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ABSTRACT
Room acoustical modes, particularly in small rooms, cause a significant variation in the room responses measured
at different locations. Responses measured only a few cm apart can vary by up to 15-20 dB at certain frequencies.
This makes it difficult to equalize an audio system for multiple simultaneous listeners. Previous methods have
utilized multiple microphones and spatial averaging with equal weighting. In this paper we present a different
multiple point equalization method. We first determine representative prototypical room responses derived from
several room responses that share similar characteristics, using the fuzzy unsupervised learning method. These
prototypical responses can then be combined to form a general point response. When we use the inverse of the
general point response as an equalizing filter, our results show a significant improvement in equalization performance
over the spatial averaging methods. This simultaneous equalization is achieved by suppressing the peaks in the room
magnitude spectrums. Applications of this method thus include equalization and multiple point sound control at
home and in automobiles.

INTRODUCTION

Room equalization has traditionally been approached as a
classic inverse filter problem. Although this may work well
in simulations or highly-controlled experimental conditions,

once the complexities of real-world listening environments are
factored in, the problem becomes significantly more difficult.
This is particularly true for small rooms in which standing
waves at low frequencies cause significant variations in the
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frequency response at the listening position. A typical room
is an acoustic enclosure that can be modeled as a linear system
whose behavior at a particular listening position is character-
ized by an impulse response, h(n); n ∈ {0, 1, 2, ...}. This is
generally called the room impulse response and has an as-
sociated frequency response, H(ejω). The impulse response
yields a complete description of the changes a sound signal
undergoes when it travels from a source to a receiver (micro-
phone/listener).

It is well established that room responses change with source
and receiver locations in a room [1, 2]. A room response
can be uniquely defined by a set of spatial co-ordinates

li
∆
= (xi, yi, zi). This assumes that the source is at origin

and the receiver i is at the spatial co-ordinates, xi, yi and zi,
relative to a source in the room.

Now, when sound is transmitted in a room from a source to
a specific receiver, the frequency response of the audio sig-
nal is distorted at the receiving position mainly due to in-
teractions with room boundaries and the buildup of standing
waves at low frequencies. One scheme to minimize these dis-
tortions is to introduce an equalizing filter that is an inverse
of the room impulse response. This equalizing filter is ap-
plied to the source signal before it is transmitted. If heq(n)
is the equalizing filter for h(n), then, for perfect equalization
heq(n) ⊗ h(n) = δ(n); where ⊗ is the convolution operator
and δ(n) = 1, n = 0; 0, n #= 0 is the Kronecker delta function.
However, two problems arise when using this approach, (i)
the room response is not necessarily invertible (i.e., it is not
minimum phase), and (ii) designing an equalizing filter for a
specific receiver will produce poor equalization performance
at other locations in the room. In other words, multiple-point
equalization cannot be achieved by a single equalizing filter
that is designed for equalizing the response at only one loca-
tion.

To address this problem, standard multiple point equalization
techniques typically form the average from multiple room re-
sponses. The minimum phase component from the averaging
is stably inverted to form the equalizing filter. This is clearly
an ad hoc scheme that uses no information provided by the
measured responses. Therefore, the equalization performance
may not be consistently good, and may depend on the room
involved.

In this paper, we propose a nonlinear signal processing
method for designing equalizing filters. The proposed method
uses the fuzzy c-means clustering technique. We show that
this approach results in flatter magnitude responses at several
locations simultaneously when compared to the standard spa-
tial averaging approach over the full listening spectrum. We
also demonstrate, graphically, the suppression of the resonant
peaks in the room transfer function.

THE PROPOSED FUZZY C-MEANS TECHNIQUE
FOR GENERATING ACOUSTICAL ROOM RE-
SPONSE PROTOTYPES

A. Review of Cluster Analysis in Relation to Acoustical Room
Responses

Broadly speaking, clustering procedures yield a data descrip-
tion in terms of clusters having centroids or prototypes . The
clusters are formed from data points (room responses in the
present case) having strong similarities. Clustering proce-
dures use a criterion function, such as a sum of squared dis-

tances from the prototypes, and seek a grouping (cluster for-
mation) that extremizes the criterion function.

Specifically, clustering refers to identifying the number of sub-
classes of c clusters in a data universe Xd comprised of N
room responses {hi(n); i = 1, 2, ..., N ; n = 0, 1, ..., d − 1}, and
partitioning Xd into c clusters (2 ≤ c ≤ P < N). The triv-
ial case of c = 1 denotes a rejection of the hypothesis that
there are clusters in the data comprising the room responses,
whereas c = N constitutes the case where each room response

vector hi
∆
= (hi(0), hi(1), ..., hi(d−1))T is in a cluster by itself.

Upon clustering, the room responses bearing strong similar-
ity to each other should be grouped in the same cluster. The
similarity between the room responses is decided indirectly
through the cluster prototype. One of the simplest similarity
measures in clustering is the distance between pairs of room
responses, in which case the euclidean distance metric is com-
monly used. If the clustering algorithm yields clusters that
are well formed then, the euclidean distance between sam-
ples in the same cluster is significantly less than the distance
between samples in different clusters.

A cluster room response prototype is a compact representa-
tion of the room responses that are grouped in the cluster,
and play a fundamental role in the proposed multiple-point
equalization technique.

B. The Proposed Fuzzy c-means Algorithm for Determining
The Cluster Prototypes

In the Hard c- means clustering algorithm, a given room
response, hj , can strictly belong to one and only one clus-
ter. This is accomplished by the binary membership function
µi(hj) ∈ {0, 1} which indicates the presence or absence of the
response hj within a cluster i.

However, in fuzzy clustering, a room response hj may belong
to more than one cluster by different “degrees”. This is ac-
complished by a continuous membership function- µi(hj) ∈
[0, 1]. There are some interesting viewpoints on the advan-
tages of fuzzy clustering over hard clustering (see the example
of clustering a peach, a plum, and a nectarine in [5] pp. 13).
Importing this viewpoint to the clustering of room responses,
it can be argued that it is possible to find a room response hi
that is similar to two differing responses hj and hk (for ex-
ample, it may so happen that response hi exhibits a similar
response as hj in its direct and early reflection components,
whereas hi may show a similar response to hk in its reverber-
ant components). Then, surely the hard clustering algorithm,
during clustering, will mis-cluster hi as strictly belonging to
the same cluster as hj , or to the same cluster as hk . How-
ever, fuzzy clustering overcomes this limitation by assigning
degrees of membership of the room responses to the clusters
via continuous membership functions.

It can be shown that the centroids (prototypes) and member-
ship functions are given by

ĥ
∗
i =

∑N
k=1(µi(hk))2hk∑N

k=1(µi(hk))2

µi(hk) = [
c∑

j=1

(
d2

ik

d2
jk

)]−1 =

1
d2

ik∑c
j=1

1
d2

jk

;

d2
ik = ‖hk − ĥ

∗
i ‖

2 (1)

i = 1, 2, ..., c; k = 1, 2, ..., N (2)
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where ĥ
∗
i denotes the i-th cluster room response prototype.

An iterative optimization procedure proposed by Bezdek [4]
was used for determining the quantites in (2).

In the trivial case when all the room responses belong to a
single cluster, the single cluster room response prototype ĥ

∗

in (2) is the average (spatial) of the room responses since,
µ(hk) = 1, ∀k. In a traditional approach for room response
equalization, the resulting room response formed from spa-
tially averaging the individual room responses at multiple lo-
cations is stably inverted to form a multiple-point equalizing
filter.

DESIGNING AN EQUALIZING FILTER BASED
ON THE ACOUSTICAL ROOM RESPONSE PRO-
TOTYPES

In this section, we primarily focus on designing minimum
phase equalizing filters from the room response prototypes
(2) for magnitude response equalization. One approach to do
this is by using the following model:

hfinal =

∑c
j=1(

∑N
k=1(µj(hk))2)ĥ

∗
j

∑c
j=1(

∑N
k=1(µj(hk))2)

(3)

The corresponding equalizing filter is obtained by stably in-
verting the minimum phase component, hmin,final, of the
final prototype hfinal = hmin,final ⊗ hap,final (hap,final

is the all pass component). The minimum phase sequence
hmin,final is obtained from the cepstrum.

The model of (3) employs a weighting indicating “the level
of activation” of a prototype depending upon the degrees of
assignment of the room responses to the cluster containing
the prototype. One interpretation of this model can be un-
derstood in relation to the Standard Additive Model (SAM)
of Kosko [6, 7]. The SAM allows combining fuzzy systems by
combining the throughputs of fuzzy systems before defuzzifi-
cation. The advantage of SAM (as any additive fuzzy model)
lies in its ability to approximate any continuous function on
a compact (closed and bounded) domain.

The functional form for the SAM is given as,

F (x) =

∑m
j=1 aj(x)Vjcj

∑m
j=1 aj(x)Vj

; x = (h1, h2, ..., hN ) (4)

where, F : (d×n → (d×1 is the convex sum of centroids cj of
the m then (consequent) part fuzzy sets. Specifically, any ad-
ditive fuzzy system [8] (including the SAM) stores m if-then
rules of a word form. In (4), aj : (d×n → [0, 1] is a mapping
function, and bj : (d×1 → ( is a set function of multivalued
consequent fuzzy sets. The volumes Vj and the centroids cj
of each of the m rules as expressed by Kosko are,

Vj =

∫ ∞

−∞
bj(y)dy

cj =

∫ ∞
−∞ ybj(y)dy
∫ ∞
−∞ bj(y)dy

; j = 1, 2, ..., m (5)

Comparing (4) and (3) we see an equivalent relationship be-
tween the SAM and the proposed model (3). The equivalence
is obtained by (i) setting m to be the number of clusters, (ii)
setting aj(x) = 1, ∀j (we shall experiment other forms of the

joint set functions aj , for equalization, in future research),
and (iii) setting bj(y) = (µj(hs))

2. Then the discrete version
of (5) is

Vj = (
N∑

k=1

(µj(hk))2)

cj =

∑N
k=1(µj(hk))2hk∑N

k=1(µj(hk))2
= ĥ

∗
j (6)

and correspondingly (4) becomes

F (x) = hfinal (7)

EXPERIMENTAL RESULTS

In this section we present equalization performance results
achieved using our proposed method as well as the traditional
averaging based method. We evaluate the performance using
plots (the spectral deviation measure, [11], has been used in
another paper [9] for the evaluation of equalization perfor-
mance).

For our experiments, we first measured nine room responses
with microphones in a small auditorium type room having a
single frontally located loudspeaker. The nine responses were
obtained at nine chairs (locations) from a group of 15 loca-
tions (the choice of the locations were determined randomly).

We also smoothed the corresponding nine response to observe
the presence of resonant peaks around 300 Hz.

A. The Non-Smooth Acoustical Room Response Equalization

The non-smoothed magnitude responses of the room transfer
functions (RTF’s) for the nine locations are shown in Fig. 1
and Fig. 2. We spliced the depiction of the magnitude re-
sponses to clearly show the effects of equalization using the
spatial averaging technique and the proposed approach. We
also approximated a piecewise linear envelope for the resonant
peaks in one of the transfer functions. This is also shown in
the figures.

For spatial averaging based equalization, the nine responses
were averaged (in time) and the minimum phase component
was determined for stable inversion. The resulting minimum
phase component was then Fourier transformed and inverted
to yield the desired equalizing filter. Applying the equalizing
filter to each of the nine responses in Figs. 1 and 2, yields the
results depicted in Figs. 3 and 4. Clearly, the results on using
the spatial averaging based equalizer are poor. However, we
also performed two different experiments prior to the exper-
iments discussed herein. The first experiment were done in
a desktop type environment (with nine measured responses),
whereas the second experiment was done in a regular rever-
berant room (with six measured responses). The spatial av-
eraging based equalization yielded fairly good results for the
latter experiment. However, it did not yield a substantially
good result in the desktop type environment. This lack of con-
sistency in adequate equalization may be due to the inherent
insufficient information used in forming the spatial averaging
based equalizing filter.

In contrast, the proposed approach uses specific knowledge of
the room responses (i.e., similarities to group them) for form-
ing the equalizing filter. Thereby, significantly better results
are obtained as shown in Figs. 5 and 6. We set the number
of clusters to be c =

√
9 = 3 (the preferred limit suggested by
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Bezdek [5]). Comparing Fig. 5 with Fig. 1, and Fig. 6 with
Fig. 2, we see the general behaviour of the proposed equal-
izing filter, that of suppression of the resonant peaks in the
magnitude responses. This suppression leads to much better
equalization.

B. The Smoothed Acoustical Room Response Equalization

In this experiment, we smoothed the nine magnitude re-
sponses in Fig. 1 to determine the dominant peaks and dips
in the 0-5 kHz range. This is depicted in Fig. 7.

Again, we computed the spatial equalizing filter to see if it
could suppress the resonances in the magnitude responses.
This was not achieved, largely, by the filter (as shown in Fig.
8).

We then computed the proposed fuzzy based equalizing filter,
with c =

√
9 = 3, for the smoothed responses. We obtain

significantly better results on applying the proposed filter to
the smoothed responses of Fig. 7. This is shown, again, by
the suppression of the resonant peaks in Fig. 9 (comparison
done via arrows in Figs. 7 and 9).

CONCLUSIONS

In this paper we proposed and demonstrated a fuzzy c-means
clustering technique for creating an equalizing filter operating
simultaneously at multiple locations. We showed that the pro-
posed filter achieves better equalization than the traditional
spatial averaging based equalization filter. This improvement
in equalization is obtained due to the suppression of resonant
peaks in the RTF’s. Furthermore, the proposed method uses
information (such as geometric similarity) from the measured
room responses, rather than just ad hoc averaging.

There are several directions of research that will be considered
in the future, including, (i) simultaneous, multiple location
selective equalization in certain frequency regions, (ii) deter-
mining appropriate number of clusters using cluster validity
measures, and (iii) formulating other methods for combining
the prototypes.
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Fig. 1: Magnitude Responses for the nine locations in the 20 Hz-5 kHz range. An approximated piecewise linear
envelope of the resonant peaks is shown for the response in the first row and third column.
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Fig. 2: Magnitude Responses for the nine locations in the 5-20 kHz range. An approximated piecewise linear envelope
of the resonant peaks is shown for the response in the first row and first column.

AES 111TH CONVENTION, NEW YORK, NY, USA, 2001 SEPTEMBER 21–24 6



BHARITKAR AND KYRIAKAKIS ROOM EQUALIZATION

102

−20

0

20

102

−20

0

20

102

−20

0

20

102

−20

0

20

102

−20

0

20

102

−20

0

20

102

−20

0

20

102

−20

0

20

102

−20

0

20

20 5K 20 5K 20 5K 

20 5K 20 5K 20 5K 

20 5K 20 5K 20 5K 

Fig. 3: Deviation from flatness of the magnitude responses for the nine locations, of Fig. 1, in the 20 Hz-5 kHz range
using spatial averaging based equalization.
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Fig. 4: Deviation from flatness of the magnitude responses for the nine locations, of Fig. 2, in the 5 kHz-20 kHz
range using spatial averaging based equalization.
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Fig. 5: Deviation from flatness of the magnitude responses for the nine locations, of Fig. 1, in the 20 Hz-5 kHz range
using the proposed fuzzy c-means clustering approach. An approximated piecewise linear envelope of the resonant
peaks is shown for the response in the first row and third column.
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Fig. 6: Deviation from flatness of the magnitude responses for the nine locations, of Fig. 1, in the 5 kHz-20 kHz
range using the proposed fuzzy c-means clustering based equalization. An approximated piecewise linear envelope of
the resonant peaks is shown for the response in the first row and first column.
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Fig. 7: Smoothed magnitude responses of Fig. 1. An approximated piecewise linear envelope of the resonant peaks
is shown for the response in the first row and first column.
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Fig. 8: Deviation from flatness of the magnitude responses for the nine locations, of Fig. 7, in the 20 Hz-5 kHz range
using spatial averaging based equalization.
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Fig. 9: Deviation from flatness of the magnitude responses for the nine locations, of Fig. 7, in the 20 Hz-5 kHz range
using using the proposed fuzzy c-means clustering based equalization. An approximated piecewise linear envelope of
the resonant peaks is shown for the response in the first row and first column.
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