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ABSTRACT 

 

Photogrammetric techniques for constructing 3D virtual environments have previously been plagued by expensive 

equipment, imprecise and visually unappealing results. However, with the introduction of low-cost, off-the-shelf 

(OTS) unmanned aerial systems (UAS), lighter and capable cameras, and more efficient software techniques for 

reconstruction, the modeling and simulation (M&S) community now has available to it new types of virtual assets that 

are suited for modern-day games and simulations. This paper presents an approach for fully autonomously collecting, 

processing, storing and rendering highly-detailed geo-specific terrain data using these OTS techniques and methods. 

We detail the types of equipment used, the flight parameters, the processing and reconstruction pipeline, and finally 

the results of using the dataset in a game/simulation engine. A key objective of the research is procedurally segmenting 

the terrain into usable features that the engine can interpret – i.e. distinguishing between roads, buildings, vegetation, 

etc. This allows the simulation core to assign attributes related to physics, lighting, collision cylinders and navigation 

meshes that not only support basic rendering of the model but introduce interaction with it. The results of this research 

are framed in the context of a new paradigm for geospatial collection, analysis and simulation. Specifically, the next 

generation of M&S systems will need to integrate environmental representations that have higher detail and richer 

metadata while ensuring a balance between performance and usability. 
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INTRODUCTION 

 

This paper discusses how data collected from low-cost, commercial drone technology can be used to create usable, 

interactive terrain for use in simulation and virtual environments.  The capability provides small-units (fire teams, 

squads) with an organic asset that allows them to autonomously fly an area of interest (AOI), capture imagery, and 

then use that imagery to produce a 3D reconstruction.  This reconstruction (or the imagery from which it is derived) 

may be used for simulation, mission rehearsal, or enhanced situational awareness.  The resulting datasets have very 

high level of fidelity (up to 1cm precision), and the benefits of providing the units with this embedded capability 

mean they do not have to solely rely on large collectors or other services to supply them with information about a 

particular area. 

 

Aircraft and Camera Selection 

Unmanned aerial systems (UAS) today range significantly in size, cost, flight duration, lift capacity, and sensor 

capabilities.  Platforms range on the low-end targeting novices, to mid-level hobbyists, to full-grade commercial 

equipment.  Prices can range from $25 toys to $10Ks for professional photographic or cinematic equipment.  Our 

research centers around using mid-grade platforms to take images of an AOI and then photogrametrically 

reconstructing the environment for a game or simulation.  The basis of photogrammetric reconstruction for simulations 

(first or third-person) is rooted in images that are consistent, of decent quality, and overlapping.  With that as a 

requirement, we decided to test two primary platforms as part of this effort  - 1) a DJI Phantom 2 with GoPro 3+ 

(Black); and 2) DJI S900 with Panasonic GH3 camera.  Both offer decent flight times, automated flight controls (i.e. 

autopilot), quality gimbals, moderate lift capability and reasonable cost.  Below is a table summarizing the comparison 

between the two: 

 

Table 1. Multi-Rotor Comparison 

 

Aircraft Cost Flight Controller Flight time Gimbal Camera 

DJI Phantom 2 $2000 Naza-M V2 15 – 20 min H3-3D GoPro 3+ 

DJI S900 $4000 A2 12 – 17 min Zenmuse Z15 Pana GH3 

 

Other suitable candidates would have included craft like a 3DRobotics Iris+ or X8.  There was no underlying reason 

to use DJI-only equipment, though overall it tends to be more plug-and-play than its competitors, and peripheral 

equipment (GPS, on-screen display (OSD), ground station) could be shared between the aircraft.  A multi-rotor (i.e. 

quad / hex-motor) system was selected over a fixed-wing for several reasons.  Though fixed-wing would have given 

us extended range and battery time, the stability of fixed-wing gimbals is not as precise as rotary-wing which results 

in distortion of the images, nor is the lift capacity as high, which is required for the better imaging systems.  Finally, 

when reconstructing certain specific features (e.g. buildings), and orbit pattern is desired which can be achieved more 

consistently with multi-rotors than fixed-wing.  Note that FAA regulations currently limit hobbyist flying of any RC 

aircraft to 400 ft and below, away from airports and populated areas, and always remaining within line-of-sight of the 

operator.  Commercial UASs (including research equipment) require either a Section 333 exemption or Certificate of 

Airworthiness (COA), which can range from several hundred to several thousands of dollars and can take months or 

years to acquire.  This should be taken into consideration before purchasing or flying any type of aircraft for non-

hobbyist purposes.  For this particular effort, which was considered non-hobbyist (i.e. commercial), permission was 

sought from base installations, specifically Ft. Irwin.  Military and other controlled installations are exempt from FAA 

flight regulations (including air worthiness certifications), but base permission and approval is still required. 
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Camera selection for aerial photogrammetry is highly dependent on the lift capacity of the aircraft.  Full-range digital 

single-lens reflex camera (DSLRs) are preferred but nearly impossible to lift for any meaningful period of time.  For 

example, the DJI S1000 can lift a DSLR with 18 – 105mm lens but flight time is restricted to 6 – 8 min.  Even with a 

stock 18 – 55mm lens the flight time is not much more than about 10 minutes.  Because we were interested in mapping 

as much land area in as few flights as possible, the weight-time balance was of particular interest.   

 

Another consideration with the aerial platforms are batteries.  Lithium-polymer (LiPo) batteries continue to 

incrementally improve, though no large-scale enhancements have been made for a few years.  That means that even 

the best LiPo batteries will only give you minor improvements in either flight time or lift.  The cost is of significant 

concern here as batteries can be levels of magnitude more expensive (and heavier) for only marginally improved 

output and/or capacity.  The flights times for each of these batteries will vary significantly depending upon the type 

of motor, payload, and weather conditions.  Examples are in Table 2 below. 

 

 

Table 2. LiPo Battery Comparison 

 

Capacity Cell Count Weight Cost 

2200 mAh 2S 250g $10.00 

5000 mAh 4S 600g $25.00 

5800 mAh 8S 1375g $90.00 

5800 mAh 10S 1300g $100.00 

 

By far the most important decision when determining the aerial platform is the type of camera to be supported.  They 

can roughly be broken into three categories: 

 

1) Compact action cameras – e.g. GoPro 

2) Point-and-shoot –  e.g. Nikon Coolpix   

3) Mirrorless Point-and-shoot: e.g. Panasonic GH3/4 

4) DSLR – e.g. Canon Rebel T5 

 

The only one of the above immediately ruled out given the limitations of the flight hardware was DSLRs.  Though 

they may be mounted and flown using commercially available equipment, they often suffer from poor flight times and 

lack of control.  This will likely change as batteries and airframes improve, but unless shooting high-definition, live-

action shots, there is no need to use such high-end equipment, certainly not for photogrammetry.  The compact action 

cameras are the cheapest and offer the best flight times.  However, they suffer from poorer image quality, particularly 

the GoPros which have a tremendously wide angle field of view (FOV), software shutter, and plastic lens.  Performing 

software corrections for these three variables even with the best commercial photogrammetric software can be 

challenging (Balletti et. al, 2014).  The point-and-shoot (both compact and mirrorless) offer the best balance between 

size and image quality.  Assuming a suitable gimbal can be found, they offer the ability of high-quality images that 

can be software corrected and offer the truest form of imagery for cost/weight. 

 

Flight Planning & Image Capture 

After the airframe, camera, and peripherals (ground station, OSD) are selected, flight planning may begin.  For this 

effort, flights were conducted both manually and autonomously using the stock DJI RC Transmitter (manual) and the 

DJI Ground Station (autopilot).  This ground station allows users to input waypoints and set altitude, heading and 

speed so the aircraft can fly autonomously from waypoint to waypoint. Images were captured every 2- 5 seconds 

depending upon the area flown, altitude and forward speed.  Flight planning must account for sufficient overlap such 

that the photogrammetric software can create sufficient tie points to produce a point cloud.  This is detailed further 

below.   

 

The first task in the image capturing process is to determine what an acceptable level of detail and pixel resolution is 

for reconstruction. In this case we will state that we would like each pixel to represent at least a centimeter on the 

ground plane. Ideally this number should be derived from the resolution of the output display, angle of view of the 

viewer and the height of the viewer. However we face some practical limitations as well such as how close we can fly 

our craft and the camera package it is carrying. In the example below, we are working with the GoPro3+ Black that 

can capture a 4000x3000 pixel image while displaying a, ~122.6° horizontal angle of view (Downing, 2015). 
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By flying the craft in stripes (Figure 1) 15 meters off the ground we can achieve a .83 cm resolution. The camera is 

flown nadir – i.e. 90 degrees pointing straight down.  In 18:49 minutes we can take 351 photos, 13 meters apart, 

shooting a photo every 2.5 seconds at 5 meters per second. This timing is convenient as it is very close to the 2 second 

interval timing of the GoPro. This should fit within the 25 minute flight time of the Phantom II allowing that the flight 

time will be reduced by the weight of the gimbal and GoPro. This would cover an area of ~225 meters by ~225 meters 

or 56,000 square meters. 

 

   
Figure 1. Striping Flight Pattern 

 

High Flight 

It is also recommended to fly the same area at a high altitude that will prevent accumulated error and ground curvature 

that can occur with a low flight. For this flight we recommend going to the full legal altitude, 121 meters. This can be 

flown very quickly and will only require a very small number of images. If your lower-altitude terrain flight requires 

multiple flights to cover a given area, the high altitude flight should cover this entire area and can be used to calibrate 

separate groups to one another without the aid of survey points. For a similarly sized area as above, it only requires 4 

photos and 2.30 minutes to capture. 

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015 

2015 Paper No. 15041 Page 5 of 12 

 

PHOTOGRAMMETRIC RECONSTRUCTION 

After the images were captured, they are then 

fed through commercial photogrammetric 

software to produce the initial point cloud. For 

this effort, we compared three different 

solutions – Pix4DMapper, Smart3DCapture 

and Photoscan.  Each produce variations of 

point clouds, and depending upon the type of 

area reconstructed (urban vs rural, 

mountainous vs flat), will produce qualities of 

varying degrees.  We did not find that any of 

the three packages were markedly better 

overall.   Fundamentally, they are all rooted in 

taking each image and creating a tie point – 

these are corresponding points that are found in 

various images, and produce the foundation of 

the model.  It allows the third dimension 

(depth) to be extracted by comparing the 

distance between points in various images.  

After creating the tie points, a dense three 

dimensional point cloud is produced. A 

triangle mesh was also generated to run basic algorithms to determine what polygons best matched the point cloud 

and to smooth out the model for use in different systems. 

 

In addition to generating the point cloud, we must also insert ground control points (GCP’s) to geo-locate the final 

model.  At a minimum, 3 GCPs are required to geo-locate the entire surface area. In order to do this, one must take a 

point in an image and provide a latitude/longitude/elevation based on some existing survey or GIS data (such as 

Google Earth).  After doing this for at least three (preferably more) points, the resulting point cloud will have 

coordinates attached at each point. Because the level of resolution of the model is higher than even the best elevation 

data (DTED-5, NASA ASTER), these geo-tags allow it to be draped over existing elevation models for inset areas 

requiring more detail. 

 

Tilt Test 

In our some of the results from our initial flights we found some undesirable artifacts in the man-made structures of 

the scene. The walls of the reconstructed buildings would bulge out rather than reflect the flat construction. For 

example, the buildings in Figure 3 have clear right angles, but when reconstructed they appear with rounded walls 

seen below: 

 
Figure 3. Mesh Reconstruction of Buildings 

 

To correct for this, we propose tilting the camera to 45 degrees (+/- 10 degrees) to see if having more images of walls 

and having the walls in the center of the image provides us with better results.  This would minimize linear distortion, 

particularly in intersections of the y and z axes.  

 

POINT CLOUD PROCESSING AND 3D SCENE GENERATION 

 

Figure 2. Pix4D Mapper 
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Photogrammetry packages typically produce output that is not well-suited for direct import into a real-time simulation 

engine. The automatically generated point clouds and meshes are extremely dense, with a very large number of vertices 

and/or polygons, and often contain noise from errors during photogrammetric reconstruction.  Furthermore, the point 

clouds are unstructured, and the features of the scene (e.g. terrain, buildings, vegetation, etc.) are not identified.  In 

modern simulation engines, terrain is typically represented in a manner that is more efficient to load and display, such 

as height maps, where other geometry is rendered as 3D meshes that have been optimized with polygon count and 

texture sizes appropriate for real-time performance.  Therefore, it is necessary to apply a post-reconstruction 

processing pipeline to prepare the dense and noisy data produced from photogrammetry for use in a game or simulation 

engine (in our case – Unity 3D). 

 

Figure 4 illustrates the key stages of the processing pipeline.  First, the unstructured point cloud is segmented into two 

separate clouds, representing ground and above-ground points.  These segmented point clouds are then processed 

using two distinctly different pipelines.  Ground points are transformed into height maps with corresponding textures, 

which can be directly imported into Unity’s existing terrain system.  Above-ground points are further analyzed and 

processed to generate either geo-specific or geo-typical 3D meshes suitable for real-time rendering.  Each stage is 

discussed in further detail in the following sections. 

 

 

 
Figure 4. An Overview Of The 3D Scene Generation Process 

 

Ground Point Classification 

The first step in processing the unstructured point clouds generated from photogrammetry is to separate the ground 

points from above-ground points belonging to buildings, vegetation, and other features.  To achieve this segmentation, 

we make use of a progressive morphological filter (Zhang et al., 2003), which is readily available in both the open-

source Point Cloud Library (PCL) and commercial software packages such as Agisoft Photoscan.  Although this 

algorithm was originally developed for airborne LIDAR data, we found it to be quite effective for photogrammetric 

point clouds as well.  While this computational approach is automatic, we found that the quality of the output depends 

upon the selected algorithm parameters.  Therefore, it was often necessary to run the algorithm multiple times, starting 

with more conservative parameters that would only identify larger structures, and then iteratively increasing sensitivity 

until the right balance was achieved.  Figure 5 shows an example of a segmented point cloud after ground point 

classification. 
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Figure 5. A Segmented Point Cloud After Processing With The Ground Classification Algorithm.   

 

 

 

Ground Height Map and Texture Generation 
Game and simulation engines typically represent terrain in a more computationally efficient format than 3D meshes, 

since these surfaces need to be rendered over large areas.  The Unity Game Engine generates terrain models from 

height maps, a compact image-based format where each pixel represents the elevation at a given coordinate.  The 

engine can then leverage these terrain assets for real-time simulation, supporting functionality such as level-of-detail 

manipulation and automatic collision detection. 

 

Processing the segmented ground point cloud begins with voxelization, which imposes a regular 3D grid onto the 

point cloud.  The X and Y resolution of the voxel grid corresponds to the desired output resolution of the height map 

image.  For each two-dimensional column, the highest occupied voxel (3D cell) is computed, and this height value is 

recorded in the corresponding pixel of the height map.  Any holes left after removing the above ground structures and 

vegetation are filled in at the ground height level of the bordering pixels.  Additionally, ground segmentation 

algorithms tend to generate some noise on edges of the removed above ground features, which produce “spikes” in 

the height maps. These artifacts are essentially salt-and-pepper type noise in the images, which we removed by 

applying a median filter.  These height maps are stored in a binary RAW data format that can be directly imported 

into Unity. 

 

Since the height maps only store the elevation of the terrain surface, it is also necessary to generate texture images 

that include the color information for each pixel in the height map.  When constructing the voxel grid, the average 

color of all the points that fall within the boundaries of each 3D cell is computed.  When a voxel is selected for the 

height map, the color for that cell is then copied to the corresponding pixel in the texture image.  These images are 

saved in PNG format.  The quality of the resulting terrain depends on the selected resolution of the height map and 

texture images.  In our experience, visually appealing textures were achieved using approximately 50m x 50m terrain 

regions with height map and texture resolutions of 512 x 512 pixels.  This corresponds to a voxel size of approximately 

10cm.   

 

Due to limitations in memory and computation, expanding the resolution of the texture map for areas much larger than 

50m x 50m results in a significant framerate decrease.  Therefore, to manage this process more effectively, larger 

areas are represented using tiles at the previously mentioned resolution.  Our terrain processing algorithm generates 

an XML metadata file that identifies the size, global location, and the image assets for each tile.  We developed a 

custom import script for Unity that processes the XML tilesets and generates the terrain for the entire region 

automatically.  Figure 6 shows an example of terrain rendered in Unity after importing the height maps and 

corresponding textures. 
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Figure 6. Terrain Rendered In Unity Engine.  Artifacts From The Removed Above-Ground Features Will Be 

Covered By Geometry. 

 

 

 

Above-Ground Feature Classification 
In order to generate the most appropriate 3D models, it is necessary to further classify above-ground features.  Man-

made structures, such as buildings, light poles, and other objects, have very different geometric qualities from organic 

objects, particularly vegetation.  Because our pipeline needs to process these different object classes differently, we 

developed a method to extract vegetation from the above-ground point clouds. 

 

When accurate depth information is available such as the case with dense aerial LiDAR data, vegetation can be 

effectively identified using geometric data (Zhou, Q. Y., & Neumann, 2013). In our case, however, the presence of 

irregular geometric forms and partially occluded or shady areas characteristic of vegetation results in a large amount 

of noise in photogrammetrically reconstructed point clouds. This limits the applicability of depth-based geometric 

approaches common for LiDAR data.   

 

Alternatively, color information can be used to identify vegetation-covered areas. This approach is often used when 

working with a single aerial image.  Typically, intensity value for each point is computed using a color-based invariant 

corresponding to vegetation or building roof, followed by automatic thresholding methods to classify points (Shorter 

and Kaspsris, 2009; Sirmacek and Imsalan, 2008).  However, in our experience applying these methods to 

photogrammetric point clouds, the proposed color invariants did not generate sufficiently high contrast between 

vegetation and non-vegetation areas to identify vegetation. 

 

However, we found that vegetation can be identified using color-based classification based on Euclidean distance 

from red, green, and blue colors in RGB space. We begin a simple assumption that points with the colors to RGB 

green (0, 255, 0) are likely vegetation candidates. This method required a couple of further refinements to avoid mis-

classifying shadows, highlights, and aquamarine colored objects. First, we excluded from vegetation candidates any 

point with blue component value above 126, which includes many highlights, concrete, and water colors. Second, 

excessively dark point (all blue and red color channels values below 50 and green channel value below 25) were 

classified as shadows. Figure 7 shows an example of vegetation that was extracted from a complex and noisy point 

cloud using color-based classification.  In general, the resulting filter was quite successful in identifying vegetation in 

a computationally efficient manner when applied to our test datasets. 
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Figure 7. A Point Cloud With Vegetation Extracted Using Color-Based Classification 

 

There are a number of ways in which this approach can be extended in the future.  One limitation of is that structures 

with color properties similar to vegetation (e.g. a green roof in a residential area) may cause these points to be identified 

as vegetation. We believe that these false positives may be filtered out with an additional classification step that rejects 

vegetation candidates with planar geometry.  Additionally, some types of vegetation may have permanent or seasonal 

yellow, orange, or red shades.  Similarly, it may be possible to increase the robustness of the vegetation filter by 

considering off-color objects if they exhibit structural properties similar to other identified vegetation.  In general, we 

suggest that a filter that considers both color and geometric properties in combination will likely yield the best results. 

 

Building Reconstruction and Texturing 

To generate 3D models of buildings, processing the segmented point cloud using an automated meshing algorithm 

would seem a reasonable approach.  The result of applying this procedure is typically a textured mesh representing all 

buildings in the scene in a standard format that can easily be imported into a game or simulation engine. Many 

commercial photogrammetry software packages include automated meshing functionality, although there are many 

other free implementations such as MeshLab or the open-source Point Cloud Library. 

 

In our experience, 3D meshes generated from 

photogrammetric point clouds produce a reasonably good 

model when viewed at a distance (see Figure 8). While the 

number of polygons in the raw output is often much too large 

for real-time applications, the polygon count can be 

sufficiently reduced using automated mesh decimation 

algorithms with minimal noticeable impact to visual quality.  

However, while the generated models appear decent from a 

distant viewpoint, the visual quality degrades when viewed 

from a first-person perspective on the ground.  This is due to 

the noisy nature of point clouds produced from 

photogrammetry; small errors during the reconstruction may 

produce visual artifacts that may not be visible from far away, 

but become more obvious at close range.  Furthermore, the 3D 

meshes produced directly by photogrammetry software are 

unstructured: all above-ground features are combined into a 

single mesh. Despite these drawbacks, however, we believe 

this is a reasonable first step in generating building models for 

simulation. 

 

We are currently building a more sophisticated processing pipeline that can further segment the point cloud into 

individual buildings and other man-made features (roads, light and electric poles, fences, etc.) and group these features 

into appropriate classes. There is currently intensive ongoing research focusing on reconstructing 3D models of 

buildings using data from various sources; for an overview see (Musialski et al., 2013) and (Haala and Kada, 2010). 

This process requires analyzing the geometry of each building to identify the footprint, the height of each of its 

sections, and the structure of the roof. Once the model of the roof is created, vertical walls can then be generated along 

the edges of the roof, according to the building footprint. We suggest that in many cases, this will produce better visual 

Figure 8. Textured 3D Meshes Constructed Using 

The Automated Meshing Functionality In 

Photogrammetry Software. 
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representation of the structure, since it leverages architectural knowledge (e.g. most building walls are vertical) and 

approximates noisy surfaces from the photogrammetric point cloud with cleaner geometry. Textures would then need 

to be generated by reprojecting the color pixels from the source images onto the newly generated polygons. 

 

Vegetation Models 

Generating 3D models of vegetation from photogrammetric point clouds is a challenging problem that we are currently 

exploring.  Due to the extremely complex geometric properties of vegetation, the meshes generated from 

photogrammetry packages tend to be extremely poor – trees often appear as solid green “blobs.”  In general, generation 

of geo-specific vegetation models, such as leaf-based modelling of trees by fitting a surface segment to every leaf 

(Zhou and Neumann, 2013), rely on low-noise high-density depth measurements. Such approaches are not possible 

when working with noisy data generated from aerial photogrammetry. Additionally, furthermore, even if it were 

possible generate an accurate detailed model, this would be computationally taxing for real-time simulation scenarios. 

 

Fortunately, in most cases, it is not necessary to generate geo-specific models for trees and other common types of 

vegetation. Therefore, we suggest an alternative approach where a similar 3D model is substituted using a library of 

geo-typical vegetation assets. For this problem, the key challenges are twofold.  First, the properties of the original 

object in the point cloud must be analyzed to determine key information (e.g. vegetation type, color, size, shape, etc.)  

Second, a sufficiently large library of assets must be accumulated with relevant metadata that can be used to identify 

the most suitable candidate to substitute.   

 

Ultimately, we believe that geo-typical approaches will be most appropriate for representing vegetation in simulations 

generated from aerial photogrammetry.  Unlike man-made structures, which often exhibit planar geometry, these 

highly complex organic objects are difficult or impossible to reconstruct accurately from noisy images.  However, 

plants can be reasonably approximated using existing 3D assets that have been optimized for real-time rendering. 

Thus, research in analyzing and classifying different types of vegetation in point clouds is an important area for future 

work. 

 

 

RESULTS AND DISCUSSION 

 

We have collected and processed two datasets through our reconstruction and processing pipeline, representing two 

distinctly different types of outdoor scenes: (1) a region of the Fort Irwin National Training Center (NTC), consisting 

of 1268 aerial images, and (2) a portion of the Echo Park neighborhood of Los Angeles, consisting of 505 images.  

Both were collected using a GoPro Hero3+ Black Edition, at a resolution of 4000 x 3000 pixels. 

 

Figure 9 shows results of a 3D scene constructed from the NTC dataset, rendered in the Unity game engine. From a 

technical perspective, we found this dataset to be the more straightforward of the two, as it consisted of mostly flat 

desert terrain with rectangular buildings and sparse vegetation.  In general, the ground segmentation and terrain 

generation pipelines produced reasonable quality results, even when viewed at a first-person perspective.  However, 

the 3D meshes for above-ground structures are currently best viewed at a distance; there are noticeable visual artifacts 

when viewed at close range.  Some of these issues may be mitigated by different image collection strategies.  The 

NTC dataset was among the first we collected, and predominantly consisted of overhead images collected in a “zigzag” 

flight pattern.  We believe that first-person 3D scenes generated from aerial photogrammetry will benefit from the 

inclusion of both overhead and oblique images, collected in a grid pattern with tighter overlap. 
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Figure 9. A Complete 3D Scene Rendered In Unity Game Engine At Real-Rime Framerates 

 

In contrast to NTC, the Echo Park dataset had many challenging features, including steep sloping hills, irregularly 

shaped buildings, tight clusters with shadows and occlusion, dense vegetation, and moving objects.  This dataset 

presents an excellent test case for developing and testing new approaches, as the current state-of-the-art is not yet able 

to handle all of these features.  However, despite these challenges, we found that the color-based classification method 

performed quite well at identifying most of the vegetation in the point cloud.  However, more research and 

development is necessary before this dataset would be “game ready” without substantial manual intervention when 

automated algorithms fail to produce reliable results. 

 

 

CONCLUSION AND FUTURE WORK 

 

Generating 3D scenes from aerial photogrammetry appropriate for real-time, first-person simulation poses unique 

challenges that have yet to be solved.  While it is possible to leverage some of the approaches developed for LIDAR 

data, point clouds produced from photogrammetry are much more dense and noisy, and new methods are required to 

automatically process and reconstruct 3D scenes from drone aerial images.  In particular, we have identified the 

following challenges for future work: 

 

1) Best practices for drone-based image acquisition are not fully understood.  First-person simulation requires 

3D models with sufficient geometric and texture quality at ground level, yet photogrammetry methods require 

sufficient overlap between adjacent images.  The ideal balance between distant/overhead images (to provide 

overlap) and close-range oblique images (to provide high quality textures) has not yet been determined. 

 

2) 3D scenes generated from photogrammetry tend to be noisy and error-prone.  When applied to theses point 

clouds, automated mesh generation algorithms produce warped geometry and substantial visual artifacts.  

New 3D reconstruction approaches that can generate reliable 3D models from noisy point cloud data, possibly 

by leveraging architectural knowledge, would be extremely valuable. 

 

3) Because models generated from photogrammetry tend to be dense and extremely complex, they require 

substantial optimization before it is possible to render at real-time framerates.  However, different classes of 

objects (e.g. terrain, buildings, irregular structures, vegetation, etc) need to be processed differently in order 

to preserve visual quality.  Therefore, new approaches for automatic object detection, segmentation, 

classification are needed, specifically targeted towards point clouds that are extremely vast, dense, and noisy. 

 

4) While we generally prefer geo-specific for man-made structures, vegetation is a particular case where geo-

typical methods have advantages for real-time simulation.  However, more work is necessary to be able to 

reliably identify and analyze different types of foliage in point clouds.  Additionally, this points to need for 

an extensive library of 3D vegetation assets with sufficient metadata to match the plant type and other 

visual/geometric properties.  
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5) Automated texturing approaches included in photogrammetric software packages appear to produce 

reasonable quality results for terrain, particularly for third-person perspectives.  However, when viewed from 

a first-person angle, errors and visual artifacts appear very obvious, particularly for above-ground objects.  

We have observed that subtle texturing errors are much more noticeable than geometric errors; the structure 

of an object need not always be perfect, so long as the texture is photographically consistent.  We therefore 

suggest that improved methods for generating composite textures from large numbers of source images (with 

roughly estimated camera poses) would greatly improve the perceived visual quality of 3D scenes produced 

from aerial photogrammetry. 
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