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ABSTRACT

We demonstrate a method of acquiring a 3D model of a human using commodity scanning hardware and then controlling
that 3D figure in a simulated environment in only a few minutes. The model acquisition requires four static poses taken
at 90ı angles relative to each other. The 3D model is then given a skeleton and smooth binding information necessary
for control and simulation. The 3D models that are captured are suitable for use in applications where recognition and
distinction among characters by shape, form, or clothing is important, such as small group or crowd simulations or other
socially oriented applications. Because of the speed at which a human figure can be captured and the low hardware
requirements, this method can be used to capture, track, and model human figures as their appearances change over time.
Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent advances in low-cost scanning have enabled the
capture and modeling of real-world objects into a virtual
environment in 3D. For example, a table, a room, or
work of art can be quickly scanned, modeled, and dis-
played within a virtual world with a handheld, consumer
scanner. There is great value to the ability to quickly and
inexpensively capture real-world objects and create their
3D counterparts. While numerous generic 3D models are
available for low-cost or no-cost for use in 3D environ-
ments and virtual worlds, it is unlikely that such acquired
3D model matches the real object to a reasonable extent
without individually modeling the object. In addition, the
ability to capture specific objects that vary from the generic
counterparts is valuable for recognition, interaction, and
comprehension within a virtual world. For example, a real
table could have a noticeable scratch, design, imperfection,
or size that differs greatly from a stock 3D model of a
table. These individual markers can serve as landmarks for
people interacting with the virtual scene.

The impact of recognizing living objects in a virtual
environment can be very powerful, such as the effect of
seeing a relative, partner, or even yourself in a simulation.

However, living objects present simulation challenges
due to their dynamic nature. Organic creatures, such as
plants, can be difficult to scan because of their size and
shape, which require high levels of details and stable
scanning environments. Similarly, other living objects,
such as people or animals, can be scanned but require much
more complex models to model motion and behavior. In
addition, the particular state of the living object can vary
tremendously; an animal may grow, a plant can blossom
flowers, and a person can wear different clothes, inhale or
exhale, and gain or lose weight. Thus, capturing a moment
in time of a living object is usually not sufficient for its
representation in dynamic environments, where the 3D
representation of that living object is expected to breath,
move, grow, and respond to interaction in non-trivial ways.

In this work, we demonstrate a process for capturing
human subjects and generating digital characters from
those models using commodity scanning hardware. Our
process is capable of capturing a human subject using
still four poses, constructing a 3D model, then registering
it, and controlling it within an animation system within
minutes. The digital representation that our process is
able to construct is suitable for use in simulations, games,
and other applications that use virtual characters. Our
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technique is able to model many dynamic aspects of human
behavior (Figure 1). As shown in Figure 2, our main con-
tribution in this work is a near-fully automated, rapid,
low-cost end-to-end system for capturing, modeling, and
simulation of a human figure in a virtual environment that
requires no expert intervention.

2. RELATED WORK

2.1. 3D Shape Reconstruction

A 3D shape reconstruction has been extensively explored,
among which the 3D shape reconstruction of human sub-
jects is of specific interest to computer vision and computer
graphics, with its potential applications in recognition,
animation, and apparel design. With the availability of
low-cost 3D cameras (e.g., Kinect and Primesense), many
inexpensive solutions for 3D human shape acquisition have
been proposed. The work by Tong et al. [1] employs three
Kinect devices and a turntable. As the turntable rotates,
multiple shots are taken with the three precalibrated Kinect
sensors to cover the entire body. All frames are registered
in a pairwise non-rigid manner using the Embedded Defor-
mation Model [2], and loop-closure is explicitly addressed
at the final stage. The work carried out in [3] utilizes
two Kinect sensors in front of the self-turning subject.
The subject stops at several key poses, and the captured
frame is used to update the online model. Again, the
dynamic nature of the turning subject is considered under
the same non-rigid registration framework [2], and the loop
is implicitly closed.

More recently, solutions that utilize only a single 3D sen-
sor have been proposed, and this allows for home-based
scanning and applications. The work in [4] asks the sub-
ject to turn in front of a fixed 3D sensor, and four key
poses are uniformly sampled to perform shape reconstruc-
tion. The four key poses are registered in a top-bottom-top
fashion, assuming an articulated tree structure of human
body. Their reconstructed model, however, suffers from
a low-resolution issue at a distance. To overcome the
resolution issue, KinectAvatar [5] considers color con-
straints among consecutive frames for super-resolution.
They register all super-resolution frames under a proba-
bilistic framework. More recently, the work in [6] asks the

subject to come closer and obtain a super-resolution scan
at each of eight key poses. The eight key poses are then
aligned in a multi-view non-rigid manner to generate the
final model. Inspired by their work, we follow the same
idea of asking the subject to get closer but employ a differ-
ent super-resolution scheme. Unlike the work in [6] where
they merge all range scans using the Iterative Closest Point
algorithm [7] along with the Poisson Surface Reconstruc-
tion algorithm [8], we use the KinectFusion algorithm [9],
which incrementally updates an online volumetric model.

All these works capture the static geometry of human
subjects, and additional efforts are necessary to convert
the static geometry into an animated virtual character. The
research works [10,11] focus on capturing the dynamic
shapes of an actor’s full body performance. The capturing
sessions usually require a dedicated setup with multiple
cameras and are more expensive than capturing only the
static geometry. The resulting dynamic geometries can be
played back to produce the animations of the scanned actor.
The work in [12] combines dynamic shapes from multiple
actors to form a shape space. The novel body deforma-
tions are driven by motion capture markers and can be
synthesized based on an actor’s new performance.

Other research has created a database of people that
show the diversity of shape, size, and posture in a small
population of shape, size, and posture [12]. The data set
has been employed for human body modeling by fitting the
model to input range scans of subject of interest [13]. This
data set has also been used to manipulate a scanned human
model by modifying the model proportions according to
the data [14].

2.2. Automatic Rigging and Retargeting

While it is relatively easy to obtain static 3D character
models, either from the Internet or through 3D scanning,
it requires much more efforts to create an animated virtual
character. A 3D model needs to be rigged with a skeleton
hierarchy and appropriate skinning weights. Traditionally,
this process needs to be performed manually and is
time consuming even for an experienced animator. An
automatic skinning method is proposed in [15] to reduce
the manual efforts of rigging a 3D model. The method
produces reasonable results but requires a connected and

Figure 1. The 3D models captured in our system can be readily applied in real-time simulation to perform various behaviors such as
jumping and running with the help of auto-rigging and animation retargeting.
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Figure 2. The overall work flow of our fast avatar capture system.
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watertight mesh to work. The method proposed by Bharaj
et al. [16] complements the previous work by automat-
ically skinning a multi-component mesh. It works by
detecting the boundaries between disconnected compo-
nents to find potential joints. Thus, the method is suitable
for rigging the mechanical characters that usually consist
of many components. Other rigging algorithms can include
manual annotation to identify important structures such as
wrists, knees, and neck [17].

Recent work has shown the capability of capturing
a human figure and placing that character into a simula-
tion using 48 cameras with processing time on the order
of 2 h [18]. Our method differs in that we use a sin-
gle commodity camera and scanner and our processing
time takes a few minutes. While this introduces a trade-off
in visual quality, the minimal technical infrastructure
required makes our approach substantially more accessible
to a widespread audience. In addition, our method requires
no expert intervention during the rigging and animation
phases.

3. 3D MODEL RECONSTRUCTION

We propose a convenient and fast way to acquire
accurate static 3D human models of different shapes by
the use of a single commodity hardware, for example,
Kinect. The subject turns in front of the Kinect sensor in
a natural motion while staying static at four key poses,
namely, front, back, and two profiles, for approximately
10 s each. For each key pose, a super-resolution range
scan is generated as the Kinect device, controlled by a
built-in motor, moves up and down (Section 3.1). The
four super-resolution range scans are then aligned in a
multi-view piecewise rigid manner, assuming small artic-
ulations between them. Traditional registration algorithms
(e.g., Iterative Closest Point [7]), which are based on the
shape coherence, fail in this scenario because the over-
lap between consecutive frames is very small. Instead, we
employ contour coherence (Section 3.2) and develop a
contour-based registration method [19], which iteratively
minimizes the distance between the closest points on the
predicted and observed contours (Section 3.3). For more
details on using contour coherence for multi-view regis-
tration of range scans, please refer to [19]. In this paper,
we summarize their method and give a brief introduc-
tion. At the final stage, the four aligned key poses are
processed to generate a watertight mesh model using the
Poisson Surface Reconstruction algorithm [8]. The corre-
sponding texture information of the four super-resolution
range scans is inferred using the Poisson Texture Blending
algorithm [20] (Section 3.4).

3.1. Super-resolution Range Scan

Given the field of view of the Kinect sensor, the subject
must stand 2 m away in order to cover the full body
while turning in front of the device. The data are heavily

quantized at that distance (Figure 3(b)), thus produces a
poor quality scan, which results in a coarse model after
integration. Here, instead, we ask the subject to come
closer and stay as rigid as possible at the four key poses,
while the Kinect device scans up and down to generate
a super-resolution range scan. Each pose takes 10 s, and
approximately 200 frames are merged using the Kinect-
Fusion algorithm [9] (Figure 3(a)). This process greatly
improves the quality of the input and allows us to cap-
ture more details, such as wrinkles of clothes and face as
shown in Figure 3. It is worth mentioning that the ground is
removed by using the RANSAC algorithm [21], assuming
that the subject of interest is the only thing in the sensor’s
predefined capture range.

3.2. Contour Coherence as a Clue

The amount of overlap between two consecutive
super-resolution range scans is limited as they are 90ı

apart (i.e., wide baseline). As such, traditional shape
coherence-based methods (e.g., Iterative Closest Point
and its variants [22]) fail, as it is hard to establish the
point-to-point correspondences on two surfaces with
small overlap.

An example of two wide baseline range scans of
the Stanford bunny with approximately 35% overlap is
given in Figure 4(a). Traditional methods fail, as most
closest-distance correspondences are incorrect.

While the traditional notion of shape coherence fail,
we propose the concept of contour coherence for wide
baseline range scan registration. Contour coherence is
defined as the agreement between the observed apparent
contour and the predicted apparent contour. As shown in
Figure 4(a), the observed contours extracted from the orig-
inal 2.5D range scans, that is, red lines in image 1 and blue

(a) (b)

Figure 3. (a) Super-resolution range scans after integrating
approximately 200 frames using the KinectFusion algorithm and

(b) low-resolution single range scan at the distance of 2 m.
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(a) (b)

Figure 4. (a) Two roughly aligned wide baseline 2.5D range scans of the Stanford bunny with the observed and predicted apparent
contours extracted. The two meshed points cloud are generated from the two 2.5D range scans, respectively. (b) Registration result

after maximizing the contour coherence.

lines in image 2, do not match the corresponding predicted
contours extracted from the projected 2.5D range scans,
that is, blue lines in image 1 and red lines in image 2. We
maximize contour coherence by iteratively finding closest
correspondences among apparent contours and minimiz-
ing their distances. The registration result is shown in
Figure 4(b) with the contour coherence maximized and two
wide baseline range scans well aligned. The contour coher-
ence is robust in the presence of wide baseline in the sense
that no matter the amount of overlap between two range
scans, only the shape area close to the predicted contour
generator is considered when building correspondences on
the contour, thus avoiding the search for correspondences
over the entire shape.

3.3. Contour Coherence-based Registration
Method

We apply the notion of contour coherence to solve the
registration problem of four super-resolution range scans
with small articulations. For simplicity, we start the discus-
sion with the contour-based rigid registration of two range
scans. As shown in Figure 4(a), the observed contour and
the predicted contour do not match. In order to maximize
the contour coherence, we iteratively find the closest pairs
of points on two contours and minimize their distances.
Assume that point u 2 R2 is on predicted contour in image
1 of Figure 4(a) (i.e., blue line) and point v 2 R2 is its cor-
responding closest point on the observed contour in image
1 (i.e., red line), we minimize their distance as

���v � P1

�
T�1

1 T2V2 . Qu/
���� (1)

where Qu is the corresponding pixel location in image 2 of
u,V2 maps the pixel location Qu to its 3D location in the
coordinate system of camera 2, T1 and T2 are the cam-
era to world transformation matrices of camera 1 and 2,
respectively, and P1 is the projection matrix of camera 1.
Assuming known P1 and P2, we iterate between finding
all closest contour points on images 1 and 2 and minimiz-
ing the sum of their distances (Eq. 1) to update the camera
poses T1 and T2 until convergence. We use quaternion to
represent the rotation part of T and Levenberg–Marquardt
algorithm to solve for the minimization as it is nonlinear in

parameters. It is worth mentioning that minimizing Eq. 1
updates T1 and T2 at the same time, and this enables us to
perform multi-view rigid registration in the case of three or
more frames.

The extension from rigid registration to piecewise rigid
registration is quite straightforward. Each segment (i.e.,
segmented body part) is considered rigid, and all the rigid
segments are linked by a hierarchical tree structure in
the case of body modeling. We again iteratively find the
closest pairs on contours between all corresponding body
segments and minimize the sum of their distances.

A complete pipeline of our registration method is given
in Figure 5. First, the four super-resolution range scans are
initialized by assuming a 90ı rotation between consecu-
tive frames (Figure 6(a)). Second, they are further aligned
by the multi-view rigid registration method considering the
whole body as rigid (Figure 6(b)). While the translation
part of the camera pose is not well estimated by the ini-
tialization procedure, it is corrected by the multi-view rigid
registration step. As indicated by the red boxes, however,
the small articulations between frames still remain unre-
solved under the rigid assumption. Third, the front pose
is roughly segmented into nine body parts in a heuristic
way (Figure 6(c)). Fourth, we iteratively propagate the seg-
mentation to other frames, find closest pairs on contours
between corresponding rigid body parts, and minimize
their distances to update the camera poses, as well as the
human poses of each frame (Figure 6(d)).

3.4. Watertight Mesh Model with Texture

At this point, we have aligned all four super scans to pro-
duce a point cloud with normal vectors. Poisson mesh
reconstruction [8] is used to obtain a watertight mesh from

Figure 5. General pipeline of our registration method.

Comp. Anim. Virtual Worlds 2014; 25:201–211 © 2014 John Wiley & Sons, Ltd. 205
DOI: 10.1002/cav



Rapid avatar capture and simulation A. Shapiro et al.

(a) (b) (c) (d)

Figure 6. (a) Four super-resolution range scans after initialization; (b) four super-resolution range scans after multi-view rigid registra-
tion, with red boxes indicating unresolved small articulations under the rigid assumption; (c) rough segmentation of the front pose;

and (d) four super-resolution range scans after multi-view piecewise rigid registration.

the point clouds. The Kinect camera also captures the
color information from the scanned person when generat-
ing the superscans at each pose. For each superscan, we
also store a color image corresponding to the range scan
and combine the color images to produce the texture for
the watertight mesh. We follow a similar procedure as in
[6] to corrode the color images and remove unreliable pix-
els. The corroded color images are then transferred onto
the superscans as vertex colors to produce color meshes
before going through the registration process. Finally, these
aligned color meshes are used to texture the watertight
mesh generated from Poisson reconstruction. We apply
the Poisson texture blending algorithm in [20] to fill out
the gaps and holes in the texture and produce the final
color mesh.

4. RESOLUTION INDEPENDENT
AUTOMATIC RIGGING

Animating a 3D character model usually requires a skeletal
structure to control the movements. Our system automat-
ically builds and adapts a skeleton to the 3D scanned
character. Thus, it can later apply the rich sets of behavior
on the character through motion retargeting.

The auto-rigging method in our system is similar to the
one proposed in [15]. The method builds a distance field
from the mesh and uses the approximate medial surface to
extract the skeletal graph. The extracted skeleton is then
matched and refined based on the template skeleton. The
method is automatic and mostly robust, but it requires a
watertight and single component mesh to work correctly.
This poses a big restriction on the type of 3D models the
method can be applied to. For example, the production
meshes usually come with many props and thus have mul-
tiple components. On the other hand, the mesh produced
from range scans tend to contain holes, non-manifold
geometry, or other topological artifacts that require addi-
tional cleanup. Moreover, the resulting mesh produced
through the super-resolution scans usually consists of
hundreds of thousands of vertices. Such high-resolution

meshes would cause the auto-rigging method to fail during
optimization process to build the skeleton. To alleviate this
limit, we proposed a modified method that works both for
generic production models and large meshes.

Our key idea is that the mesh could be approximated
by a set of voxels and the distance field could be com-
puted using the voxels. The voxels are naturally free from
any topological artifacts and are easy to processed. It is
carried out by first converting the mesh into voxels using
depth buffer carving in all positive and negative x, y, and
z directions. This results in six depth images that can be
used to generate the voxelization of the original mesh.
Although most small holes in the original mesh are usually
removed in the resulting voxels because of discretization,
some holes could still remain after the voxelization. In
removing the remaining holes, we perform the image hole
filling operation in the depth images to fill up the small
empty pixels. After voxelization, we select the largest con-
nected component and use that as the voxel representation
for the mesh. The resulting voxels are watertight and con-
nected and can be converted into distance field to construct
the skeleton. Figure 2 demonstrates the process of convert-
ing the original mesh into voxel representation to produce
the skeleton hierarchy and skinning weights.

The voxel representation is only an approximation of
the original mesh. Therefore, the resulting distance field
and, consequently, the skeleton could be different from
the one generated with the original mesh. In our exper-
iments, we found that the resulting skeletons tend to be
very similar as shown in Figure 7 and do not impact the
overall animation quality in the retargeting stage. Once we
obtain the skeleton, the skinning weights can be computed
using the original mesh instead of the voxels because the
weight computation in [15] does not rely on the distance
field. Alternatively, the skinning weights can be computed
using the techniques in [23], which use voxels to approx-
imate the geodesic distance for computing bone influence
weights. Thus, we can naturally apply their algorithm using
our resulting voxels and skeleton to produce higher-quality
smooth bindings.
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Figure 7. The voxelization produces the skeleton similar to the one extracted from original mesh. Left: original mesh and its skeleton.
Right: voxel representation of original mesh and its corresponding skeleton.

5. BEHAVIOR TRANSFER

The behavior transfer stage works by retargeting an exam-
ple motion set from our canonical skeleton to the custom
skeleton generated from automatic rigging. Here, we use
the method from [24] to perform motion retargeting. The
retargeting process can be separated into two stages. The
first stage is to convert the joint angles encoded in a motion
from our canonical skeleton to the custom skeleton. This
is carried out by first recursively rotating each bone seg-
ment in target skeleton to match the global direction of
that segment in source skeleton at default pose so that the
target skeleton is adjusted to have the same default pose
as the source skeleton. Once the default pose is matched,
we address the discrepancy between their local frames by
adding suitable pre-rotation and post-rotation at each joint
in target skeleton. These pre-rotation and post-rotation are
then used to convert the joint angles from source canonical
skeleton to the target skeleton.

The second stage is using inverse kinematics to enforce
various positional constraints such as foot positions to
remove motion artifacts such as foot sliding. The inverse
kinematic method we use is based on damped Jacobian
Pseudo-Inverse algorithm [25]. We apply this inverse kine-
matic method at each motion frame in the locomotion
sequences to ensure that the foot joint is in the same
position during the foot plant stage. After the retargeting
stage, the acquired 3D skinned character can be incor-
porated into the animation simulation system to execute
a wide range of common human-like behaviors such as
walking and gesturing.

6. APPLICATIONS

6.1. 3D Capture for Use in Games and
Simulation

We demonstrate our method by showing the capture and
processing, registration, and subsequent simulation of a
human figure in our accompanying video and in Figure 8

in the following text. The construction of a 3D model takes
approximately 4 min, and the automatic rigging, skinning,
and registration of a deformable skeleton take approxi-
mately 90 s. Models typically contain between 200K and
400K vertices and 400K and 800K faces. Simulation and
control of the character are performed in real time using
various animations and procedurally based controllers for
gazing and head movement. The 3D models captured in
this way are suitable for use in games where characters
need to be recognizable from a distance but do not require
face-to-face or close interactions.

6.2. Temporal Avatar Capture

Because our method enables the capture of a 3D character
without expert assistance and uses commodity hardware,
it is economically feasible to perform 3D captures of the
same subject over a protracted period of time. For example,
a 3D model could be taken every day of the same subject,

Figure 8. A representative captured character from scan con-
taining 306K vertices and 613K faces. Note that the distinguish-
ing characteristics are preserved in the capture and simulation,

such as hair color, clothing style, height, and skin tone.
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Figure 9. Models generated from captures over a period of 4 days. Note changes and commonality in clothing, hair styles, and other
elements of appearance.

which would reflect their differences in appearance over
time. Such captures would reflect changes in appearance
such as hair style or hair color, clothing, or accessories
worn. In addition, such temporal captures could reflect
personal changes such as growth of facial hair, scars,
and weight changes. Such temporal information could be
analyzed to determine clothing preferences or variations in
appearance (Figure 9).

Note that our method will generate a skeleton for each
3D model. Thus, avatars of the same subject will share the
same topology but have different bone lengths.

6.3. Crowds

Many applications that use virtual crowds require tens,
hundreds, or thousands of characters to populate the virtual
space. Research has experimented with saliency to show
the needed variation in traditionally modeled characters to
model a crowd [26] and the number of variations needed
[27]. By reducing the cost of constructions of 3D charac-
ters, crowd members can be generated from a population of
captured subjects rather than through traditional 3D means.

7. DISCUSSION

We have demonstrated a technique that allows the cap-
ture and simulation of a human figure into a real-time
simulation without expert intervention in a matter of few
minutes.

7.1. Limitations

The characters generated are suitable for applications
where recognizability and distinction among the virtual

characters are important. In the course of our experiments,
we have found the virtual characters to be recognizable to
those familiar with the subjects. The characters are not suit-
able for close viewing or in simulations where face details
are needed, such as conversational agent or talking head
applications. Higher levels of detail are needed for areas
such as the face and hands before other models of synthetic
motion, such as emotional expression, lip syncing, or ges-
turing could be used. Additionally, our method makes no
distinction between the body of the captured subject and
their clothing. Thus, bulky clothing or accessories could
change the skeletal structure of the virtual character. Also,
the behaviors associated with the characters are retargeted
from sets of motion data and control algorithms but are
not generated from movements or motion gleaned from the
subject itself. Thus, motion transferred to all captured sub-
jects shares the same characteristics, differing only by the
online retargeting algorithm, which accommodates differ-
ently sized characters. This homogeneity can be partially
circumvented by including variations in the set of motion
data, such as differing locomotion or gesturing sets for
male and female characters. For future work, we plan on
extracting movement models from the captured subjects in
order to further personalize their virtual representation.
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