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Abstract 

We present a method for describing arbitrary human 
posture as a combination of basic postures. This 
decomposition allows for recognition of a larger number 
of postures and gestures from a small set of elementary 
postures called atoms.  We propose a modified version of 
the matching pursuit algorithm for decomposing an 
arbitrary input posture into a linear combination of 
primary and secondary atoms. These atoms are 
represented through their shape descriptor inferred from 
the 3D visual-hull of the human body posture. Using an 
atom-based description of postures increases 
tremendously the set of recognizable postures while 
reducing the required training data set. A gesture 
recognition system based on the atom decomposition and 
Hidden Markov Model (HMM) is also described. Instead 
of representing gestures as HMM transition of postures, 
we separate the description of gestures as two HMMs, 
each describing the transition of Primary/Secondary 
atoms; thus greatly reducing the size of state space of 
HMM. We illustrate the proposed approach for posture 
and gesture recognition method on a set of video streams 
captured by four synchronous cameras.  

1 Introduction  
In everyday life, human uses multimodal interactions like 
speech, gesture or gaze to communicate with each other. 
Thus a human-computer interaction (HCI) system that 
incorporates those elements can allow people interact with 
computers in a more intuitive way. A seamless 
multimodal user interface is an important element of 
various immersive systems such as virtual reality, video 
game consoles or robotics, etc. In these environments, 
users should be able to interact with computers naturally 
as they do with human counterparts, or manipulate virtual 
entities as real world objects. To develop such interaction 
systems, computers must be able to automatically perceive 
and identify users�’ communicative actions such as 
postures and gestures and responds to them accordingly. 
The focus of many gesture recognition work today is on 
using passive sensors such as cameras to capture human 
actions. The main objective is to construct a vision-based 
user interface in a natural immersive interactive 
environment, in which the state and the action of the 

user(s) can be automatically inferred from a set of video 
cameras.  

Understanding human gestures in an environment by 
visual perception is a challenging task. A rich data 
description is required in order to represent both the 
global and local properties of the perceived features. 
Furthermore, the dictionary of recognizable postures 
grows very fast, as we increase the number of desired 
postures. In this paper we present a method for capturing 
and describing human body 3D shape for human posture 
recognition. We show that decomposing the perceived 
postures into set of elementary postures called atoms, 
allows to recognize a large number of postures and their 
temporal evolution (i.e. gestures) from a very small set of 
atoms. By decomposing posture descriptors into atoms, 
we can drastically increase the size of posture dictionary, 
since we need only to store the atom postures instead of 
enumerating all possible combinations. Posture 
recognition is a first step towards gesture recognition. A 
performed gesture can be viewed as a set of temporal 
transition of �“basic�” postures. We present in this paper 
gesture recognition formalism based on a HMM where the 
states are the primary/secondary atoms. This HMM 
formalism enables the recognition of a larger number of 
dictionary from a small set of learned transitions.   

1.1 Previous works 
Various methods have been proposed for the recognition 
and classification of human body postures. Some 
approaches recognize the postures directly from 2D 
images. They either fit body models (3D or 2D) into 
images [2][3][5], or classify postures by image features 
[1][4]. The main difficulties of estimating human posture 
directly from 2D images are from the lost information 
caused by self-occlusion and image projection. Roughly 
one third of the degrees of freedom of the human model 
are unobservable due to motion ambiguities and self-
occlusions. To compensate for these ambiguities due to 
2D acquisition, several approaches rely on using multiple 
cameras. These approaches rely on two, to an array of 
cameras or 3D body scanners to capture the 3D human 
shape and motion. Some of those approaches extract 2D 
image features from each camera and use these features to 
search for, or update the configuration of a 3D body 
model [6][7][8][9]. Others introduce an intermediate step 
of reconstructing the 3D shape of human body. The 
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characterization of the human pose is then done by fitting 
a kinematics model into the 3D shape information 
[10][11], or by using a shape descriptor for classification 
[12]. The articulated model based approaches provide 
accurate estimation of body joints configurations, but 
requires intensive computing and state of the art 
techniques still lack robustness and accuracy for rapid 
limbs�’ motion, as observed during human to human 
interactions. 

1.2 Outline of our Approach 
We present in this paper a method for posture 
identification technique that decomposes the posture into 
the combination of elementary postures, called atoms. Our 
approach is based on the 3D visual hull created from the 
integration of 2D silhouettes captured by two or more 
cameras. The surface points are sampled and encoded by a 
shape descriptor defined by a distribution. The shape 
descriptor is invariant to people�’s body proportion (i.e. 
scale), translation and rotation. Continuity properties are 
also satisfied providing a robust shape descriptor that 
exhibits localized variation of the distribution for 
localized 3D shape variation. Moreover, the 3D shape 
descriptor we propose can selectively encode privileged 
axis of symmetry or desired rotation invariance. These 
properties are important for human posture identification, 
since the human body possesses such a symmetry axis. 

Human body posture recognition is challenging task, 
since it must account for all possible postures to be 
recognized, as well as posture variations across people. 
Furthermore, limbs positions and configurations create a 
large number of postures that translate into small 
variations on the body shape. This requires a large training 
data set, and furthermore the classification accuracy 
decreases as the number of similar clusters increases. 
Also, time complexity depends on the number of postures 
available in the dictionary. We propose to address this 
problem by considering a small set of elementary postures 
that can describe any posture in the considered dictionary, 
as a linear combination. Instead of enumerating the sheer 
number of all possible postures, we select a small set of 
basic postures called atoms. For a given input posture 
descriptor to be identified, we decompose it using a set of 
known atoms. The descriptor is then represented as a 
weighted combination of atoms. This could be used to 
describe the posture in itself, or used in other 
classification methods such as SVM. 

Parsing continuous variations of postures into the 
corresponding gestures can also be accomplished by 
identifying transitions between key postures. We propose 
a HMM-based gestures recognition method relying on the 
representation of intermediate postures by a set of 
primary/secondary atoms. By modeling the transition and 
observation of atoms instead of each individual postures, 
the state space and the computational complexity of the 
HMM can be drastically reduced. An overview of the 
proposed approach is illustrated in Figure 1. 

The paper is organized as follows; section 2 describes 
the 3D shape descriptor and its additive property. Section 
3 presents the body postures decomposition and 
classification inspired from the Matching Pursuit 
algorithm. Section 4 presents a gesture recognition 
method based on our primary/secondary posture 
description and recognition technique. Section 5 shows 
the experimental result of this work. Then the paper 
concludes by discussing the results, potential 
improvements and future work. 

 
Figure 1: Overview of the proposed approach 

2 Human Body Shape Descriptor 
We use the shape descriptor proposed by [13]. This 
statistical shape descriptor model preserves the 
localization of the geometric features considered, while 
small variations or noise in the shape will induce only 
small changes in the description and will not interfere 
with global representation. These properties are crucial for 
posture recognition.  

2.1 3D Human Body Reconstruction 
The shape descriptor is computed from the 3D human 
shape surface. We reconstruct the surface by computing 
the visual hull from image silhouettes captured from 
multiple angles. The silhouettes of human body are 
segmented by a Gaussian background model. The average 
and variation of each pixel of the background is inferred 
during the learning phase. Pixels in the new images that 
exceed certain variation threshold from the average value 
are considered as new objects in the scene. However, this 
method will segment real objects from the scene as well as 
their shadows. We assume that in indoor environment, 
shadows cast by diffuse light will have blurry boundaries. 
Therefore edge properties can be incorporated to eliminate 
shadow regions. Given a set of 2D silhouette images of 
human body from different angles, we can approximate 
the 3D shape of the original object by reconstructing the 
visual hull [14]. We compute the polyhedral 
approximation of the visual hull from polygonal 
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representation of the silhouettes [15]. This method is fast 
and allows us to achieve real-time reconstruction. An 
illustration of the cameras�’ configuration and the visual 
hull is shown in Figure 2. 

Figure 2: 3D visual-hull reconstructed from 4 images 

2.2 Shape Descriptor 
The number of vertices of the polyhedral visual hull 
depends highly on the polygonal approximation of the 
silhouette and often is not uniformly distributed on the 
surface. So we uniformly sample points within polygon 
triangles of visual hull. We define the shape of a object as 
the set of sampled surface 3D points P={Pi | i=1…N}. We 
compute a bounding reference shape CR that bounds the 
visual hull and centered at centroid of the point cloud. In 
our approach, we use a cylindrical shape, as depicted in 
Figure 3, however other shapes such as spheres could be 
also used. A set of uniformly sampled reference points {Qj 
| j=1…M} on the reference cylinder are defined. A 
coordinate system is defined for each reference point: it is 
centered on the point and tangent to the reference 
cylinder. For each point Pi on the visual hull and reference 
point Qj, We compute the relative coordinate PiQj. This 
relative coordinate is encoded in spherical coordinate 
system. That is, Pi – Qj = (r, ,  ). The radius r is 
normalized to [0, 1] with respect to the size of the 
cylinder. For each reference point Qj, we construct a 
K L P binned spherical distribution. Each bin (rk , l , p) 
stores the number of silhouette points Ni(k,l,p) projected 
onto that bin. The histograms over all reference points are 
then summed: 

i
i plkNplkN ,,,,'  

The bin values are then normalized with respect to the 
largest value: 

plkN
plkNplkN

plk
,,max

,,,,
,,

 

The descriptor of a shape P, Desc(P), is represented as a 
vector of K L P dimensions, recording the normalized 
value of the bins. The derived shape descriptor is invariant 
to the scale of the visual hull as the descriptor is 
normalized by the size of the reference cylinder. It is also 
translation invariant since the reference cylinder is placed 
on the centroid. Rotating the posture (and thus the visual 
hull) around spinal axis is equivalent as a cyclic 
permutation of the reference points around the cylinder, 
resulting in an unchanged global descriptor N(k,l,p). Thus 
the rotation invariance of the shape descriptor is also 
guaranteed. Figure 3 depicts such a descriptor. The 
disadvantage of rotation invariant descriptor, however, is 
that it cannot distinguish postures between left/right arms. 
Postures differing only in orientation, such as pointing 
sideward and forward, cannot be distinguished either. 

In this paper we will leverage on another key property 
of this shape descriptor: its additivity. That is, the 
descriptor of a composite posture is approximately the 
additive operation result of the composed sub-postures. 
Assume given a set of fixed reference points, Q, and two 
set of surface points S1 and S2. Since the unnormalized 
descriptor records the number of points lying in each bin, 
then the unnormalized descriptor of the union of the two 
point sets satisfies:   

Desc(S1  S2) = Desc(S1) + Desc(S2) 
This summation property cannot apply to the posture 
descriptor directly because the sample points set of the 
composite posture is not the union of the two sets of 
elementary postures, as they contain overlapping parts 
such as the torso. Assume we have two postures shape P1 
and P2, and the posture P12 which is the combination of P1 
and P2, as shown in Figure 4. The shape descriptors of 
these three postures satisfy the following relationship: 

Desc(P1) = Desc( arm(P1) ) + Desc( torso(P1) ) 
Desc(P2) = Desc( arm(P2) ) + Desc( torso(P2) ) 

Desc(P12) = Desc( left_arm(P12) ) + Desc( right_arm(P12) ) 
          + Desc( torso(P12) ) 

Since the descriptor is scale and rotation invariant, each 
body part will have similar descriptor values: 

Desc( torso(P12) )  Desc( torso(P1) )  Desc( torso(P2) ) 
Desc( P12 )  Desc( arm(P1))+Desc( arm(P2))+Desc( torso(P12) 
    Desc(P1) + Desc(P2) - Desc( torso(P12) ) 

  
Figure 3: Left: visual hull and cylindrical reference points 
selected. Right: the bin distribution plotted in Euclidean 
space. 

However, the descriptor is a global shape descriptor and 
does not separate between different body parts. We use a 

  
(a) (b) (c) 

Figure 4: (a) Posture P1 (b) Posture P2 (c) Composite posture 
P12. 
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"resting posture" that representing "stand still" posture. 
And use this to compensate for overlapping torso part 

Desc( P12 )  Desc( P1 ) + Desc( P2 ) - Desc( Resting ) 
Each posture descriptor is implicitly normalized with 
respect to the number of sample points, so the descriptor 
values will not biased by the sampling rate. Thus the 
relationship of the elementary and composite descriptor is 
more accurately represented by a "bin-occupancy" 
operator, rather than a summation. Such property will be 
exploited in the next section to decompose complex 
postures into set of simple basic postures. 

3 Decomposing Shapes 
Recognizing arbitrary human body posture is a 
challenging task as it has to take into account the 
variability across people in executing the same posture. 
We have used the shape descriptor directly with data 
classifiers such as support vector machines (SVM) to 
recognize different postures. We collected training data 
for all postures to be recognized, and trained a SVM 
classifier for each pair of them. New input posture 
descriptor was fed to those SVMs and the best fitting 
posture was selected. The advantage of using SVM 
classifiers is the high tolerance of noise and the 
recognition accuracy; however this method requires 
training the SVM on every posture to be accounted for. 
Using a SVM for each pair of postures results in a large 
number of SVMs, although a hierarchical classification 
can be used to reduce the number of SVMs [13].  

The additivity property of the shape descriptor, 
suggests that the recognition of complex body postures 
can be achieved by recognizing a subset of elementary 
postures called atoms. In this section, we propose a 
method for decomposing arbitrary input posture as the 
weighted sum of atoms. Such decomposition can be used 
to represent and recognize a large dictionary of complex 
postures from a small set of atoms. 

3.1 Matching Pursuit Algorithm 
A common representation of signals relies on the adaptive 
approximation technique. Such approach seeks to find the 
representation of function f as a weighted sum of elements 
from an overcomplete dictionary. Given a signal f and a 
redundant dictionary D as a collection of 
signals gD , this technique seeks to decompose 
the original signal f as a linear combination: 

,gf  

The optimal approximation of [ ] is the one that results 
in the weighted sum that most closely resemble the 
original function. Various methods have been proposed to 
find the optimal decomposition, such as: method of 
frames [16], best orthogonal basis [17] and basis pursuit 
[18]. Each method places different constrains on the [ ] 
vector, such as minimizing its L1 or L2-norm, and solves 
the weights accordingly. The original function can thus be 

represented by series of weight parameters. However, we 
want to use such approximation for feature selection 
instead of data compression. We intent each posture f to 
be approximated by only as few elements in the dictionary 
as possible, and each element closely matches the local 
properties of f. Finding the optimal approximation over a 
redundant dictionary was proved to be a NP-complete 
problem [20]. However, the matching pursuit (MP) 
algorithm proposed in [19] avoids such complexity. The 
MP algorithm assumes the input signal f and the basic 
elements, called atoms, in the 
dictionary MiAD i 1  are all in the Hilbert 
space. It also assumes that all atoms are normalized to unit 
length. The MP algorithm is iterative: at each iteration, it 
computes the n-th residue , starting with

nR fR0 , the 

MP algorithm chooses the atom that maximizes 
the absolute value of its scalar product with residue left 
from previous iteration (the projection of onto ), 
which is equivalent to minimize the magnitude of the next 
residue 

DAn
i

1nR n
iA

nR . The atom is defined by: DAn
i

in
Dg

n
i ARA

i

,maxarg 1
 

where , is the scalar product operator, and  is 
defined by:       

1nR
n
i

n
innn AARRR ,11

 

The main advantage of MP algorithm compared to other 
methods is its efficient computation: instead of solving for 
a global optimization, MP uses a non-optimal greedy 
method in each step, and chooses the element that reduces 
the most the residue function.  

3.2 Decomposing Postures 
Posture data, however, has one major difference compared 
to atoms used in signal or image decomposition: all the 
posture atoms have a large overlapping part at the torso, 
legs and head section. The densities of bins around torso 
are usually much higher than densities corresponding to 
arms and hands. This makes the original matching pursuit 
unstable for use in the posture decomposition process. 
Indeed, after the first iterations, bins at torso part of the 
residue will have large negative values due to repeated 
subtraction, and subsequent iterations will then focus on 
compensating the negative bins instead of trying to fit the 
actual arms and hands features as depicted in Figure 5. 

We propose a modified matching pursuit algorithm 
suitable for decomposing a posture f in to a set of atoms. 
Assuming we have a dictionary of postures D={Ai | i = 0 
to M}, where the first atom A0 is the resting posture, i.e. 
the common denominator of all postures. The input 
posture f, and the atoms are normalized to unit length. 
Then the modified MP decomposition estimates the 
residues , starting with: 

nR

000 , AAffR  
and chooses the atom  such that:  DAn

i
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in
Dg

n
i ARoverlapA

i

,maxarg 1
 

where the residues ,are defined by: 
nR

n
inn ARdiffoverlapR ,_ 1

 
The overlap(f, g) function returns the number of non-
empty bins where f and g overlap. In each iteration, the 
algorithm will select the atom that has the most 
overlapping bins with previous residue. And the 
overlap_diff(f,g) function removes from f the overlap bins 
among f and g.  

By removing the resting posture A0 before applying 
matching pursuit, we prevent other atoms from absorbing 
the torso values, which are considered as non-features 
they do not characterize the variations among atoms. This 
will keep the weights of the atoms balanced. We also 
operate only on the overlapping property instead of the 
bins�’ density. This ensures that any noise on the torso 
region that was not subtracted in the first step will not 
interfere with the atom selection process in the subsequent 
iterations as in the original MP algorithm. After M 
iterations, we compute the weight of each atom as 
follows:

00 , Af  and:            

MiAR
i

n
i AAn

n
ini ...1,,

,
1

 

This will result in a weight vector { i | i=0,1…M}, which 
is far smaller than the dimension of the descriptor.  

After estimating the weights of the decomposition of 
the posture f into the set of selected atoms Ai, it is 
straightforward to recognize the composition of the 
postures. First, a posture threshold is applied to the 
weights to eliminate atoms decomposed from noise. Then 
the two atom postures, different of A0, with largest 
weights are selected and constitutes primary and 
secondary atom postures, ordered by their lexical 
precedence. Note that the resting posture A0 is always 
present and has largest weight, as it absorbs the bins at the 

torso part. It is possible that after thresholding, none or 
only one atom is left. Such posture will be classified as 
resting posture or the corresponding atom A0.  

 
(a) 

 
(b) 

Figure 5: Descriptor bin densities plotted as mesh. x, y 
axis are r and   bin indices,  is fixed as zero. (a) The 
original posture descriptor. (b) The residue after first two 
iterations. There are large negative sections in the residue.

Frequently, the posture f corresponds to multiple 
instances of the same atom. For example, the posture 
representing two arms up in symmetric configuration, 
corresponds to twice the contribution of the atom 
representing one arm. The proposed matching pursuit 
algorithm identifies automatically such situations by 
analyzing the estimated weights. By the additive property, 
the densities of the arms part of symmetric postures are 
about twice than the densities of corresponding one-arm 
posture. And these higher densities will reflect on the 
value of weights that are computed from the scalar 
product of densities vectors. To solve the multiple-
instances problem, we collect training data for each one-
atom elementary posture and decompose them by the 
corresponding atom, and record the average weight i

’. 
After decomposing an arbitrary posture, we compare the 
weight of each atom, i, to the corresponding i

’. If the 
ratio of the two weights exceeds certain instance 
threshold, that atom is considered to be of multiple 
instances and the primary and secondary atoms are 
marked to be the same atom.  

3.3 Selection of Atoms and Learning 
An essential element in the posture decomposition is the 
selection of atom postures. The atoms in the posture 
dictionary must be discriminative; otherwise similar atoms 
will compete with each other in the matching pursuit 
process, resulting in low weight value distributed over 
multiple atoms. The choice of the histogram bin resolution 
also affects the discriminative power of the atoms. 

To select the most distinctive atoms, we collected 30 
different arbitrary postures. For each pair of postures Pi 
and Pj, we ran the matching pursuit algorithm, using Pj as 
the atom to decompose Pi, and record the resulting 
weights in a 30x30 symmetric matrix M shown in Figure 
6. This matrix is then decomposed by Singular Value 
Decomposition (SVD) and its lower rank approximation is 
computed. From the lower ranked matrix we selected five 
atoms corresponding to the largest eigenvalues, these 
allow to extract the corresponding elementary postures. 
These atoms, depicted in Figure 7, will serve as atoms in 
the posture decomposition process. This selected set of 
postures generates a dictionary of a total C(5,2)+5 = 15 
recognizable composite and elementary postures.  

 
(a) (b) (c) 

Figure 6 :(a) The resulting weight matrix M of matching 
pursuit decomposition of each pairs of 30 postures. (b) Singular 
values of M. (c) Rank 1 approximation of M 
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4 Gesture Recognition: Dual-state Hidden 
Markov Model 

The posture recognition method presented in this paper 
provides an efficient description for gestures analysis.  It 
parses continuous variations of the postures into 
occurrences of the elementary postures or atoms available 
in the dictionary. In this section we will present a 
formulation of a Hidden Markov Model (HMM) relying 
on the primary/secondary decomposition of arbitrary 
postures for gestures recognition. 

The elements of a HMM consists of a set of states S = 
{s1, s2, … sN}, a set of observation symbols: O = {o1, o2, … 
oM}, a state transition probabilities matrix A = {aij}, aij = 
P( qt+1 = sj | qt = si ), 1  i, j  N, and a state-observation 
probabilities matrix: B = {bjk}, bjk = P(ok | sj ), 1  j  N, 1 

 k  M and finally, the probabilities of initial states: 
 = { i}, i =P(q1 = si), 1  i  N 

Given the elements above, a HMM is often represented as 
(A, B,  ). Since [21], HMM have been widely used by 
researchers to model and recognize the temporal or spatial 
transition of gestures [22][23]. In proposed methods for 
gesture recognition, each gesture is defined as a HMM 
with different state transition matrix A, and each state is 
defined as a posture or associated to a motion profile. The 
aforementioned methods seek to find the most probable 
model among available gestures that describes the 
observed posture sequence. These approaches, however, 
require an extremely large number of states space as the 
number of gestures to be modeled increases. To address 
this limitation, we propose a formulation of HMM based 
on atoms instead of complete postures. That is, we have 
state space is defined by the atoms: S = {A0, A1, … AN} 
and the set of observations that corresponds to the 
decomposition of each posture into a primary and 
secondary atom: s

j
p

i AAO , , 0  i,j  N. 
The set of observations represents all possible 

decomposed pairs of primary/secondary atoms. The 
transition matrix A and observation matrix B are also 
defined based on atoms, respectively. A = {aij}, aij = P( 

qt+1 = Aj | qt = Ai ), 0  i, j  N, and B = {bjk}, bjk = P(ok | 
Aj ), 1  j  N, 0  k  M. 

In our framework we assume the initial state is 
always the resting posture:  = { i}, 0 = 1, i=0, 1  j  
N. However, this practical assumption does not reduce the 
scope of the proposed approach, since we can easily detect 
the resting posture. 

In this paper we assume that the transition and 
observation of the Primary/Secondary atoms in a gesture 
are independent. Assume G is the dictionary of all pre-
defined gestures. Then each gesture in G consists of two 
HMMs instead of one, one for the primary atom and the 
other for the secondary atom, each with different 
transition matrices. The considered HMM is then defined 
by:  GimmmmG s

i
p

iii ...1,,, ,  
and ,,,,, BAmBAm S

i
S
i

P
i

p
i

 

   
A0 A1 A2 

  

 

A3 A4  
Figure 7: Five atom postures selected automatically by the SVD 
analysis. 

The input sequence of K postures is decomposed into a 
sequence of primary/secondary atom compositions 

Tvvvd ..., 21 , where s
t

p
tt AAv , , p

T
ppp AAAd ..., 21 , 

s
T

sss AAAd ..., 21 . For every input vector d, we want to 
find the most probable gesture in the dictionary by 
solving: 

dmpm i
Gmi

maxarg  

Assuming that the prior probabilities of all gestures are 
equal, the problem becomes finding the gesture model that 
has the highest likelihood for a given observation. 

i
Gm

i
Gm

mdpdmpm
ii

maxargmaxarg  

And the likelihood is defined as: 
s
i

sp
i

p
i mdpmdpmdp  

The probability can be computed by forward algorithm.  
Parsing gestures into respective atoms, we reduce the 

original HMM model with possible O(N2) size of state 
space into two HMM models, each with O(N) size state 
spaces. 

5 Experiment Results 
 We have used the proposed 3D shape descriptor and 
posture decomposition technique for identifying user�’s 
postures while performing specific gestures. The 
experimental environment consists of four synchronized 
cameras, allowing real-time image extraction, silhouette 
segmentation, and 3D human body visual hull 
reconstruction at 12 frames per second. We used a 
cylindrical reference shape of 5 vertical by 16 horizontal 
reference points to infer the shape descriptor. We chose 
the bin resolution to be 24(r)×24( )×24( ). This 
resolution allows us to select 5 atoms as depicted in 
section 3.3. Higher resolution can capture greater local 
details of the posture shapes, allowing more atoms, but 
also requires more computational resources. 
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5.1 Posture Recognition Results 

  

  
Figure 9: ROC Curves of the decomposition of an atom 
posture and of a composite posture using the proposed 
Matching Pursuit algorithm. 

From the collection of 30 different postures, we have used 
the 5 postures including the resting posture, labeled as A0 
to A4, as atoms. These postures were selected by the SVD 
analysis as described in section 3.3.  These atoms will be 
used in the remaining for characterization of postures and 
gestures. We select a posture threshold value of 0.0042, 
all atoms�’ weight below this value will be discarded as 
noise. The instance threshold is 1.4. We collected 1000+ 
samples of each single atom posture and trained the 
average weight of the corresponding atom after 
decompositions. If after decomposition, the ratio between 
an atom weight and its average weight exceeds this 
threshold, the atom is considered of multiple instances. 
The proposed approach allows recognition of postures 
across people without a user-specific training data set. To 
show the recognition rate across persons, we collected 
video sequences of all possible atom combinations; each 
contains about 1000 frames of two different persons. The 
average recognition rates of different postures are shown 
in Figure 8. The atoms were trained on the first person 
(left) 
   Person 
 
 
 
Postures     

A0 100 100 94.6 
A1 88.4 88.7 80.9 
A2 85.8 91.0 87.7 
A3 91.9 82.7 97.0 
A4 81.6 94.2 79.4 

A1 A1 97.2 98.5 96.2 
A1 A2 95.1 85.8 86.8 
A1 A3 94.0 74.4 90.8 
A1 A4 90.5 73.1 72.3 
A2 A2 99.2 91.5 89.9 
A2 A3 99.1 98.1 88.2 
A2 A4 94.3 70.2 87.9 
A3 A3 85.0 70.8 72.4 
A3 A4 99.7 94.6 81.7 
A4 A4 88.6 74.3 66.9 

Figure 8: Recognition rate of different composite postures 
performed by different users. The model has been trained on 
training data from the person on the left. The training and 
testing data sets are different for the first person. 

5.2 Effect of Decomposition Parameters 
Choosing the posture and instance thresholds value is the 
tricky part: a too small posture threshold, then minor noise 
surface points on the visual hull result from image 
segmentation error or self-occlusion of human body will 
be classified as atom postures. Setting the threshold too 
high, then many valid decomposition will be filtered out, 
resulting composite posture been classified as basic 

postures or even resting postures. 
The effect of different threshold and the 

discrimination power of our recognition method can be 
estimated by plotting the Receiver Operating 
Characteristic curve (ROC curve). To evaluate the MP 
algorithm, we collected 1000 data sample for each 
possible composite and atom posture. Then apply the MP 
decomposition and recognition for each posture. Each 
posture records its rate of true positive (correctly 
recognized) and false positive cases under different 
thresholds, and plot on the ROC curve. As shown in the 
example ROC curves in Figure 9, the curves are tightly 
bounded to left and top boundaries, indicating that our 
posture recognition method is very accurate.  

5.3 Gesture Recognition Results 
The second set of experiments focused on assessing the 
performance of the primary/secondary HMM approach for 
gesture recognition. Due to time limitation, we defined six 
simple gestures by hand-crafting the primary/secondary 
atom state transition matrices instead of training them. 
And we trained the observation matrix by over 10000+ 
samples of all atom combinations. The gesture testing data 
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Figure 10: Two examples of a simple gesture (a) 
Pointing forward. (b) Pointing sideward 
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are collected from two subjects. Each person performed 
pre-defined gestures with different rotation variances, 
such as pointing forward or sideward, as shown in Figure 
10. Since our posture descriptor is rotation invariant, both 
forward and sideward pointing actions were correctly 
recognized as the same �“pointing�” gesture. More complex 
gestures modeled by this dual-HMM can also be correctly 
classified (Figure 11). However, since we assume that the 
primary/secondary state transitions are independent, 
gestures that only differ at the synchronicity of the two 
atoms cannot be distinguished. For example, two arms 
point forward at the same time or one arm points after the 
other are considered the same gesture. Thus special care 
must be taken to design the primary/secondary state 
transition matrices of those gestures.  

6 Conclusion 
Identifying user postures is a first step towards the 
challenging task of gestures recognition. In this paper we 
presented a method to characterize postures as a 
composition of basic primary and secondary atoms 
directly from their 3D shape descriptor. For this purpose 
we have reformulated the matching pursuit algorithm. The 
description of an arbitrary posture into a primary and 
secondary atom provides compact representation of a 
large dictionary of postures using a small dictionary of 
atoms. The proposed method allows for recognizing a 
large set of postures from a small set of atoms.  

Similarly, the formulation of a HMM relying on the 
primary/secondary decomposition provides a more 
efficient approach for gestures recognition by allowing a 
larger descriptive power using a small set of atoms. We 
have investigated the characterization of basic gestures, or 
gestemes as a transition states models of the canonical 
body posture atoms. Our experimental classification of the 
posture transitions are very encouraging and indicate a 
strong temporal structure in the primary/secondary atoms 
that could be used for robust gesture inference.  
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Figure 11: An example of a complex gesture and its 
primary/secondary state transition models 
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