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Abstract 

Grammar-based approaches to spoken lan-

guage understanding are utilized to a great ex-

tent in industry, particularly when developers 

are confronted with data sparsity. In order to 

ensure wide grammar coverage, developers 

typically modify their grammars in an itera-

tive process of deploying the application, col-

lecting and transcribing user utterances, and 

adjusting the grammar. In this paper, we ex-

plore enhancing this iterative process by leve-

raging active learning with back-off 

grammars. Because the back-off grammars 

expand coverage of user utterances, develop-

ers have a safety net for deploying applica-

tions earlier. Furthermore, the statistics related 

to the back-off can be used for active learning, 

thus reducing the effort and cost of data tran-

scription. In experiments conducted on a 

commercially deployed application, the ap-

proach achieved levels of semantic accuracy 

comparable to transcribing all failed utter-

ances with 87% less transcriptions. 

1 Introduction 

Although research in spoken language understand-

ing is typically pursued from a statistical perspec-

tive, grammar-based approaches are utilized to a 

great extent in industry (Knight et al., 2001). 

Speech recognition grammars are often manually 

authored and iteratively modified as follows: Typi-

cally, context-free grammars (CFG) are written in 

a format such as Speech Recognition Grammar 

Specification (SRGS) (W3C, 2004) and deployed. 

Once user utterances are collected and transcribed, 

the grammars are then adjusted to improve their 

coverage. This process continues until minimal 

OOG utterances are observed. In this paper, we 

explore enhancing this iterative process of gram-

mar modification by combining back-off gram-

mars, which expand coverage of user utterances, 

with active learning, which reduces !the number of 

training examples to be labeled by automatically 

processing unlabeled examples, and then selecting 

the most informative ones with respect to a speci-
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Tur et al., 2002). This paper comprises three sec-

tions. In Section 2, we describe our overall ap-

proach to rapid application development (RAD). In 

Section 3, we explain how data transcription can 

be reduced by leveraging active learning based on 

statistics related to the usage of back-off gram-

mars. Finally, in Section 4, we evaluate the active 

learning approach with simulation experiments 

conducted on data collected from a commercial 

grammar-based speech application. 

2 R A D Approach & Related Work 

Working under the assumption that developers in 

industry will continue to use CFGs for rapid appli-

cation development, our approach to grammar 

modification is as follows: 

1. Create a CFG (either manually or automatically). 

1.1 Generate a back-off grammar from the CFG. 

2. Deploy the application. 

2.1 Use the back-off grammar for OOG utterances. 

3. Gather data from users. 

4. Selectively transcribe data by using statistics re-

lated to the back-off for active learning; i.e., transcribe 

only those utterances that satisfy the active learning 

criterion. 

5. Modify CFG either manually or automatically and 

go to step 1.1. 

To begin with, developers start with a CFG in Step 

1. If they had access to a grammatical platform 
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such as Regulus (Rayner et al., 2006), they could 

in principle construct a CFG automatically for any 

new domain, though most developers will probably 

manually author the grammar. Two steps are added 

to the typical iterative process. In Step 1.1, we 

generate a back-off grammar from the CFG. One 

way to accomplish this is by constructing a back-

off CFG using filler models (Paek et al., 2007), 

which when applied to the same command-and-

control task in Section 4 can result in a 35% rela-

tive reduction in semantic error rate for OOG ut-

terances. However, the back-off grammar could 

also be a SLM trained on artificial data created 

from the CFG (Galescu et al., 1998). Whatever 

back-off mechanism is employed, its coverage 

should be wider than the original CFG so that ut-

terances that fail to be recognized by the CFG, or 

fall below an acceptable confidence threshold, can 

be handled by the back-off in a second or simulta-

neous pass. That is the gist of Step 2.1, the second 

additional step. It is not only important to generate 

a back-off grammar, but it must be utilized for 

handling possible OOG utterances. 

Our approach attempts to reduce the usual cost 

associated with grammar modification after the 

application has been deployed and data collected in 

Step 4. The idea is simple: Exploit the fast and ac-

curate CFG recognition of in-grammar (ING) ut-

terances by making OOG utterances handled by 

the back-off grammar ING. In other words, expand 

CFG coverage to include whatever gets handled by 

the back-off grammar. This idea is very comple-

mentary with a two-pass recognition approach 

where the goal is to get utterances correctly recog-

nized by a CFG on the first pass so as to minimize 

computational expenses (Paek et al., 2007).  

All of this can be accomplished with reduced 

transcription effort by keeping track of and leve-

raging back-off statistics for active learning. If the 

back-off is a CFG, we keep track of statistics re-

lated to which CFG rules were utilized the most, 

whether they allowed the task to be successfully 

completed, etc. If the back-off is a SLM, we keep 

track of similar statistics related to the semantic 

alignment and mapping in spoken language under-

standing. Given an active learning criterion, these 

statistics can be used to selectively transcribe ut-

terances which can then be used to modify the 

CFG in Step 5 so that OOG utterances become 

ING. Section 3 covers this in more detail. 

Finally, in Step 5, the CFG grammar is mod-

ified using the selectively transcribed utterances. 

Although developers will probably want to do this 

manually, it is possible to automate much of this 

step by making grammar changes with minimal 

edit distance or Levenshtein distance. 

Leveraging a wider coverage back-off grammar 

is of course not new. For grammar-based applica-

tions, several researchers have investigated using a 

CFG along with a back-off grammar either simul-

taneously via a domain-trained SLM (Gorrell et 

a1., 2002), or in two-pass recognition using either 

an SLM trained on CFG data (Gorrell, 2003) or a 

dictation n-gram (Dusan & Flanagan, 2002). To 

our knowledge however, no prior research has con-

sidered leveraging statistics related to the back-off 

grammar for active learning, especially as part of a 

RAD approach. 

3 Active L earning 

Our overall approach utilizes back-off grammars to 

provide developers with a safety net for deploying 

applications earlier, and active learning to reduce 

transcription effort and cost. We now elaborate on 

active learning, demonstrate the concept with re-

spect to a CFG back-off. 

Active learning aims at reducing transcription 

of training examples by selecting utterances that 

are most likely to be informative according to a 

specified cost function (Hakkani-Tur et al., 2002). 

In the speech community, active learning has been 

successfully applied to reducing the transcription 

effort for ASR (Hakkani-Tur et al., 2002), SLU 

(Tur et al., 2003b), as well as finding labeling er-

rors (Tur et al., 2003). In our case, the examples 

are user utterances that need to be transcribed, and 

the learning involves modifying a CFG to achieve 

wider coverage of user expressions. Instead of pas-

sively transcribing everything and modifying the 
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pate in which utterances are transcribed. 

The usual procedure for selecting utterances for 

grammar modification is to transcribe at least all 

failed utterances, such as those that fall below a 

rejection threshold. By leveraging a back-off 

grammar, developers have more information with 

which to select utterances for transcription. For a 

CFG back-off, how frequently a back-off rule fired 

can serve as an active learning criterion because 

that is where OOG utterances are handled. Given 



this active learning criterion, the algorithm would 

proceed as follows (where i denotes iteration, St 

denotes the set of transcribed utterances, and Su 

denotes the set of all utterances): 

[1] Modify CFGi using St and generate corresponding 

back-offi from the CFGi. 

[2] Recognize utterances in set Su using CFGi + back-

offi. 

[3] Compute statistics on what back-off rules fired 

when and how frequently. 

[4] Select the k utterances that were handled by the 

most frequently occurring back-off rule and tran-

scribe them. Call the new transcribed set as Si. 

[5] ;t t i u u i
S S S S S S! ! "!  

[6] Stop when CFGi achieves a desired level of seman-

tic accuracy, or alternatively when back-off rules 

only handle a desired percentage of Su, otherwise 

go to Step 1. 

Note that the set Su grows with each iteration and 

follows as a result of deploying an application with 

a CFGi + back-offi. Step [1] corresponds to Step 5, 

1.1, and 2.1 of our approach. Steps [2-4] above 

constitute the active learning criterion and can be 

adjusted depending on what developers want to 

optimize. This algorithm currently assumes that 

runtime efficiency is the main objective (e.g., on a 

mobile device); hence, it is critical to move utter-

ances recognized in the second pass to the first 

pass. If developers are more interested in learning 

new semantics, in Step [4] above they could tran-

scribe utterances that failed in the back-off. With 

an active learning criterion in place, Step [6] pro-

vides a stopping criterion. This too can be adjusted, 

and may even target budgetary objectives. 

4 Evaluation 

For evaluation, we used utterances collected from 

204 users of Microsoft Voice Command, a gram-

mar-based command-and-control (C&C) applica-

tion for high-end mobile devices (see Paek et al., 

2007 for details). We partitioned 5061 transcribed 

utterances into five sets, one of which was used 

exclusively for testing. The remaining four were 

used for iterative CFG modification. For the first 

iteration, we started with a CFG which was a de-

graded version of the grammar currently shipped 

with the Voice Command product. It was obtained 

by using the mode, or the most frequent user utter-

ance, for each CFG rule. We compared two ap-

proaches: C F G_Full, where each iterative CFG 

was modified using the full set of transcribed utter-

ances that resulted in a failure state (i.e., when a 

false recognition event occurred or the phrase con-

fidence score fell below 45%, which was set by a 

proprietary tuning procedure for optimizing word-

error rate), and C F G_Active, where each iterative 

CFG was modified using only those transcribed 

utterances corresponding to the most frequently 

occurring CFG back-off rules. For both C F G_Full 

and C F G_Active, CFGi was modified using the 

same set of heuristics akin to minimal edit dis-

tance. In order to assess the value of using the 

back-off grammar as a safety net, we also com-

pared C F G_Full +Back-off, where a derived CFG 

back-off was utilized whenever a failure state oc-

curred with C F G_Full, and C F G_Active +Back-off, 
where again a CFG back-off was utilized, this time 

with the back-off derived from the CFG trained on 

selective utterances. 

As our metric, we evaluated semantic accuracy 

since that is what matters most in C&C settings. 

Furthermore, because recognition of part of an ut-

terance can increase the odds of ultimately achiev-

ing task completion (Paek et al., 2007), we carried 

out separate evaluations for the functional consti-

tuents of a C&C utterance (i.e., keyword and slot) 

as well as the complete phrase (keyword + slot). 

We computed accuracy as follows: For any single 

utterance, the recognizer can either accept or reject 

it. If it is accepted, then the semantics of the utter-

ance can either be correct (i.e., it matches what the 

user intended) or incorrect, hence: 

accuracy = CA / (CA + IA + R)   (1) 

where CA denotes accepted commands that are 

correct, IA denotes accepted commands that are 

incorrect, and R denotes the number of rejections. 

Table 2 displays semantic accuracies for both 

C F G_Full and C F G_Active. Standard errors about 

the mean were computed using the jacknife proce-

dure with 10 re-samples. Notice that both 

C F G_Full and C F G_Active initially have the same 

accuracy levels because they start off with the 

same degraded CFG. The highest accuracies ob-

tained almost always occurred in the second itera-

tion after modifying the CFG with the first batch of 

transcriptions. Thereafter, all accuracies seem to 

decrease. In order to understand why this would be 

case, we computed the coverage of the i
th 

CFG on 

the holdout set. This is r$>(-*$%& #,& */$& ?@@9AB&

column. Comparing C F G_Full to C F G_Active on 



keyword + slot accuracy, C F G_Full decreases in 

accuracy after the second iteration as does 

C F G_Active. However, the OOG% of C F G_Full is 

much lower than C F G_Active. In fact, it seems to 

level off after the second iteration, suggesting that 

perhaps the decrease in accuracies reflects the in-

crease in grammar perplexity; that is, as the gram-

mar covers more of the utterances, it has more 

hypotheses to consider, and as a result, performs 

slightly worse. Interestingly, after the last iteration, 

C F G_Active for keyword + slot and slot accuracies 

was slightly higher (69.06%) than C F G_Full 

(66.88%) (p = .05). Furthermore, this was done 

with 193 utterances as opposed to 1393, or 87% 

less transcriptions. For keyword accuracy, 

C F G_Active (64.09%) was slightly worse than 

C F G_Full (66.10%) (p < .05). 

With respect to the value of having a back-off 

grammar as a safety net, we found that both 

C F G_Full and C F G_Active achieved much higher 

accuracies with the back-off for keyword, slot, and 

keyword + slot accuracies. Notice also that the dif-

ferences between C F G_Full and C F G_Active after 

the last iteration were much closer to each other 

than without the back-off, suggesting applications 

should always be deployed with a back-off. 

5 Conclusion 

In this paper, we explored enhancing the usual 

iterative process of grammar modification by leve-

raging active learning with back-off grammars. 

Because the back-off grammars expand coverage 

of user utterances to handle OOG occurrences, de-

velopers have a safety net for deploying applica-

tions earlier. Furthermore, because statistics related 

to the back-off can be used for active learning, de-

velopers can reduce the effort and cost of data 

transcription. In our simulation experiments, leve-

raging active learning achieved levels of semantic 

accuracy comparable to transcribing all failed ut-

terances with 87% less transcriptions. 
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Approach i Utterances 

T ranscribed 

K eyword  

Accuracy 

Slot  

Accuracy 

K eyword + Slot 

Accuracy 

Processing 

T ime (ms) 
O O G % 

CFG_Full 

 

1 0 50.25% (0.13%) 46.84% (0.22%) 46.84% (0.22%) 387 (3.9005) 61.10% 

2 590 66.20% (0.12%) 71.02% (0.23%) 70.59% (0.23%) 401 (4.0586) 31.92% 

3 1000 65.80% (0.15%) 69.72% (0.19%) 69.06% (0.19%) 422 (4.5804) 31.30% 

4 1393 66.10% (0.13%) 67.54% (0.22%) 66.88% (0.21%) 433 (4.7061) 30.95% 

CFG_Full + 

Back-off 

1 0 66.70% (0.10%) 66.23% (0.22%) 66.01% (0.22%) 631 (11.1320) 61.10% 

2 590 73.32% (0.11%) 72.11% (0.22%) 71.68% (0.23%) 562 (10.4696) 31.92% 

3 1000 72.52% (0.12%) 72.11% (0.21%) 71.46% (0.22%) 584 (10.4985) 31.30% 

4 1393 73.02% (0.10%) 71.02% (0.23%) 70.37% (0.23%) 592 (10.6805) 30.95% 

CFG_Active 

1 0 50.25% (0.13%) 46.84% (0.22%) 46.84% (0.22%) 387 (3.9005) 61.10% 

2 87 64.09% (0.13%) 74.29% (0.21%) 74.07% (0.22%) 395 (4.1469) 42.09% 

3 138 64.29% (0.15%) 70.15% (0.22%) 69.50% (0.24%) 409 (4.3375) 38.02% 

4 193 64.09% (0.15%) 69.72% (0.23%) 69.06% (0.24%) 413 (4.4015) 37.93% 

CFG_Active 

+ Back-off 

1 0 66.70% (0.10%) 66.23% (0.22%) 66.01% (0.22%) 631 (11.1320) 61.10% 

2 87 72.52% (0.10%) 76.91% (0.19%) 76.47% (0.21%) 568 (10.3494) 42.09% 

3 138 71.72% (0.14%) 71.90% (0.24%) 71.24% (0.27%) 581 (10.6330) 38.02% 

4 193 71.21% (0.15%) 71.90% (0.25%) 71.24% (0.26%) 580 (10.5266) 37.93% 

Table 2. Semantic accuracies for partial (keyword or slot) and full phrase recognitions (keyword + slot) using a CFG trained on either 
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ith CFG on the hold-(+*&)$*D&H(I)&'(,*.#,#,;&!J.'6-(""3&$<.1+.*$&K-pass recognition using both the CFG and a derived CFG back-off. 
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