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Abstract— The problem of mutual information (MI) estimation
based on data-dependent partition is addressed in this work.
Sufficient conditions are stipulated on a histogram-based con-
struction to guarantee a strong consistent estimate for the MI.
The practical implications of this result are in the specification
of a range of design parameters for two data-driven histogram-
based approaches — statistically equivalent blocks and tree-
structure vector quantizations — to yield density-free strongly
consistent estimates for the MI.

I. INTRODUCTION

Consider two random variables X and Y taking values on
finite dimensional Euclidean spaces, X = Rp and Y = Rq

respectively, with a joint distribution denoted by PX,Y in Rd

and d = p + q. In this case the mutual information (MI)
between X and Y can be expressed by [1],

I(X;Y ) = D(PX,Y ||PX × PY ), (1)

where PX ×PY is the probability measure on Rd induced by
multiplication of the marginals of X and Y and D(P ||Q) =∫
log ∂P

∂Q (x)·∂P (x). is the Kullback-Leibler divergence (KLD)
[1]. MI specifies the level of statistical dependency between
a pair of random variables [1], and it is fundamental to
characterizing some of the most remarkable results in infor-
mation theory. MI has been also adopted in other statistical
decision contexts finding important applications as an indicator
in feature extraction [2], in detection [3], in image registration
and segmentation [4], and to characterize performance limits
on pattern recognition [5], just to mention a brief spectrum of
important applications.

The problem of MI estimation based on independent and
identically distributed (i.i.d) realizations of (X,Y ) becomes
crucial as pointed out in many of these works. There is
an extensive literature dealing with the related differential
entropy estimation, see for example Beirlant et al. [6]. Most
approaches are based on classical product-type quantization
of the space belonging to the category of histogram-based
constructions. These classical estimates are consistent [6]
but they do not offer good approximation to the empirical
distributions for small number of samples [7]. This issue
translates into a significance estimation bias effect in the
small sample regime (from hundreds to few thousands sample
points). Motivated by that, Darbellay et al. [7] proposed a
histogram-based estimate that partitions the space from the

empirical data in a non-product way. This non-product scheme
provides the flexibility of better approximating the underlying
behavior of the empirical mass, however strong consistency
for this setting remains an open problem [7].

In this work we present an alternative data-driven MI
estimate motivated by recent work on data-driven histogram
based KLD estimation [8], [9], [10], [11]. This scheme also
allows an adaptive non-product partition of the space with the
distinctive characteristic of using a stopping criterion based
on the minimum number of sample points per quantization
bin [11]. The contributions of the work are two folds: first, in
the characterization of sufficient conditions to get a strongly
consistent estimate for the MI, and second, the applica-
tion of this result to two emblematic data-driven partition
schemes. On both these constructions, we obtain a collection
of density-free strongly consistent estimates for the MI. These
results relate with our recent contribution on KLD estimation
[10], [11]. However, the learning setting, formulation and
histogram-based construction proposed here are different, and
as a consequence, hitherto unexplored technical challenges are
addressed.

II. PRELIMINARIES

A. Data-Dependent Partitions

Let X=Rd be a finite-dimensional Euclidian space with cor-
responding Borel sigma field B(Rd). We say π = {A1, .., Ar}
is a finite measurable partition if: for any i, Ai ∈ B(Rd);
Ai ∩ Aj = ∅, i $= j; and

⋃r
i=1 Ai = Rd. We denote |π| as

the number of cells in π.
A n-sample partition rule πn is a mapping from Rd·n to the

space of finite-measurable partitions for Rd, that we denote by
Q, where a partition scheme for Rd is a countable collection
of n-sample partitions rules Π = {π1,π2, ...}. Let Π be an
arbitrary partition scheme for Rd, then for every partition rule
πn ∈ Π we can define its associated collection of measurable
partitions by [12]

An =
{
πn(x1, .., xn) : (x1, .., xn) ∈ Rd·n} . (2)

In this context, for a given n-sample partition rule πn and
a sequence (x1, .., xn) ∈ Rd·n, πn(x|x1, .., xn) denotes the
mapping from any point x in Rd to its unique cell in
πn(x1, .., xn), such that x ∈ πn(x|x1, .., xn).



B. Combinatorial Indicator of Complexity
Let C ⊂ B(Rd) be a collection of measurable events, and

xn
1 = (x1, .., xn) be a sequences of points in Rd, then we can

define [13],

S(C, xn
1 ) = |{{x1, x2, .., xn} ∩A : A ∈ C}| , (3)

and the scatter coefficient of C by Sn(C) =
supxn

1 ∈R·! S(C, xn
1 ), an indicator of the richness of C

to dichotomize sequence of points in the space, (by definition
Sn(C) ≤ 2n [13]). This combinatorial notions were extended
for collection of measurable partitions in [12]. More precisely,
let A be a collection of measurable partitions for Rd. The
maximum cell counts of A is given by

M(A) = sup
π∈A

|π| . (4)

In addition, let us consider a finite length sequence xn
1 =

(x1, .., xn) ∈ Rd·n. We can define ∆(A, x1, .., xn) =
|{{x1, .., xn} ∩ π : π ∈ A}|, —with {x1, .., xn} ∩ π a short
hand for {{x1, .., xn} ∩A : A ∈ π}— as the number of pos-
sible partitions of {x1, .., xn} induced by A, and the growth
function of A by [12],

∆∗
n(A) = max

xn
1 ∈Rd·n

∆(A, x1, .., xn). (5)

C. Vapnik and Chervonenkis Concentration Inequalities
Let X1, X2, .., Xn be independent identically distributed

(i.i.d.) realizations of a random vector with values in Rd, with
X ∼ P and P a probability measure on (Rd,B(Rd)). Then
∀A ∈ πn(X1, X2, .., Xn), we can define the empirical dis-
tribution by Pn(A) =

1
n

∑n
i=1 IA(Xi), a probability measure

defined on (Rd,σ(πn(X1, .., Xn)))1. Note that for estimating
the probability distribution the i.i.d. samples are used twice:
first for defining a sub-sigma field σ(πn(X1, .., Xn)) ⊂ B(Rd)
and then for characterizing the empirical distribution on it.

A fundamental statistical learning problem is being able to
bound the deviation of the empirical distribution with respect
to the probability for a collection of measurable events. The
following result provides a general answer for this problem.

THEOREM 1: (Vapnik and Chervonenkis [13]) Let C be
a collection of measurable events, then ∀n ∈ N , ∀ε > 0,

P
{
sup
A∈C

|Pn(A)− P (A)| > ε

}
≤ Sn(C) · exp−

nε2

8 , (6)

where P refers to the process distribution of X1, X2, · · · .
Lugosi and Nobel [12] proposed an extension of this in-

equality for a collection of measurable partitions.
LEMMA 1: (Lugosi and Nobel [12]) Let X1, X2, .., Xn

be i.i.d. realizations of a random vector X with distribution
function P in (Rd,B(Rd)), and A a collection of measurable
partitions for Rd. Then ∀n ∈ N , ∀ε > 0,

P
(
sup
π∈A

∑

A∈π

|Pn(A)− P (A)| > ε

)
≤ 4∆∗

2n(A)2M(A) exp−
nε2

32 ,

1σ(π) denotes the smallest sigma-field that contain π, which for the case
of partitions is the collection of sets that can be written as union of cells of
π.

where P denotes the distribution of the empirical process
X1, .., Xn.

III. HISTOGRAM-BASED CONSTRUCTION

Let X and Y be random variables in Rq and Rp, re-
spectively, with joint distribution PX,Y absolutely continuous
with respect to the Lebesgue measure λ in (Rd,B(Rd)). We
consider a data-driven partition rule, denoted by πn(·), that
maps i.i.d. samples to the space of finite measurable partitions
of Rd. We impose the requirement that every bin induced by
this partition rule has a product form, i.e., every measurable
set A ∈ πn(Xn, Yn) can be expressed as A = A1 ×A2, with
A1 and A2 events on Rp and Rq , respectively. Then denoting
by Pn the empirical joint distribution obtained from the data
[14]2, the proposed mutual information estimate is given by,
În(X;Y ) =

∑

A∈πn(Xn
1 ,Y n

1 )

Pn(A) · log
Pn(A)

Pn(A1 × Rq) · Pn(Rp ×A2)
, (7)

where A1 × A2 denotes the product form of the event A ∈
πn(Xn

1 , Y
n
1 ). It is important to note that the requirement that

every bin in πn(Xn, Yn) decomposes in a product form is
strictly necessary for being able to estimate PX,Y as well
as the reference measure PX × PY just based on the i.i.d.
realizations of the joint distribution PX,Y . Also note that
this product bin structure does not imply that the partition
πn(Xn, Yn) has a product form (ie., written as the cartesian
product of quantizations of Rp and Rq , respectively).

The next section addresses the problem of stipulating a set
of sufficient conditions on Π that guarantee that În(X;Y )
convergences to I(X;Y ) almost surely.

IV. MAIN CONSSISTENCY RESULT

Let us first introduce the following elements. For any
partition rule πn(·) ∈ Π, we consider its product bin structure
to define the following collection of measurable events,

C[1−q](z
n
1 ) =

{
ξ[1−q](A) : A ∈ πn(z

n
1 )
}

(8)
C[q+1−d](z

n
1 ) =

{
ξ[q+1−d](A) : A ∈ πn(z

n
1 )
}

(9)

with ξ[1−q](A) denoting the set operator that returns the col-
lection of projected elements of A in the range of coordinate
dimensions [1−q] 3. Then, the following collections of events
are associated to the partition rule πn(·):

C[1−q],n =
⋃

zn
1 ∈Rd·n

C[1−q](z
n
1 ), (10)

C[q+1−d],n =
⋃

zn
1 ∈Rd·n

C[q+1−d](z
n
1 ). (11)

Considering sequences of non-negative real numbers, we say
that (an)n∈N dominates (bn)n∈N, denoted by (bn) * (an), if

2For every measurable set A ⊂ Rp, Pn(A) = 1
n

∑n
i=1 IA(Xi, Yi) where

IA(x) is the indicator function.
3By construction any set A ∈ πn(zn1 ) can be expressed by A = A1×A2,

with A1 ∈ Rq and A2 ∈ Rp, and consequently ξ[1−q](A) = A1 and
ξ[q+1−d](A) = A2.



there exists C > 0 and k ∈ N such that bn ≤ C · an for all
n ≥ k. We say that (bn)n∈N and (an)n∈N are asymptotically
equivalent, denoted by (bn) ≈ (an), if there exits C > 0 such
that limn→∞

an
bn

= C.
THEOREM 2: Let us consider a partition scheme Π =

{π1(·), · · · } with the mentioned product bin structure and
driven by i.i.d. realizations Z1, Z2, · · · drawn from PX,Y . If
there exists τ ∈ (0, 1) for which the following set of conditions
are satisfied:

c.1 limn→∞
1
nτ logSn(C[1−p],n) = 0,

limn→∞
1
nτ logSn(C[p+1−d],n) = 0,

c.2 limn→∞
1
nτ log∆∗

n(An) = 0,
c.3 limn→∞

1
nτ M(An) = 0,

c.4 ∃ (kn)n∈N a sequence on non-negative numbers,
with (kn) ≈ (n0.5+τ/2), such that, ∀n > 0 and
(z1, .., zn) ∈ Rd·n,

inf
A∈π(zn

1 )
Pn(A) ≥

kn
n
,

c.5: ∀ε > 0,

lim
n→∞

PX,Y

({
z ∈ Rd : diam(πn(z|Zn

1 )) > ε
})

→ 0,

P-almost surely,
then, the estimate in (7) satisfied that

lim
n→∞

În(X;Y ) = I(X,Y ) (12)

a.s. with respect to the process distribution of Z1, Z2, · · · .
Proof: We consider the divergence notation for the MI

in (1). Then I(X;Y ) = D(P ||Q) with P denoting the joint
distribution PX,Y and Q = PX×PY . We denote by Pn and Qn

the empirical versions of P and Q, respectively, obtained from
a realization of the empirical process Z1, .., Zn and the product
bin structure of πn(·). Then the empirical MI estimate in (7)
can be expressed by Dπn(Zn

1 )(Pn||Qn) ≡
∑

A∈πn(Zn
1 ) Pn(A)·

log Pn(A)
Qn(A) . To prove the result we use the following inequality,

∣∣Dπn(Zn
1 )(Pn||Qn)−D(P ||Q)

∣∣ ≤
∣∣Dπn(Zn

1 )(Pn||Qn)−Dπn(Zn
1 )(P ||Q)

∣∣

+
∣∣Dπn(Zn

1 )(P ||Q)−D(P ||Q)
∣∣ . (13)

The last term in the right hand side of (13) is the ap-
proximation error. From the condition c.5 this error con-
verges to zero P-a.s. as n tends to infinity (the argument
is a simple extension of our results on divergence esti-
mation [15]). Then we just need to focus on the estima-
tion error term. From triangular inequality and its definition∣∣Dπn(Zn

1 )(Pn||Qn)−Dπn(Zn
1 )(P ||Q)

∣∣ ≤
∣∣∣∣∣∣

∑

A∈πn(Zn
1 )

[Pn(A) logPn(A)− P (A) logP (A)]

∣∣∣∣∣∣
(14)

+

∣∣∣∣∣∣

∑

A∈πn(Zn
1 )

[Pn(A) logQn(A)− P (A) logQ(A)]

∣∣∣∣∣∣
. (15)

Concerning the term in (14), it is upper bounded
by

∣∣∣
∑

A∈πn(Zn
1 ) [Pn(A)− P (A)] logPn(A)

∣∣∣ +∣∣∣
∑

A∈πn(Zn
1 ) [logPn(A)− logP (A)]P (A)

∣∣∣ ≤

∑

A∈πn(Zn
1 )

|Pn(A)− P (A)| log n

kn
+

sup
A∈πn(Zn

1 )
|logP (A)− logPn(A)| , (16)

where this last inequality uses the fact that Pn(A) ≥ kn
n

∀A ∈ πn(Zn
1 ). Using Lugosi and Nobel inequality, Lemma

1, the probability of the first term in (16) greater than ε can
be uniformly (density-free) bounded by,

Pn




∑

A∈πn(Zn
1 )

|Pn(A)− P (A)| · log n

kn
> ε





≤ Pn

(
sup
π∈An

∑

A∈π

|Pn(A)− P (A)| · > ε

log n/kn

)

≤ 4∆∗
2n(An)2

M(An) · exp
{
− nε2

(log n/kn)2 · 32

}
, (17)

where the exponential term exp
{
− nε2

(logn/kn)2·32

}
≤

exp
{
− nε2

(logn)2·32

}
. Note that this last sequence is uniformly,

in ε, dominated by the sequence (exp {−mτ̄})n∈N, ∀τ̄ ∈
(0, 1). Consequently from c.2 and c.3, it is simple to show
that ∀ε,

lim sup
n→∞

1

mτ
·logPn




∑

A∈πn(Zn
1 )

|Pn(A)− P (A)| > ε

log n/kn





≤ Co, being Co a strictly negative constant. Finally
from the fact that

∑
n≥0 exp {Co ·mτ} < ∞

and the Borel-Cantelli Lemma, we have that
limn→∞

∑
A∈πn(Zn

1 ) |Pn(A)− P (A)| log n
kn

=
0, P-a.s. Concerning the left term in (16),
supA∈πn(Zn

1 ) |logP (A)− logPn(A)|, we use the following
result.

PROPOSITION 1: (Silva and Narayanan [15]) If
limn→∞ supA∈πn(Zn

1 )

∣∣∣ P (A)
Pn(A) − 1

∣∣∣ = 0, P-a.s, then,

lim
n→∞

sup
A∈πn(Zn

1 )
|logP (A)− logPn(A)| = 0, P− a.s.

Silva et al. [15] prove that under c.2, c.3 and c.4, the sufficient
condition of Proposition 1 is satisfied and consequently from
(16) the term in (14) tends to zero P-a.s.

Concerning the term in (15), we bounded it by the expres-
sion in (18), where considering the product bin structure of
πn(·), we have that ∀A ∈ πn(Zn

1 ), Qn(A) = Pn(A[1−p] ×
Rq)Pn(Rp × A[p+1−d]), with A[1−p] and A[p+1d] a short-
hand notation for ξ[1−p](A) and ξ[p+1−d](A), respectively.
Given the symmetric structure of the bound in (18), we
focus the attention on just one of these terms, since the
derivation for the other use the same arguments. Using
similar derivations as those used in the set of inequalities



∣∣∣∣∣∣

∑

A∈πn(Zn
1 )

[Pn(A) logQn(A)− P (A) logQ(A)]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∑

A∈πn(Zn
1 )

[
P (A) logP (A[1−p] × Rq)− Pn(A) logPn(A[1−p] × Rq)

]
∣∣∣∣∣∣

+

∣∣∣∣∣∣

∑

A∈πn(Zn
1 )

[
P (A) logP (Rp ×A[p+1−d])− Pn(A) logPn(Rp ×A[p+1−d])

]
∣∣∣∣∣∣

(18)

(16), we have that
∣∣∣
∑

A∈πn(Zn
1 )

[
P (A) logP (A[1−p] × Rq)−

Pn(A) logPn(A[1−p] × Rq)
]∣∣ ≤

∑

A∈πn(Zn
1 )

|Pn(A)− P (A)| log n

kn
+

sup
A∈πn(Zn

1 )

∣∣logP (A[1−p] × Rq)− logPn(A[1−p] × Rq)
∣∣ ,

(19)

where we have already proved that the first term tends to
zero P-a.s as n tends to infinity. Concerning the second
term in (19), from Proposition 1 it is sufficient to prove
that limn→∞ supA∈πn(Zn

1 )

∣∣∣ P (A[1−p]×Rq)
Pn(A[1−p]×Rq) − 1

∣∣∣ = 0 P-a.s.
Analyzing this expression, we have that, ∀ε > 0,

Pn

(
sup

A∈πn(Zn
1 )

∣∣∣∣
P (A[1−p] × Rq)

Pn(A[1−p] × Rq)
− 1

∣∣∣∣ > ε

)

≤ Pn

(
sup

A∈C[1−p],n

∣∣∣∣
P (A[1−p] × Rq)

Pn(A[1−p] × Rq)
− 1

∣∣∣∣ > ε

)

≤ Pn

(
sup

A∈C[1−p],n

∣∣P (A[1−p] × Rq)Pn(A[1−p] × Rq)
∣∣ > kn · ε

n

)

≤ Sn(C[1−p],n) · exp
{
−k2n · ε2

n · 8

}
, (20)

the first inequality results from the fact that πn(Zn
1 ) ⊂

C[1−p],n, the second from Pn(A[1−p] × Rd) ≥ Pn(A) ≥ kn
n ,

∀A ∈ πn(Zn
1 ), and the last one from the distribution free

version of the Vapnik-Chervonenkis inequality, Theorem 1.
Finally from the fact that (kn) ≈ (n0.5+τ/2) and the condition
c.1, it is simple algebra to show that,

lim sup
n→∞

1

nτ
logPn

(
sup

A∈πn(Zn
1 )

∣∣∣∣
P (A[1−p] × Rq)

Pn(A[1−p] × Rq)
− 1

∣∣∣∣ > ε

)

< C(ε) a constant function of ε that is strictly negative.
Then from this and the Borel-Cantelli lemma, we have that
limn→∞ supA∈πn(Zn

1 )

∣∣∣ P (A[1−p]×Rq)
Pn(A[1−p]×Rq) − 1

∣∣∣ = 0 P-a.s, which
is the last piece of result needed to prove the theorem.

REMARK 1: Observing the domain of values stipulated for
τ , we can see that these conditions are stronger than the one
obtained for the problem of consistent density estimation in
the L1 sense [12]. In simple words, these stronger conditions
has to do with the unbounded behavior of the log(·) function
in the neighborhood of zero — the function is not absolutely
continuous in (0,∞).

Next we address the applicability of this results, in terms of
how this result translates into specific design conditions when
working with some specific data-dependent constructions.

V. APPLICATIONS

A. Statistically Equivalent Blocks
For simplicity let us denote by Zn

1 = (Z1, .., Zn) the
i.i.d. joint samples. Following Gessaman’s approach [12], this
partition rule sequentially splits every coordinate of Rd using
axis-parallel hyperplanes. More precisely, let ln > 0 denote
the number of samples points that we ideally want to have in
every bin of πn(Zn

1 ), and let us choose a particular sequential
order for the axis-coordinates, without loss of generality the
standard (1, .., d). With that, Tn = 1(n/ln)1/d2 is the number
of partitions to create in every coordinate. Then the inductive
construction goes as follows: first, project Z1, .., Zn into the
first coordinate, which we denote by S1, .., Sn. Compute
the order statistics S(1), S(2), .., S(n) or the permutation of
S1, .., Sn such that S(1) < S(2) < · · · < S(n). Based on
this, define the following intervals to partition the first scalar
coordinate,

{Ii : i = 1, .., Tn} =
{
(−∞, S(sn)], (S(sn), S(2·sn)], .., (S((Tn−1)·sm),∞)

}
,

where sn = 1n/Tn2. Then assigning the samples of Z1, .., Zn

to the different resulting bins, i.e.,
{
Ii × Rd−1 : i = 1, .., Tn

}
,

we can conduct the same process in each of those bins by
projecting its data into the second coordinate. Iterating this
approach until the last coordinate we get the data-dependent
partition πn(Zn

1 ).
The following result can be stated whose proof reduces to

checking the sufficient condition stated in Theorem 2.
THEOREM 3: Under the problem setting of Section III,

if (ln) ≈ (n0.5+τ/2) for some τ ∈ (1/3, 1). the Gessaman’s
partition scheme provides a density-free strongly consistent
estimate for the mutual information.

Proof: Let us consider an arbitrary joint distribution
PX,Y , equipped with a density function, and τ ∈ (1/3, 1).
The trivial case to check is c.4), because by construction we
can consider kn = ln, ∀n ∈ N, and then the hypothesis of the
theorem gives the result. For c.1), from the construction of
πn(·), C[1−p],n and C[p+1−d],n are contained in the collection
of all rectangles of Rp and Rq , respectively, which are well
known to have finite VC dimensions, which suffices to get the
result [16]. Concerning c.3), again by construction we have



that M(An) ≤ n/ln+1, then n−lM(An) ≤ n1−τ/ln+n−τ .
Given that (ln) ≈ (n0.5+τ/2) and τ ∈ (1/3, 1) it follows that,

lim
n→∞

n−τM(An) = 0. (21)

For c.2), Lugosi et al. [12] showed that ∆∗
n(An) ≤

(
Tn+n

n

)d,
where using that log

(
s
t

)
≤ s · h(t/s) [14], with h(x) =

−x log(x) − (1 − x) log(1 − x) for x ∈ [0, 1] — the binary
entropy function [1] and defining T̄n ≡ 1n/ln2 ≥ Tn , it
follows from the arguments in [12] that,

n−τ log (∆∗
n(An)) ≤ 2dn1−τ · h

(
1

ln

)
(22)

and consequently, ∀n ∈ N,

n−τ log(∆∗
n(An)) ≤ −2dn1−τ

ln
log(1/ln)

− 2dn1−τ (1− 1/ln) log(1− 1/ln). (23)

The first term on the right hand side (RHS) of (23) behaves
like n0.5−3/2·τ · log(ln), where as long as the exponent of the
first term is negative (equivalent to τ > 1/3) this sequence
tends to zero as m tends to infinity — considering that by
construction (ln) * (n). The second term on the RHS of (23)
behaves asymptotically like −n1−τ · log(1 − 1/ln) which is
upper bounded by the sequence n1−τ

ln
· 1
1−1/ln

— using that
log(x) ≤ x − 1, ∀x > 0. This upper bound tends to zero
because (ln) ≈ (n0.5+τ/2) and τ > 1/3. Consequently from
(23), limn→∞ n−τ log(∆∗

n(An)) = 0.
Finally concerning c.5), Lugosi et al. [12] (Theorem 4)

proved that to get this shrinking cell condition is sufficient
to show that limn→∞

ln
n = 0, which is the case considering

that τ < 1.

B. Tree-structured Data-Dependent Partition
Here we consider a version of a balanced search tree

[14]. Let (Z1, .., Zn) be the i.i.d. realizations of the joint
distribution. This scheme choses a dimension of the space
in a sequential order as the previous construction, say the
dimension i for the first step, and then the i axis-parallel
halfspace by

Hi(Z
n
1 ) =

{
x ∈ Rd : x(i) ≤ Z((n/2))(i)

}
, (24)

where Z(1)(i) < Z(2)(i) <, .., < Z(n)(i) denotes the order
statistics of the sample points {Z1, .., Zn} projected in the
target dimension i. Using this hyper-plane, Rd is divided
into two statistically equivalent rectangles with respect to
the coordinate dimension i, denoted by U(1,0) and U(1,1).
Reallocating the sample points in U(1,0) and U(1,1), we can
choose a new dimension in the mentioned sequential order and
continue in an inductive fashion with this splitting process.
The termination criterion is based on a stopping rule that
guarantees a minimum number of sample points per cell,
denoted by kn > 0.

Importantly the way the data is split in terms of measurable
rectangles has a binary-tree indexed structure [14], where in
the iteration k of the algorithm (assuming that the stopping rule

is not violated) the intermediate rectangles U(k−1,l) for l ∈{
0, .., 2k−1 − 1

}
are partitioned in terms of their respective

statistically equivalent k-axis parallel hyper-planes to create{
U(k,2l), U(k,2l+1) : l = 0, .., 2k−1 − 1

}
. Equivalently to The-

orem 3, the following result can be stated.
THEOREM 4: If (kn) ≈ (n0.5+τ/2) for some τ ∈

(1/3, 1), În(X : Y ) induced from the tree-structured partition
rule and (7) is density-free strongly consistent.
The proof reduces to checking the conditions of Theorem 2.
The argument can be found in [17].
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