA’s use include [14], [15] and [16], and LSA

itself is described in detail here [17]. The basic idea behind

LSA is to use a training corpus to capture the co-occurrence

patterns of words in the domain and create semantically

meaningful vector dimensions. A typical approach is to use

an electronic version of a relevant textbook for this training.

Mohler and Mihalcea [18] provide a good comparison

of various information-retrieval-style approaches to NLU.
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Some of the approaches push the boundaries of traditional

information-retrieval and include techniques that compute

overall similarity based on the similarity of individual words

in the source and the target using resources such as Word

Net. They make a distinction between techniques that do not

require a training corpus (knowledge-based measures) and

those that do (corpus-based measures) and show that gener-

ally the corpus-based measures outperform the knowledge-

based measures. Because authoring consists of providing

natural language examples of the target good answers and

misconceptions, any end user can create content and expand

the set of targets. However, it is difficult for end users and

even developers to fix misclassifications through additional

authoring.

Sukkarieh and Stoyanchev [19] describe an approach

where authors write different possible correct answers, and

optionally identify words that are essential to the answers

and select possible synonyms of these words from a the-

saurus. Like the information-retrieval-style approaches, au-

thoring can be performed by non-experts providing example

texts. Thus, if a teacher observes a consistent misconception

in learner essays, it can easily be added to the library for the

system to detect. This approach is more debuggable in that

it allows users (such as teachers who are domain experts) to

adjust performance by modifying the set of example texts

and/or the set of essential words and their synonyms. Behind

the scenes as described in [20], features from these example

texts are used to train a classifier. The main drawback to

this approach is the development time needed to build this

machine learning pipeline.

Because the above techniques have not been compared on

common corpora, their relative accuracies cannot be judged.

However, it is important to discuss different approaches

taken to measure accuracy and deal with the issue that

grading can be an ambiguous task. Mohler and Mihalcea

[18] use a graded scale allowing for partial credit and mea-

sure Pearson correlations between different graders finding

a correlation of 0.6443 calculated over individual questions.

Sukkarieh and Blackmore [20] use kappa inter-annotator

reliability scores which range from perfect(1.0) down to 0.71

for the human annotators. The approach in both cases is

to treat the automated technique as another annotator to be

evaluated via the Pearson correlation or kappa.

III. SYNTACTIC KEYWORD SPOTTING

Keyword spotting is the simplest NLU possible. It is quick

to develop a keyword spotting module for a system and it

is simple for non-AI-experts to author the needed patterns.

Authors can create patterns identifying correct elements in

learner text as well as patterns linked to misconceptions and

errors. Although keyword spotting is debuggable through

the addition and editing of patterns, accuracy will tend to

be low. If the pattern is too specific it will sometimes fail

to match an answer worded in a slightly different way (e.g.,

differences in articles, adjectives) even though the author

may not care about the differences. However, if the pattern

is too general it will sometimes incorrectly match a target

input.

Keywords are simply not well suited for concepts that

can be expressed via arbitrarily long distance syntactic

relationships. In the experiment reported here, our goal was

to test whether augmenting keyword spotting with syntactic

information would allow this weakness to be addressed such

that authors could create high accuracy patterns.

To get syntactic information about the target data, we

were inspired by the success of [21] in using the Stan-

ford Parser to parse open domain text (version 2008-

10-26 downloaded from http://nlp.stanford.edu/software/lex-

parser.shtml). In addition to obtaining syntactic information

about the input, we used the parser to normalize morpho-

logical differences by outputting words in their base forms

(i.e., without inflections). The Stanford Parser has the ability

to format its output in the form of syntactic dependencies.

Syntactic dependencies are binary syntactic relationships

between words in a sentence, and we found it easier to see

relationships in this flat representation rather than a textual

representation of phrase structure trees.

To illustrate, the syntactic dependencies for the sentence

“they have the same acceleration” are:

nominal_subject(have,they),
determiner(acceleration,the),
adjectival_modifier(acceleration,same),
direct_object(have,acceleration).

Given a set of development data, we authored sets of

patterns in the form of regular expressions for each concept

to be recognized in the domain. One concept in our case

study is the fact that the accelerations are the same of the

objects under discussion, and one regular expression we use

for this concept is *(acceleration,same) which would match

any sentence where the parser recognized a syntactic re-

lationship between the words “same” and “acceleration(s)”.

We would not expect authors to type regular expressions into

a text editor as we did. One area that could be hidden from

authors are the different types of syntactic dependencies.

For example, authors could simply type pairs of words

that should have a syntactic relationship and any syntactic

dependency between these words would count towards a

match.

IV. EVALUATION OF SYNTACTIC KEYWORD SPOTTING

The authors of [8] provided us with a subset of the

qualitative physics data used in their experiments. The

data comes from the Why2-Atlas system where students

were posed qualitative physics questions and asked to type

answers with explanations. The data consists of excerpts

from student answers roughly of sentence size labeled with

either a physics principle, fact, misconception or a nothing
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label (meaning the excerpt contains no principle, fact or

misconception).

We used the Stanford Parser to compute the syntactic

dependencies for each example. Thus, our data consisted

of concept tags associated with the raw text of the original

example, and a set of syntactic dependencies corresponding

to the sentences of the example.

If any of the regular expressions associated with a concept

match the representation of an example then it is marked

as having that concept. Our matcher recognizes individual

syntactic dependency patterns in a regular expression and

searches for them in the input given that the order of

the dependencies does not matter. Authors can also write

standard regular expressions as the matcher searches both

the syntactic dependencies as well as the raw text of the

example. This feature was necessary to deal with equations

in the input which the parser might fail to understand.

Pappuswamy et al. [8] describe the size of their corpus

as 1954 sentences and a split of 2/3 for training and 1/3

for testing. Our data set contained 949 examples and we

also used 2/3rds for training (615) and 1/3 for testing (334).

In breaking the data into training and testing sets we split

the set of examples for each concept into thirds so that the

distribution of tags was roughly the same in training and

testing sets. We resolved round off errors in favor of the test

set meaning it was slightly larger than 1/3.

The data set was organized by concept and thus we did

not have context to judge the sentences (i.e., the original

essays were scrambled) and only implicit information about

which problem the sentence addressed (e.g., the word “keys”

signals the falling elevator problem). Also, as noted in [8]

some of these labels are closely related. For example, one

concept is the fact that the horizontal displacement of the

objects under discussion is the same while another concept

is the principle that if the initial position is the same and the

displacement is the same, then the final position is the same.

Examples occur which intuitively match multiple concepts

but in this data set only one concept is assigned to each

example. Annotators were presumably deeming one of the

concepts to be primary to the example. Pappuswamy et al.

[8] handle this issue by grouping concepts by hand into a

three level taxonomy, and providing this additional infor-

mation to their system during training. Thus, their multi-

tier clustering could learn separately how the displacement

concepts differed from the rest of the concepts, and then

learn how to differentiate between the two examples above.

By default our regular expression matcher returns all the

concepts that match a given example. We modified the

matcher to allow authors to assign priorities to concepts.

The priority based matcher will return only one tag per

example using priorities to decide which concepts to discard

and resolving ties arbitrarily. Looking at the confusions seen

in the training data, we authored a set of priorities boosting

performance on the training set, and used this set of priorities

Matcher output Annotation: A Nothing
A True positive False positive
B False positive + false negative False positive

Nothing False negative -

Table I
HOW TRUE POSITIVES, FALSE POSITIVES, AND FALSE NEGATIVES WERE

COUNTED.

Pappuswamy et al. Syntax Matching
Precision 62.6 75.1

Recall 90.7 49.5
F-measure 74.1 59.7

Table II
PRECISION, RECALL AND F-MEASURES ON PHYSICS DATA.

during testing.

Because we do not have information about interannotator

reliability, we follow Pappuswamy et al. [8] and measure

accuracy in terms of precision, recall and F-measure. This

approach makes the assumption that the annotation is a gold

standard with no noise and that 100% recall and 100%

precision is possible. Although the assumption is likely

overly strong, as shown below these measures do lead us

to several conclusions about syntactic keyword spotting.

Table I shows how true positives, false positives and false

negatives were calculated. We do not attempt to represent

true negatives in this table as they do not contribute to

the precision, recall and F-measure results: precision = true

positives / (true positives + false positives), recall = true

positives / (true positives + false negatives), and F-measure

= 2*precision*recall/(precision + recall).

Table II shows the results for syntactic keyword spotting

next to Pappuswamy et al.’s results. Note, our hand crafted

patterns were based on 615 data items compared to the 1302

training examples used in Pappuswamy’s experiment.

V. DISCUSSION

Because this corpus is not under active development, it is

difficult to uncover some of the hidden motivations behind

the annotations: what are students allowed to leave out of

their descriptions and in the case when multiple concepts

seem relevant, how to pick one. In particular, we were

overly conservative in authoring regular expressions because

of examples where multiple concepts seemed to be present.

We favored writing more specific regular expressions to

lessen this ambiguity problem, but the approach hurt recall.

However even if we had written more general regular

expressions, the following lessons learned would still apply.

• need for abstractions Subconcepts were important in

this domain as the same elements of language appeared

in many places. In particular, equality was an important

subconcept. An easy improvement would be the ability

to define subconcepts such as “same displacement”
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instead of having to include all the different ways to

convey this subconcept in every associated concept.

For example, the subconcept of “same displacement”

occurs in the fact that the objects under discussion have

the same displacement at all times, and the principle

that if the average velocity and time are the same then

so is the displacement. It might be necessary to take this

a step further and allow authors to define the subconcept

of “same” such that the system could automatically

create regular expressions given the concepts “same dis-

placement”, “same velocity” and “same acceleration”.

• need to model parser errors Authors can compensate

for such errors by authoring additional patterns but

many of the errors are not specific to a particular

concept. Sometimes the parser will reverse a syntactic

relationship confusing the head of the relationship with

the dependent. Other cases are more complex such

as attaching a modifier to the wrong head. The idea

would be to automatically create relaxed versions of

the authored patterns to match garbled output caused

by parser errors. This process could be adapted if the

parser were replaced or retrained resulting in different

patterns of errors.

• need for specialist reasoners The input contains con-

stants corresponding to equations probably authored

in a special equation editor. However, learners would

sometimes type the equations using standard mathemat-

ical symbols (e.g., +, -, /, *), express them in language

(e.g., plus, minus, divided by), or a mix. Building

an equation specialist that could translate between

the equation editor format, mathematical symbols and

English words would allow authors to limit themselves

to one formalism.

• need for authoring and debugging tools If authors are

expected to create keyword patterns that are not too

specific or general, then authoring/debugging support

is required. Authors should be able to easily see how

performance changes as they modify a pattern.

Overall the problems introduced by syntactic keyword

spotting seem to outweigh the benefits over standard key-

word spotting. Instead of writing patterns in natural lan-

guage, authors must think in terms of syntactic dependen-

cies, and the noisy output of the parser means that well-

designed patterns may still result in false positives and

false negatives. However, some of the lessons learned apply

to standard keyword spotting, and the need for authoring

and debugging tools even applies in the case of a machine

learning approach.

VI. CONCLUSION

In this paper, we presented considerations for natural lan-

guage processing for a lifelong learning companion. In the

context of these considerations, we reviewed related work

in automated assessment of learner writing and presented

an idea for augmenting keyword spotting with syntactic

information. However, the extra information given by syntax

is offset by parser errors and added burden on the author.

The results suggest that while standard keyword spotting is

a quick approach to adding NLU capabilities it has inherent

limitations.
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