
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Real-time Speech Motion Synthesis from Recorded Motions

Yong Cao1,2 Petros Faloutsos1 Eddie Kohler1 Frédéric Pighin2

1University of California at Los Angeles, Department of Computer Science
2University of Southern California, Institute for Creative Technologies

Abstract

Data-driven approaches have been successfully used for realistic visual speech synthesis. However, little effort
has been devoted to real-time lip-synching for interactive applications. In particular, algorithms that are based on
a graph of motions are notorious for their exponential complexity. In this paper, we present a greedy graph search
algorithm that yields vastly superior performance and allows real-time motion synthesis from a large database
of motions. The time complexity of the algorithm is linear with respect to the size of an input utterance. In our
experiments, the synthesis time for an input sentence of average length is under a second.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation, F.2.2 [Non-
numerical Algorithms and Problems]: Pattern matching.

1. Introduction

Realistic facial animation remains a very challenging prob-
lem in computer graphics. The human face is the most com-
plex muscular region of the human body. Hundreds of indi-
vidual muscles contribute to the generation of complex facial
expressions and speech. Even though the dynamics of each
of these muscles is well understood, their combined effect
is very difficult to simulate precisely. Motion capture allows
the recording of high fidelity facial motions. But this tech-
nique is mostly useful for specific shots since the recorded
motions are difficult to modify. Editing motion capture data
often involves careful key-framing by a talented animator.
Motion capture by itself cannot be used for automated facial
animation.

This issue has spurred a great deal of interest for data-
driven or machine learning approaches. In these approaches,
the motions of the face are no longer viewed as the results
of a complex bio-mechanical system but rather as valuations
of an abstract function. In such framework, this function can
be approximated using a training set of sample values. The
strength of data-driven approaches is to provide a yardstick
against which to compare the synthesized motions: the qual-
ity of synthesized motions can be evaluated by how much
they deviate from the data. Machine learning puts a new per-
spective on motion capture. Statistical models can be learned

from training sets of high fidelity recorded data and yield
novel animations that capture the details of the original mo-
tions within some interpolation space.

Data-driven approaches have yielded some of the most
high fidelity facial animation systems to date. However, most
of this work has focused on the issue of realism. Little has
been done regarding real-time facial animation. In particu-
lar, many data-driven algorithms are based on a database
search: the input audio is segmented into a sequence of
speech labels (e.g., phonemes or visemes) that are used to
find corresponding motion segments. Some of these algo-
rithms use graph structured databases and search algorithms
whose complexity depends exponentially on the duration of
the input speech. These techniques are clearly inappropriate
for real-time applications.

This performance issue is a very practical one since real-
time facial animation has many applications. For instance,
many computer games feature speaking three-dimensional
digital humans. For a game, it might be possible to use pre-
recorded animation, however it is not an option for digital
chat-room avatars or a virtual clerk. In these cases, anima-
tions have to be generated on the fly to match a spoken or
synthesized utterance. A simple solution is to associate a
mouth shape to each phoneme or class of phoneme (e.g.,
visemes) and to interpolate between these shapes. This ap-

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

proach however yields lower quality motions than motion
capture-based systems. In this paper, we manage to recon-
cile automatic high-fidelity facial animation with real-time
performance.

Our approach is based on a novel data structure and an
associated real-time search algorithm. The data structure en-
capsulates the facial motion database along with speech in-
formation into a graph that we call Anime Graph. Given an
input speech, we search the Anime Graph for a sequence of
motion segments that matches the input audio. Instead of ex-
hibiting exponential complexity, as most graph-based mo-
tion synthesis algorithms do, our greedy search algorithm is
a linear-time method that has straightforward real-time im-
plementations. In addition, we prove that the algorithm is
optimal under reasonable assumptions. The remainder of the
paper is organized as follows. Section 2 reviews the related
literature. Section 3 describes briefly the data we used for
our experiments. Section 4 provides an overview of the gen-
eral problem. Section 5 introduces our novel facial motion
data structure. Section 6 presents a depth-first search algo-
rithm and our novel real-time approach. Section 7 presents
our experiments. Section 8 discusses the limitations of our
approach and future work. Finally, Section 9 concludes the
paper.

2. Previous Work

Facial motions can typically be split into three components:
the lower face motion (lip and chin), the upper face motion
(eyes and eyebrows), and the rigid head motion. In this work,
we focus on lip-synching: the synthesis of lip motion match-
ing an input audio sentence. Hence, we focus mostly on the
motion of the lower face. What makes this problem difficult
is the co-articulation effect: the shape of the mouth corre-
sponding to a phoneme depends on the phonemes that come
before and after the given phoneme. Studies have shown
that co-articulation may affect mouth shape of 2-5 neighbor
phonemes. Considering that the English language has typ-
ically 46 distinct phonemes, it is not practical to solve the
co-articulation problem using simple lookup tables.

A simple solution to this problem is to model co-
articulation as a set of rules [Pel91, CPB∗94]. However, a
complete set of such rules does not exist. [KMG02] base
their co-articulation model on a limited set of phonemes
that appear to be visually more important than others, such
as vocals and labial consonants. The mouth shape of these
phonemes is kept fixed or has little variations.

Generally, approaches that attempt to solve lip-synching
problem fall in three categories.

The physics-based approach uses the laws of physics and
muscle forces to drive the motion of the face. Although it
is computationally expensive, it has been shown to be quite
effective [LTW95, Wat87].

Data-driven approaches use an input speech signal to

search a database of speech-indexed motions for the clos-
est match. Video Rewrite [BCS97] is a representative exam-
ple of such techniques. It relies on a database of motions
segmented into triphones. A new audiovisual sequence is
constructed by concatenating the appropriate triphones from
the database. This method requires a large database which
leads to a scaling problem. In addition, the use of triphones
only allows a limited co-articulation model. Instead of rely-
ing on phonemic information, [CXH03] uses vision-based
control to drive 3D faces. At first, the trajectories of a lim-
ited set of control parameters are extracted from video using
vision-based tracking. These trajectories are then translated
into high quality motions by searching a database of pre-
recorded motion capture data. However, the speech motion
database is limited and the system does not take speech as
an input. As the result, co-articulation is not well preserved.

A third class of techniques attempts to eliminate the need
for large example databases by creating compact statistical
models of face motion. Hidden-Markov and Gaussian mix-
ture models are two machine learning techniques that are
frequently used for this problem [BS94, MKT∗98, CM93].
For instance, Voice Puppetry [Bra99] develops a mapping
from voice to face by learning a model of a face’s observed
dynamics. The model takes into account the position and the
velocity of facial features and learns a probability distribu-
tion over the different facial configurations. The training data
is 180 seconds of video at a sampling rate of 29.97Hz which
has problems with plosives and short duration phonemes.
[EGP02] develops a variant of the Multidimensional Mor-
phable Model (MMM), which is represented as a set of opti-
cal flow vectors. It is used to describe images with local vari-
ations in shape and appearance. This model can be applied
to statistically interpolate novel video frames correspond-
ing to input speech segments. First, they construct a sparse
adjacency matrix of the video frames and compute short-
est paths between pairs of frames. Then the entire corpus
is projected on an MMM model and the shortest paths be-
tween images become trajectories in the MMM-space. Syn-
thesizing the MMM-trajectories for a new input sentence is
formulated as a regularization problem and takes on aver-
age of 7 seconds on a Pentium 450MHz machine. Although
the technique could extend to 3D models, it has so far been
tested only on the 2D cases. [SBCS04] learn a linear dynam-
ical system from recorded speech video clips. The system is
driven by both deterministic speech input and an unknown
stochastic input. Because of the limitation of the model, only
video clips for single word or very short sentences can be
synthesized. Therefore, co-articulation can not be fully mod-
eled in this approach.

Our work is inspired by the graph-based approaches to
full-body motion synthesis [KGP02], [LWS02], [LCR∗02],
[AF02]. [KGP02] uses a branch-and-bound algorithm to
search a connected graph for a suitable path that satisfies the
constraints. To deal with the exponential complexity of the
algorithm, they employ a more efficient incremental search

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

Speech Motion
Database

Search Algorithm

Input Audio

Synthesized Motion

Figure 1: High level overview of our approach.

approach. [AF02] uses a hierarchy of graphs and a random-
ized search algorithm to sequence motion clips interactively
but not in real-time. [LCR∗02] use clustering and first-order
Markov process to represent their data. The user can search
for the most probable motion using three different interfaces.
The approach is interactive but not real-time. [LWS02] pro-
posed a two-level statistical model to represent compactly
recorded motions.

In this paper, we present a motion graph-based lip-
synching algorithm that solves the co-articulation problem
in real-time. Unlike most previous methods, our approach
synthesizes facial motion in real-time and works with three
dimensional motion data.

3. Data Collection and Preprocessing

We have recorded a set of facial motions using a Vicon8 op-
tical motion capture system. We used 109 markers to sample
the motion of the face fairly densely. The sampling rate of
the data is 120 frame/sec. To drive a 3D textured face mesh,
the markers are mapped to corresponding mesh points, and
the rest of the mesh is deformed using Radial Basis Func-
tions [Buh03].

The entire database sums up to 53 minutes of recorded
motions. The shortest sentence is a few seconds long, while
the longest sentence has a duration of 15 seconds. Cleaning
up the data required about two man months of work.

4. Overview

Given a spoken sentence as input, our goal is to produce a
matching facial motion. We rely on a database of speech
related recorded facial motions. Our algorithm proceeds in
three main steps:

1. The input audio is segmented into a string of speech to-
kens, called phonemes.

2. The motion database is searched for a set of continuous
motion segments matching the phonemes.

3. The motions segments are stitched together to produce a
seamless motion.

Figure 1 shows an overview of our system. In the fol-
lowing sections, we describe the organization of the motion
database and our search algorithm in detail.

5. Motion Database

In this section, we explain how we organize the data into a
novel data structure suitable for search-based lip-synching.

5.1. Data segmentation

Our dataset consists of audio and motion data for a large
set of sentence-long utterances that vary in length, emotion,
and content. We first segment each sentence into phonemes
using the Festival [SG] software. Since the audio is synchro-
nized with the motion data, we can easily extract the motion
segments that correspond to each phoneme segment in a sen-
tence. To reduce the size of our database, we compress the
motion curves using Principal Components Analysis. In our
experiments, we keep 5 principal components (these cover
more than 95% of the variance of the original motion). For
each phoneme in the database, we also compute an audio
feature vector that we use during the search phase. These au-
dio feature curves consist of the first 9 parameters returned
by a RASTA-PLP filter [Int].

To organize the database, each recorded sentence is con-
verted into a sequence of nodes, which we call animes. An
anime, A =< P,C,M >, captures a phoneme instance and
contains a phoneme label P, the associated motion fragment,
M, and audio feature vector, C. Like a viseme, an anime is
the visual counterpart of a phoneme. Unlike a viseme, that is
associated with a static mouth shape, an anime is associated
with a fragment of face motion.

5.2. The Anime Graph

The shape of the lower face during speech at a specific point
in time does not only depend on the current phoneme but
also on past and future phonemes (co-articulation). In our
framework, we translate this constraint by organizing the set
of animes into two main data structures that model contex-
tual information, the Anime Graph and the Anime Array.
The Anime graph keeps the recording order of each anime
sequence in the training dataset. The Anime array keeps for
each phoneme label a list of all associated animes.

We construct the Anime Graph as follows. If two animes
Ai and Aj appear sequentially, we create an edge Ai → Aj
that reflects the recording order. Thus, each anime sequence
in the database is converted to a directed link list. The Anime
graph is the collection of all these link lists, as shown in
Figure 2.

If na is the total number of animes, we can formally define
the Anime Graph as follows:

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

A1
1 A1

rA1
2

Am
1 Am

sAm
2

.
.
.
.
.
.

Anime Graph (without clustering)

......

Anime Array

P1 Pn......

Figure 2: Anime Graph and Anime Array.

AG = < Animes,Edges>,

Animes = {Ai},(1≤ i≤ na), (1)
Edges = {Ei : As → At},(1≤ s, t ≤ na).

5.3. Clustered Anime Graph

The number of animes in the database directly affects the
efficiency of the lip-synching process. In our experiments,
we use a database of 246 sentences and 7256 animes. To
shrink our database and improve performance, we reduce the
number of animes through clustering.

Clustering. A careful examination of the motion fragment
of animes in our database shows that many are similar de-
spite having different audio curves or phoneme labels. In-
tuitively speaking, the same lip motion often corresponds to
different phonemes since speech is not formed by lip-motion
alone. The same phenomenon allows the association of mul-
tiple phonemes to the same viseme.

To take advantage of these similarities, we first normalize
the duration of the motion fragment of each anime to com-
pare them more easily. We then consider each of the nor-
malized fragment as a vector Vi in a high dimensional space
(465 dimensions in our experiments). We then find clusters
within the set {Vi : i= 1, . . . ,n}, where n is the total number
of animes, using a K-Means clustering algorithm. Choosing
the number of clusters allows us to trade off quality for ef-
ficiency. Our experiments show that using 1000 clusters we
achieve a balance between quality and efficiency.

Merging. For each cluster, we select a representative mo-
tion fragment that is closest to the cluster’s mean. We
then replace the animes in this cluster with a single
anime. This new anime contains a single motion frag-
ment, a list of phoneme labels and a set of audio fea-
tures. For example, if a cluster contains only three ani-
mes A1 =< P1,C1,M1 >, A2 =< P2,C2,M2 >, and A3 =<

......

Anime Array

A1

A3

A2

A4

A5
A7

A6

P1 Pn......

Clustered Anime Graph

Figure 3: Anime Graph and Anime Array after clustering
and merging.

P3,C3,M3 > after merging the corresponding anime is:
A=< {P1,P2,P3},{C1,C2,C3},M1 > assuming thatM1 is
the closest to the mean. In the rest of this paper, we use the
following notation for the components of an anime, A:

A=< P,C,M>, (2)

where P is a set of phoneme labels, C is a set of audio fea-
tures, andM is a motion fragment.

After merging, each representative anime of a cluster re-
tains the connections of the original animes. Thus, the re-
sulting Anime Graph becomes a directed connected graph
as shown in Figure 3.

In the following, the term Anime Graph refers to either
version of the Anime Graph (with clustering or without clus-
tering). When necessary, we explicitly state which version
we refer to.

6. Search algorithms for lip-motion synthesis

Given a novel input utterance, we synthesize a matching
facial motion by searching for an appropriate path in the
Anime Graph.

We first segment the input audio into phonemes using Fes-
tival [SG]. For each phoneme, we extract a set of audio fea-
tures, C, just like we did for the animes. We thus transform
the input sentence into a search sequence,

SQ = Q1 . . .Ql =< P1,C1 > .. . < Pl ,Cl > (3)

where each node Q holds a phoneme label Pi and associated
audio feature curves, Ci. The goal of the search algorithm is
to find a corresponding anime sequence SA = A1A2...Al that
best matches SQ.

Each anime node in SA should have the correct phoneme

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

label and good co-articulation. Evaluating how well a syn-
thesized motion models co-articulation is difficult. By con-
struction, anime nodes are connected within the Anime
Graph if and only if they correspond to joint motion seg-
ments within a recorded utterance. Thus, connected animes
are guaranteed to have correct co-articulation. Therefore to
ensure the best possible co-articulation, we need to find a
sequence of animes with the minimum number of discon-
nected nodes (jumps). When more than one matching se-
quence has the same number of jumps, we can use the audio
features to break the tie.

In summary, the search algorithm should use the follow-
ing three criteria:

1. Phoneme matching: Qi.P ∈ Ai.P.
2. Minimum number of Jumps.
3. Audio feature curves matching.

The first criterion requires that the phoneme labels are the
same. The second criterion enforces co-articulation: by us-
ing continuous segments of motions that are as long as pos-
sible, we maximize the amount of contextual information
mined from the database. The last criterion helps enforce ad-
ditional speech constraints.

The next section presents a depth-first algorithm that
given a search sequence, SQ (Equation 3), uses the above
criteria to find the best matching anime sequence, SA. Sec-
tion 6.2 proposes a novel greedy search algorithm that out-
performs current depth-first search approaches by orders of
magnitude and achieves real-time performance.

6.1. Depth-first graph search algorithm

Given a search sequence SQ, we use a depth-first search ap-
proach and the above criteria to search the Anime Graph
for a matching anime sequence SA. In particular, we use a
Priority-Queue implementation of the Branch and Bound
search algorithm. This algorithm, called PQ-DFS, finds the
global optimal anime sequence with respect to the 3 criteria
we described above. However, the size of the Anime Graph
and the length of the search sequence prevent it from run-
ning in real time. To improve the efficiency of the search, we
split the search sequence, SQ, into a set of sub-sequences of
maximum length h. We then perform a search for each sub-
sequence separately and at the end concatenate the resulting
anime sequences. Thus, we trade off quality for efficiency
and find a local optimum that consists of shorter optimal se-
quences. In our experiments, we choose h between 3 and 6.
Here is the PQ-Matching(h) algorithm in detail:

The time complexity of this algorithm is defined by the
number of executions of the while loop and the complex-
ity of the step that performs a depth-first-search operation to
find the optimal sub-sequence of length h. The average case
time complexity of the PQ-DFS step is O((np)

h), where n
is the number of anime nodes in the database, and p is the

Algorithm 1 PQ-Matching(h,SQ).
Input: search bound h, search sequence SQ = Q1Q2...Ql
Output: anime sequence S= A1A2...Al
1: i← 1, SA ← /0
2: while i≤ l do
3: Ai . . .Ai+h−1 ← PQ-DFS (QiQi+1...Qi+h−1)
4: SA ← concat(SA,Ai)
5: i← i+hq
6: end while
7: return SA

number of phonemes in English (in our experiment p = 46
). Note that for the Anime Graph after clustering and merg-
ing n is the number of clusters. We can chose to advance i
by any number hq between one and h trading off quality for
efficiency. In any case, the while loop executes l/hq times,
where l is the length of the input sequence. Thus the average
case time complexity of this algorithm is O((np)

h × l/hq).
Even with some heuristic speeding-up methods, the time
complexity of these Depth-First graph search algorithms are
still exponential with respect to the depth (bound) h of the
search.

6.2. Greedy search algorithm

We now show that by ignoring the third criterion, we can
develop a greedy search algorithm that can find a matching
anime sequence, SA, with the minimum number of jumps.
The proposed algorithm is linear with respect to the length
of the search sequence and runs in real-time.

By ignoring the audio features, our search problem be-
comes analogous to a string matching problem. In what fol-
lows, we will use the string matching analogy because it sim-
plifies terminology and notation.

Definition 1: (Tile Matching). Given an input string s and
a set of strings Σ = {s1,s2, ...,sn}, a tile matching is a set of
tiles T = [τ1,τ2, ...,τk], where:

1. Each tile τi is a substring of some string s j.
2. The concatenation of all the tiles, τ1τ2...τk, equals the
input string s.

Definition 2: (Minimum Tile Matching). Given an input
string s and a set of strings Σ, a minimum tile matching is
a tile matching T that uses as few tiles as possible. That is,
every tile matching of s with Σ uses at least as many tiles as
T .

To continue our definition, we first introduce a string op-
erator []. Given a string s, let s[i] equals the ith character
of s, and let s[i, j] equal the substring of s starting at the
ith character and continuing through the jth character. So
if s= ”abcde f ”, then s[1] = ”a” and s[2,4] = ”bcd”.

Definition 3: (Greedy Tile Matching). Given an input

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

string s and a set of strings Σ, a greedy tile matching is a
tile matching T with the following 2 properties. (Assume
that len(τ1) = m, so τ1 = s[1,m].)

1. The first tile τ1 is as long as possible. This means that
either len(s) = m (so there are no more characters to
match), or s[1,m+ 1] is not a substring of any string in
Σ (so no longer match exists).

2. The remaining tiles form a greedy tile matching of the
remaining portion of the string. This means that either
len(s) = m (so the whole string marches), or [τ2, ...,τk]
forms a greedy tile matching of s[m+1, len(s)].

Theorem 1: (Greedy is optimal). Any Greedy Tile Match-
ing is also a Minimum Tile Matching. (See Appendix A for
the proof.)

If we consider the unclustered version of the Anime
Graph, it is easy to see that our anime matching problem
with minimum number of jumps is analogous to aMinimum
Tile Matching problem as defined above. Based on Theo-
rem 1, we propose the following greedy search algorithm
for Anime matching that finds a matching anime sequence
with minimum number of jumps:

Algorithm 2 GreedyMatching(SQ).
Input: search sequence SQ = Q1Q2...Ql
Output: anime sequence S= A1A2...Al
1: i← 1, SA ← /0
2: while i≤ l do
3: k← 0
4: for each Aij : Qi.P ∈ Aij.P do
5: PHj ← LongestMatching(Aij,Qi . . .Ql)
6: k← k+1
7: end for
8: PH ← longest(PH1, . . . ,PHk)
9: SA ← concat(SA,PH)
10: i← i+ length(PH)
11: end while
12: return SA

The subroutine LongestMatching(Aij,Qi . . .Ql) used in
the algorithm returns the longest matching path of search
sequence Qi . . .Ql starting at anime Aij. The subroutine
longest(PH1, . . . ,PHk) returns the longest path from a set
of k paths (PH1, . . . ,PHk). If there is a tie, it uses the audio
features to resolve it.

The algorithm essentially works as follows. For each
search node Qi, it finds all the k animes, Aij , in the Anime
Graph that correspond to instances of phoneme Qi.P. These
animes are provided by the Anime Array, defined in Sec-
tion 5. For each of the k animes Aij, it then finds the longest
matching path PH starting from Aij. This longest path is ap-
pended to the current matching sequence and the algorithm
repeats with the search sequence starting at Qi+h where h is
the length of PH.

Appendix B shows that the worst case time complexity
of the GreedyMatching algorithm operating on the Anime
Graph before clustering and merging is O(n× l), where n is
the number of anime nodes in database and l is the length of
the search sequence. For a given motion capture database,
n is constant. Therefore the complexity of the algorithm
GreedyMatching is linear-time with respect to the length of
the input (search) sequence.

It is interesting to note that, after anime clustering and
merging, the in-degree and out-degree of the animes in the
graph may be greater than 1. In this case, the step at line 5,
where we calculate the longest path for each anime Aij, be-
comes a depth-first-search step. In that case, the worst case
complexity of subroutine LongestMatching(Aij,Qi . . .Ql)
becomes O(dl−i+1) where d is the maximum in-degree or
out-degree of the graph. However, in our experiments, d is a
small number, typically between 3 to 7. The total search time
seems not to be affected by this step as shown in Table 1.

6.3. Post Processing
After searching the motion capture database, producing con-
tinuous facial motion requires three more post-processing
steps: time-warping, blending and smoothing.

Time warping. The duration of the phonemes of the input
search sequence Qi is in general different from the dura-
tion of the output anime sequence Ai after searching. We use
dynamic time warping algorithm (DTW) to align the corre-
sponding audio features curves. The resulting warping func-
tion is then applied to the associated motion curves.

Blending. The quality of the continuous facial motion de-
pends significantly on how we string together the motion
segments especially in the presence of Jumps. Connecting
the motion segments of two anime nodes Ai and Ai+1 is triv-
ial if these nodes are connected within the Anime Graph.
If not, then they correspond to a Jump and may not join
smoothly. To deal with discontinuous motion introduced by
Jump, linear blending is an efficient solution. After linearly
blending two motions, M1 with M2, which has the same
number of frames n, the resulting motion M becomes

M[i] = (1− i−1
n−1)×M1[i]+

i−1
n−1 ×M2[i], (1≤ i≤ n),

where M[i] is the ith frame of motion M.

Let us look into the case with the presence of Jumps. We
assume motion Ai.M has p frames and motion Ai+1.M has
q frames. For such nodes, we search the Anime Graph for
other instances of the associated phonemes that might be
connected. If such nodes Am and An exist then the associated
motion curves Am.M and An.M join properly. They essen-
tially serve as an example of how phoneme Ai.P transitions
to Ai+1.P. We linearly time-warp motions Am.M and An.M to
p and q frames respectively. Then we linearly blend motion
Ai.M with Am.M and An.M with Ai+1.M and concatenate the
resulting motions.

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

When we cannot find a pair of connected anime nodes
Am and An, we proceed with the following steps. We col-
lect the next q frames of motion following the animes that
proceed Ai in the Anime Graph. We denote these frames as
Mi. Similarly, we collect the p frames of motion that pre-
cede anime Ai+1 in the Anime Graph and denote them as
Mi+1. If such frames do not exist because Ai doesn’t have a
child anime or Ai+1 doesn’t have a parent anime we cre-
ate them based on the velocity of the motion curves. We
then create the motion curves Ai.M′ =< Ai.M, Mi > and
Ai+1.M′ =<Mi+1, Ai+1.M>, where the “< ∗,∗>” operator
indicates concatenation (sequencing) of motion frames. Mo-
tions Ai.M′ and Ai+1.M′ have the same number of frames,
p+q, and are linearly blended together to produce the final
transition from Ai to Ai+1.

Smoothing. The blending stage creates continuous motion
curves for the entire utterance. However, jump matches of-
ten introduce high frequencies that create visible artifacts in
the resulting motion. To eliminate them, we apply a low-
pass filter. The cut-off frequency of the filter is crucial since
it can significantly affect the motion. To ensure that only the
undesirable frequencies are eliminated, we learn a suitable
cut-off frequency from the data. We scan the entire motion
database and for each of the independent components of the
motion curves, we identify the range of frequencies that con-
tain 99% of the total energy of that component. The highest
frequency of that range is the cut-off frequency of our filter.

7. Experiments and Results

We compare the proposed GreedyMatching algorithm to the
Branch-and-Bound algorithm. Specifically, we compare the
search time and the quality of the resulting motion. To mea-
sure quality, we use both algorithms to synthesize lip motion
for utterances for which we have recorded motions. These
motions are not part of the training set. Using the RMS dis-
tance between the synthesized and the actual recorded mo-
tion, we can see which algorithms produces motion that is
closer to the observed one.

Tables 1–4 show the performance of the two search algo-
rithms and the quality of the motion produced for the same
input sentence. The experiments summarized in Tables 2–4
use the unclustered anime graph.

Performance. Our experiments, summarized in Tables 1–4,
show that the GreedyMatching algorithm is orders of mag-
nitude faster than the PQ-matching(h) algorithm. They also
show the exponential complexity of the PQ-matching(h) al-
gorithm with respect to h. Note that in all our experiments,
the PQ-matching(h) algorithm cannot reach a minimum set
of jumps unless h is greater than three.

Table 1 shows that theGreedyMatching algorithm running
on the unclustered Anime graph (Experiment 1) is 870 times
faster than the PQ-Matching(4) algorithm even when the lat-
ter uses the highly clustered Anime graph (Experiment 4).

Experiment Number of PQ Greedy Speedup
Clusters (sec) (sec)

1 unclustered 53.87 0.015 3591.3

2 1000 14.30 0.016 893.8

3 500 18.20 0.015 1213.3

4 200 13.05 0.016 815.6

Table 1: Comparison of search time between PQ-
Matching(4) and GreedyMatching.

Search Search Number of RMS
Algorithm time (sec) Jumps Distance

GreedyMatching 0.02 5 0.11

PQ-Matching(3) 0.75 7 0.08

PQ-Matching(4) 6.30 5 0.08

PQ-Matching(5) 39.61 5 0.08

PQ-Matching(6) 106.45 5 0.08

Table 2: The length of the input phoneme sequence is 22.

Search Search Number of RMS
Algorithm time (sec) Jumps Distance

GreedyMatching 0.02 13 0.12

PQ-Matching(3) 2.39 14 0.12

PQ-Matching(4) 18.95 14 0.12

PQ-Matching(5) 649.31 13 0.12

Table 3: The length of the input phoneme sequence is 38.

Search Search Number of RMS
Algorithm time (sec) Jumps Distance

GreedyMatching 0.02 14 0.11

PQ-Matching(3) 3.30 16 0.09

PQ-Matching(4) 51.19 15 0.11

PQ-Matching(5) 580.20 15 0.10

Table 4: The length of the input phoneme sequence is 37.

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

Quality. The RMS error in Tables 2–4 shows that both algo-
rithms synthesize facial motions that are close to the actual
recorded motions. It is interesting to note that the RMS error
does not show the distribution of the error over the motion.
However, there is no standard visual measure for comparing
two motions. Figure 4 shows snapshots of facial motion syn-
thesized using the GreedyMatching algorithm. We refer the
reader to the accompanying video for a visual verification of
our results.

8. Discussion and future work

Our system has several limitations. Like most data-driven
approaches, its results depend significantly on the quality
of the recorded data and the pre-processing of the data.
Although our data is of high quality, it does have certain
amount of noise. In addition, the segmentation phase pre-
sented in Section 5.1 is crucial. Unfortunately, none of the
available phoneme segmentation tools guarantee error-free
results. In our experiments, we often come across misaligned
phoneme boundaries. However, these problems are not par-
ticular to our approach and their solution is not the focus of
the presented method.

Our search algorithm considers all jump matches as
equivalent and returns the first sequence of phonemes it finds
with the minimum number of jump matches. However, cer-
tain jump matches may introduce more pronounced visual
errors in the facial motion than others. For instance, to pro-
nounce certain plosives, such as "p" and "b", we must start
with the mouth closed. In future work, we plan to identify
such constraints and apply them to the resulting facial mo-
tion.

In this paper, we have not addressed the issue of expres-
sive visual speech. Expression is best understood in terms of
a set of emotional states such as anger, happiness etc. The
emotional state of a speaker is partially encoded in the audio
signal. In the future, we plan to investigate ways of modeling
the emotional state of the speech and taking it into account
during the search phase. Our goal is to produce facial motion
that not only exhibits correct co-articulation but also matches
the varying emotional state of the input speech signal in real-
time.

9. Conclusion

We have presented a real-time, motion capture-based ap-
proach for high quality lip-syncing. Our greedy approach is
based on a novel data structure, the Anime Graph, and an as-
sociated search algorithm. We have also shown that the time
complexity of the proposed search algorithm is linear with
respect to the number of phonemes in the input utterance.
The entire synthesis process takes less than a second for av-
erage length sentences.

Our approach is significantly faster compared to standard

depth-first-search algorithms. It is suitable for interactive ap-
plications that require efficient speech-related facial motion
such as video games and virtual reality.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful comments. This paper was partly funded by the De-
partment of the Army under contract number DAAD 19-99-
D-0046. Any opinions, findings and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the Department of
the Army.

We would also like to thank Wen C. Tien for his help on
this paper. Intel Corp., Microsoft Corp. and ATI Corp. also
help us with their generous support through equipment and
software grants.

Appendix A: Proof of Theorem 1

Lemma 1: Given a Greedy Tile Matching G= γ1γ2...γk and
a Minimum Tile Matching T = τ1τ2...τl , for every i, G[1, i]
is at least as long as T [1, i], that is len(G[1, i])≥ len(T [1, i]).

PROOF:

We prove it by induction. The base case i = 0 is ob-
vious, because G[1,0] and T [1,0] are both empty strings.
(len(G[1,0]) = len(T [1,0]) = 0).

Inductive step: Assume that len(G[1, i]) ≥ len(T [1, i]).
Then T [1, i + 1] cannot be longer than G[1, i + 1]
(len(G[1, i+ 1]) ≥ len(T [1, i+ 1])); because if it were, then
len(τi+1) > len(γi+1) and τi+1 contains γi+1 as a subset,
which means γi+1 was not chosen greedily. (PROVED.)

Theorem 1: (Greedy is optimal)AnyGreedy Tile Sequence
Matching is also a Minimum Tile Sequence Matching.

PROOF:

Given a Greedy Tile Matching G = γ1γ2...γk and a Min-
imum Tile Matching T = τ1τ2...τl , Lemma 1 showed that
for every i, len(G[1, i]) ≥ len(T [1, i]). Therefore, for = l
len(G[1, l]) ≥ len(T [1, l]). Since T [1, l] has matched the
whole input string s (len(T [1, l]) = len(s)), G and T must
have the same number of tiles.

Appendix B: Time Complexity of the GreedyMatching
algorithm before clustering

The algorithm is shown in detail in Section 6.2. Assume that
the algorithm takes s iterations of the while loop to find the
matching sequence. At each iteration j the algorithm finds
the longest connected sub-sequence of length mj . To do this,
at each iteration the algorithm also explores k j paths (inner
for loop). Note that if l is the length of the search sequence
then l = ∑s

j=1mj .

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

The worst-case time complexity of the algorithm is as fol-
lows. At each iteration, the inner for-loop in the worst case
executes k j = n times where n is the total number of ani-
mes in the graph. This actually happens only in the extreme
case where anime Aij has n instances in the graph. The body
of this for loop in the worst case takes mj steps to find the
longest path of length mj . Therefore for s iterations the inner
for-loop costs ∑s

j=1(mj× k j).

The only other significant operation is in line 8 of the
while-loop that computes the longest path from a set of paths
(PH1, . . . ,PHkj). This operation takes k j time per iteration j
for a total of ∑s

j=1 k j .

Thus, the total running time T of the GreedyMatching al-
gorithm is ∑s

j=1(mj × k j + k j). We can compute the final
form of the running time of the algorithm as follows:

T =
s

∑
j=1

(mj× k j + k j) =
s

∑
j=1

mj× k j +
s

∑
j=1

k j. (4)

In the worst case, k j = n and T becomes

T = n×
s

∑
j=1

mj +
s

∑
j=1

n. (5)

In the worst case, s= l and T becomes

T = n× l+n× l = 2(n× l). (6)

Thus, the worst case time complexity for algorithm
GreedyMatching is O(n× l), where n is the total number of
the animes in the graph, and l is the the length of the input
search sequence. It is worth noting that a few of our worst
case assumptions are actually impossible. Our experiments
indicate that the average case time complexity is O(np × l)
where p is the number of phonemes in the English language.

References

[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion gen-
eration from examples. In Proceedings of the 29th an-
nual conference on Computer graphics and interactive
techniques (2002), ACM Press, pp. 483–490.

[BCS97] BREGLER C., COVELL M., SLANEY M.: Video
rewrite: driving visual speech with audio. In SIG-
GRAPH 97 Conference Proceedings (Aug. 1997), ACM
SIGGRAPH, pp. 353–360.

[Bra99] BRAND M.: Voice puppetry. In Proceedings of ACM
SIGGRAPH 1999 (1999), ACM Press/Addison-Wesley
Publishing Co., pp. 21–28.

[BS94] BROOK N., SCOTT S.: Computer graphics animations
of talking faces based on stochastic models. In Inter-
national Symposium on Speech, Image Processing, and
Neural Networkds (1994).

[Buh03] BUHMANN M. D.: Radial Basis Functions : The-
ory and Implementations. Cambridge University Press,
2003.

[CM93] COHEN N., MASSARO D. W.: Modeling coarticulation
in synthetic visual speech. In Models and Techniques
in Computer Animation (1993), Thalmann N. M., Thal-
mann D., (Eds.), Springer–Verlang, pp. 139–156.

[CPB∗94] CASSELL J., PELACHAUD C., BADLER N., STEED-
MAN M., ACHORN B., BECKET W., DOUVILLE B.,
PREVOST S., STONE M.: Animated conversation:
Rule-based generation of facial expression, gesture and
spoken intonation for multiple conversational agents. In
Proceedings of ACM SIGGRAPH 1994 (1994).

[CXH03] CHAI J., XIAO J., HODGINS J.: Vision-based con-
trol of 3d facial animation. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2003), Eurographics Associa-
tion, pp. 193–206.

[EGP02] EZZAT T., GEIGER G., POGGIO T.: Trainable vide-
orealistic speech animation. In Proceedings of ACM
SIGGRPAH 2002 (2002), ACM Press, pp. 388–398.

[Int] INTERNATIONAL COMPUTER SCIENCE IN-
STITUTE, BERKELEY, CA: Rasta software.
www.icsi.berkeley.edu/Speech/rasta.html.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs.
In Proceedings of ACM SIGGRAPH 2002 (2002), ACM
Press, pp. 473–482.

[KMG02] KALBERER G. A., MUELLER P., GOOL L. V.: Speech
animation using viseme space. In Vision, Modeling, and
Visualization VMV 2002 (2002), Akademische Verlags-
gesellschaft Aka GmbH, Berlin, pp. 463–470.

[LCR∗02] LEE J., CHAI J., REITSMA P., HODGINS J., POLLARD
N.: Interactive control of avatars animated with human
motion data, 2002.

[LTW95] LEE Y., TERZOPOULOS D., WATERS K.: Realistic
modeling for facial animation. In SIGGRAPH 95 Con-
ference Proceedings (Aug. 1995), ACM SIGGRAPH,
pp. 55–62.

[LWS02] LI Y., WANG T., SHUM H.-Y.: Motion texture: A two-
level statistical model for character motion synthesis.
ACM Transactions on Graphics 21, 3 (July 2002), 465–
472.

[MKT∗98] MASUKO T., KOBAYASHI T., TAMURA M., MASUB-
UCHI J., K. TOKUDA: Text-to-visual speech synthesis
based on parameter generation from hmm. In ICASSP
(1998).

[Pel91] PELACHAUD C.: Realistic Face Animation for Speech.
PhD thesis, University of Pennsylvania, 1991.

[SBCS04] SAISAN P., BISSACCO A., CHIUSO A., SOATTO S.:
Modeling and synthesis of facial motion driven by
speech. In European Conference on Computer Vision
2004 (2004), pp. 456–467.

[SG] SPEECH GROUP C. M. U.:.
www.speech.cs.cmu.edu/festival.

[Wat87] WATERS K.: A muscle model for animating three-
dimensional facial expression. In SIGGRAPH 87 Con-
ference Proceedings) (July 1987), vol. 21, ACM SIG-
GRAPH, pp. 17–24.

c© The Eurographics Association 2004.

Cao et al. / Real-time Speech Motion Synthesis from Recorded Motions

Figure 4: A long synthesized utterance using algorithm GreedyMatching.

c© The Eurographics Association 2004.

