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Abstract 

Cognitive architectures need to resolve the diversity dilemma – i.e., to blend diversity and 
simplicity – in order to couple functionality and efficiency with integrability, extensibility and 
maintainability.  Building diverse architectures upon a uniform implementation level of graphical 
models is an intriguing approach because of the homogeneous manner in which such models 
produce state-of-the-art algorithms spanning symbol, probability and signal processing.  To 
explore this approach a hybrid (discrete and continuous) mixed (Boolean and Bayesian) version 
of the Soar architecture is being implemented via graphical models.  Initial steps reported here 
begin to show the potential of such an approach for cognitive architecture. 
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A cognitive architecture seeks to provide a coherent integration of capabilities sufficient for 
human-level artificial intelligence, whether as a detailed model of human cognition or a system 
more loosely tied to the specifics of human behavior.  Such an architecture requires the 
integration of a wide range of cognitive capabilities for, among other things, representation and 
memory, problem solving and planning, learning, reflection, interaction (including perception 
and motor control, use of language, etc), and the social aspects of cognition (such as emotion, 
collaboration, etc.). 

A key issue with such architectures is what can be called the diversity dilemma: they must 
simultaneously be both diverse and simple.  Diversity of functionality is required to support 
intelligent behavior in a complex and uncertain world and to model the range of experimental 
results exhibited by human cognition.  As an architectural strategy, diversity implies openness to 
a proliferation of mechanisms, and appeals to notions of specialization and optimization.  In 
caricature it is the biologist’s approach, in which many specialized structures, each locally 
optimized, jointly yield a robust and coherent whole.  Simplicity on the other hand is critical for 
architectural integrability, extensibility and maintainability.  As an architectural strategy, it 
implies conservatism towards the addition of mechanisms, and appeals to notions of elegance 
and uniformity.  In caricature it is the physicist’s approach, where a broad diversity of 
phenomena emerges from interactions among a small set of general elements. 

Traditionally architectures have had to choose one approach or the other.  Among 
architectures for cognitive modeling, Soar [1] has been a canonical exemplar of 
simplicity/uniformity and ACT-R [2] of diversity.  However, Soar 9 [3] has recently shifted 
strongly towards diversity.  Looking back, the history of Soar [4,3] could be said to illustrate a 
uniformity-first research strategy (a variant of Ockham’s razor): begin by assuming uniformity 
and accept diversity only upon overwhelming evidence. To the extent uniformity is possible, 
such a strategy yields elegance and facilitates unification and extension. Beginning instead with 
diversity removes the pressure to search for hidden commonality, and may lead down an 
irrevocable path of complexity.  For years Soar had a single procedural, rule-based, long-term 
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memory and a single learning mechanism, while investigations were pursued into the ability of 
this combination to support a diversity of memory (e.g., procedural, semantic, and episodic [5]) 
and learning (e.g., skill and knowledge acquisition, generalization and transfer, and learning 
from observation [6]) behaviors.  A wide range of such behaviors proved feasible, but they never 
could be fully unified with the rest of the system to yield pervasive utility across all activity.  
This evidence against the existing uniformity, amassed over years of experimentation, inspired 
the development of Soar 9, a diverse architecture that adds new long-term memories (semantic 
and episodic) and learning mechanisms (semantic, episodic and reinforcement), while also 
incorporating other new capabilities (emotion and imagery). 

But the acceptance of architectural diversity leaves open the question of how to deal with 
issues of integrability, extensibility and maintainability; not to mention elegance, to the extent it 
is considered a relevant factor.  Diverse architectures, such as Soar 9 and the various flavors of 
ACT, have historically been difficult to integrate, often exhibiting more the character of a toolkit 
than an architecture.  Software engineering techniques, such as modularization, provide one path 
for coping with such issues.  Cognitive modeling frameworks such as Storm [7] and Cogent [8] 
are, for example, exploring this path.  But there is an alternative path, based on continued 
adherence to uniformity-first: combining an acceptance of the need for diversity in the 
architecture with a continued search for uniformity elsewhere in cognition. 

Newell [9] proposed understanding cognition in terms of a hierarchy of spatiotemporal 
levels.  Given such a hierarchy, it is possible to ask about the girth – that is, the variety of 
mechanisms – at each level.  Diversity always exists across levels, but individual levels may 
consist of anything from a small number of very general elements to a wide diversity of more 
specialized ones.  Across a hierarchy of levels, there is no a priori reason to assume they are all 
of comparable girth.  While physicists and biologists may expect uniformity within their fields, 
the networking community trumpets the Internet hourglass to explain their protocol stack [10].  
At the narrowed waist is the Internet Protocol (IP).  Above is an increasingly diverse sequence of 
levels enabling “everything on IP”.  Below is an increasingly diverse sequence of levels enabling 
“IP on everything”.  The hourglass yields a diversity of applications and implementations that 
are united via a core of mesoscale uniformity. 

In analogy, we can ask whether there remains a core of mesoscale uniformity in cognition, 
and whether it can be the key to resolving the diversity dilemma.  There must clearly be diversity 
at the top of the cognitive hierarchy; the extraordinary range of behaviors and applications of 
which humans are capable is one of the core phenomena cognitive architectures are developed to 
explain. At the bottom, the mind is grounded in the diverse biology of the brain and, at least 
according to strong AI, could also be grounded in a diversity of alternative technologies.  But is 
there an hourglass or a rectangle in between?  Domingos’s recent call for an interface layer in AI 
[11] amounts to an appeal for a cognitive hourglass in the building of AI systems in general, 
although not directly focused on architecture.  Within cognitive modeling, the question of the 
existence of a cognitive hourglass has historically been cast in terms of whether the cognitive 
architecture is uniform.  The approach here is instead to accept the need for diversity in the 
architecture, as in ACT-R and Soar 9, while continuing the search for uniformity and simplicity 
at the implementation level below the architecture.  The goal is still an hourglass, albeit one with 
a lower waistline. 

Architectural implementation has traditionally been considered mere “implementation 
details,” of pragmatic importance for efficiency and robustness, but of little theoretical interest.  
The one notable exception has been when a symbolic architecture is implemented via neural 
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networks, as in Neuro-Soar [12] and SAL [13].  The approach here is to focus instead on the 
specific class of graphical models [14] that arise from the decomposition of multivariate 
functions.  Neural networks are clearly graphical, but may or may not be graphical models in this 
more specific sense.  Bayesian networks [15] are directed graphical models over random 
variables that have revolutionized probabilistic reasoning.  Markov networks are undirected 
analogues of Bayesian networks that go beyond probabilities to allow general weights, or clique 
potentials, on groups of variables.   Factor graphs [16] are undirected, like Markov networks, but 
were developed in coding theory – where they underlie the “astonishing performance” of turbo 
codes – to represent and reason efficiently about general multivariate functions. They differ from 
Markov networks in replacing clique potentials with factor nodes directly in the graph. 

One of the most intriguing aspects of graphical models from an architectural perspective is 
their ability to uniformly process symbols, probabilities and signals via variants of the same 
graph representation and inference algorithm (the sum-product algorithm).  This approach is not 
only uniform, but it subsumes state-of-the-art algorithms spanning these areas, such as arc 
consistency (symbol processing), loopy belief propagation (probability processing), and Kalman 
filters and the forward-backward algorithm in HMMs (signal processing).  It has also been 
shown that a variety of neural network algorithms – such as supervised Boltzmann machines, 
radial basis functions, and unsupervised learning algorithms – can be mapped onto graphical 
models [17].  Graphical models provide a tantalizing combination that is particularly appropriate 
at the implementation level of: (1) generality in the range of capabilities they can uniformly 
support in a state-of-the-art manner; and (2) constraint in the ways that these capabilities can 
reasonably be supported. 

If these capabilities can all be leveraged in a unified fashion, they promise broadly functional 
hybrid (combining both discrete and continuous processing) mixed (combining both Boolean and 
Bayesian reasoning) architectures that are grounded in a simple uniform implementation level.  
Such an approach could elegantly explain the diversity seen in existing cognitive architectures 
while going beyond them to yield an effective and uniform basis for: unifying cognition with 
perception and motor control by breaking down the barriers between central and peripheral 
processing, bringing the latter within the cognitive inner loop and making each form of 
processing potentially penetrable by the other; fusing symbolic and probabilistic reasoning to 
provide general reasoning under uncertainty; and providing a conceptual bridge from symbolic to 
neural architectures, by mapping them onto a common intermediary.  Existing work on hybrid 
mixed methods is encouraging [18], as is work on general languages for mixed probabilistic and 
logical reasoning. FACTORIE [19], for example, combines factor graphs with an imperative 
programming language to support relations and other capabilities, while BLOG [20] and 
Alchemy [21] combine probability and logic via Bayesian and Markov networks, respectively. 

The particular approach advanced here is to: (1) re-implement existing architectures to help 
understand them and the implications of implementing them via graphical models; (2) go beyond 
existing architectures by hybridization and simplification, both within and across architectures; 
(3) integrate in new capabilities that don’t mesh well with existing architectures, such as 
perception and motor control; and (4) explore radically new architectures enabled by the unique 
strengths of graphical models.  Ultimately the hope is for both a better understanding of the 
space of architectures and the development of radically new architectures embodying heretofore-
unseen combinations of functionality and simplicity. 

The initial focus is on a graphical reimplementation and extension of Soar, with the aim of 
developing a uniformly implemented mixed hybrid variant.  Soar is particularly useful as a 
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starting point because it: is one of the longest standing – over 25 years – and most thoroughly 
investigated cognitive architectures; has been explored as both a unified theory of human 
cognition and as an architecture for intelligent agents and virtual humans; and exists in both 
uniform (versions 1-8) and diverse forms (version 9), enabling a strategy of starting 
reimplementation with the initial uniformity while seeking opportunities for a more uniform 
integration of the later diversity.  Concurrently we can explore extensions beyond Soar’s 
predominant symbol processing paradigm, through the deep integration of probability and signal 
processing in support of improved reasoning about, and interaction with, the real world. 

This article reports the first steps along this path.  Section 1 presents the essence of 
“uniform” Soar (versions 3-8) across a hierarchy of three cognitive levels (at time scales of 
10ms-1s).  Section 2 provides an introduction to factor graphs as an exemplar of graphical 
models, and as the key technology for a graphical reimplementation of Soar’s lowest level, the 
elaboration cycle.  This reimplementation, which is described in Section 3, establishes the initial 
applicability of graphical models to production match, a central component in Soar and other 
architectures.  Section 4 then explores the next level up in Soar, the decision cycle, using 
Alchemy to derive insights into what will be necessary for a mixed variant that is capable of 
general symbolic reasoning under uncertainty.  Section 5 concludes with next steps. 

1 Cognitive Scales and Soar 
Newell’s notion that scale counts in cognition provides a key component of Soar’s theoretical 
background as a model of human cognition.  The core idea is that the phenomena of interest in 
cognition change as the focus shifts from small spatiotemporal scales to larger ones.  Newell 
discusses time scales from 10-4 sec (100 µs) up to 107 sec (months), stratifying them into four 
bands in human cognition: biological (10-4-10-2 sec), cognitive (10-1-101 sec), rational (102-104 
sec) and social (105-107 sec).  In the biological band in particular there is also a spatial aspect to 
these scales, since signals within the brain are limited in how far they can travel within such 
small time periods.  Organelles (10-4 sec), neurons (10-3 sec) and neural circuits (10-2 sec) yield 
spatial scales within the biological band, before primitive deliberate acts (10-1 sec) and 
operations (100 sec) are reached at the base of the cognitive band. 

Architectural mechanisms in uniform versions of Soar were traditionally mapped onto a 
subset of these time scales, as in Figure 1, starting with the elaboration cycle at 10 ms (neural 
circuits), the decision cycle at 100 ms (deliberate acts), and problem space activity at 1 sec 
(operations).  The elaboration cycle involves parallel match – via a variant of the Rete algorithm 
[22] – and firing of productions based on the contents of a global working memory (WM).  
Functionally, it achieves one round of parallel associative retrieval of information relevant to the 
current situation.  Production actions specify knowledge for retrieval while production conditions 
specify when it should be retrieved.  Conditions also bind variables for use in actions.  

The decision cycle begins with 
repeated cycles of elaboration until 
quiescence; i.e., until no more 
productions can fire.  This elaboration 
phase is followed by a decision based 
on preferences retrieved during 
elaboration.  The elaboration phase 
yields an interpretation of the current 
situation, while the decision either Figure 1: Soar's architectural levels (with chunking) 
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selects an operator to apply or generates an impasse if no operator can be selected.  Impasses 
engender reflection, enabling processing to recur at the meta-level on the problem of making the 
decision.  The decision cycle is Soar’s cognitive inner loop; it accesses whatever knowledge is 
immediately available about the current situation and then attempts to decide what to do next. 

A sequence of decisions yields activity in a problem space, amounting to some form of 
search if knowledge is limited and impasses occur.  Search in problem spaces (ps-search) is: 
slow, with each decision occurring at the 100 ms level; serial, via a sequence of operator 
selections and applications; and potentially combinatoric, yielding trees that grow exponentially 
in the depth of the search.  However, ps-search is open to control by any knowledge accessible 
during the decisions that occur as part of it.  When the knowledge is sufficient to uniquely 
determine the outcome of each decision, behavior is more accurately characterized as 
algorithmic, or knowledge-driven, than as search. 

Determining which knowledge to access during a decision can also be viewed as a search 
process – termed knowledge search (k-search) – but one that contrasts strongly with ps-search in 
character.  K-search is: fast, with a 10 ms cycle time, parallel, both in match and firing of 
productions; and subexponential, at least in theory, if not in reality in most implementations.  K-
search occurs over a closed, extensionally defined, set of structures – the knowledge/productions 
in the system – rather than dynamically generating an open search space in the manner of ps-
search.  It is inherently algorithmic, rather than using an open cognitive loop, and is thus not 
itself penetrable by additional control knowledge. 

Chunking [23] is a learning mechanism in Soar that generates new productions based on the 
results of problem space activity during impasses.  It compiles knowledge that is initially only 
available through activity at time scales of 1 second or more down to knowledge that is 
“immediately available” for use at the 10 ms time scale.  It automatizes behavior [24] while 
speeding up overall performance.  Although chunking, in combination with the flexibility of 
Soar’s problem solving, has been shown to yield a much wider range of learning behaviors than 
just automatization [6] – such as concept acquisition and episodic learning – speeding up 
behavior remains its most essential functionality.  Responsibility for most of these other learning 
activities has been taken over by Soar 9’s new learning mechanisms. 

2 Factor Graphs 
Factor graphs provide a form of divide and conquer with nearly decomposable components for 
reducing the combinatorics that arise with functions of multiple variables.  The function could be 
a joint probability distribution over a set of random variables; e.g., P(V,W,X,Y,Z), which yields 
the probability of V=v∧W=w∧X=x∧Y=y∧Z=z for every value v, w, x, y and z in the variables’ 
domains.  Or the function could represent a constraint satisfaction problem – e.g., C(A,B,C,D) – 
over a set of variables, yielding 1 if a combination of values satisfies the constraints and 0 
otherwise.  Or the function could represent a discrete-time linear dynamical system, as might 
typically be solved via a Kalman filter.  The problem formulation here would involve a trellis 
structure, where the graph for one time step is repeated for each, with four variables per time step 
(State, Input, Output and Noise) [16]: K(S0,I0,O0,N0,…, Sn,In,On,Nn). 

The prototypical factor graph operation is the computation of marginals on variables.  For a 
joint probability distribution, this is simply the marginal distribution of a random variable, as 
computed by summing out the other variables; e.g., P(Y) = Σv,w,x,zP(v,w,x,Y,z).  The key to 
tractability is avoiding the explicit examination of every element of the cross product of the 
variables’ domains.  For probabilities, the joint distribution is decomposed into a product of 
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conditional and prior probabilities over subsets of variables; e.g., P(V,W,X,Y,Z) = 
P(V)P(W)P(X|V,W)P(Y|X)P(Z|X).  Such decompositions derive from the chain rule plus 
conditional independence assumptions.  Commutative and distributive laws then improve 
efficiency by enabling variables to be summed out as soon as possible – e.g., P(Y) = 
ΣxP(Y|x)ΣzP(z|x)ΣvP(v)ΣwP(x|v,w)P(w) – yielding the basis of Bayesian networks (Figure 2). 

Factor graphs generalize this to 
arbitrary multivariate functions; 
e.g., F(V,W,X,Y,Z) = 
F1(V,W,X)F2(X,Y,Z)F3(Z).  The 
function becomes a bipartite graph 
with a variable node for each 
variable, a factor node for each 
subfunction, and undirected links 
between factors and their variables 
(Figure 3). 

The core inference algorithm for 
factor graphs is the sum-product (aka summary-product or belief-propagation) algorithm, which 
passes messages along links.  A message from a source node to a target node along a link is a 
vector that summarizes the source node’s information about the domain of the link’s variable 
node; e.g., a probability distribution over the variable’s domain elements.  A message from a 
variable node to a factor node is the pointwise product of the messages into the variable node 
from all of its neighbors except the target node.  A point-wise product is akin to an inner product, 

where the corresponding values 
from the two vectors are multiplied, 
but with the individual products then 
forming a new vector rather than 
being summed into a single value. 

A message from a factor node to 
a variable node starts with this same 
pointwise product but also includes 
the factor node’s own function in the 
product.  All variables other than the 
target variable are then summed out 
to form the factor’s outgoing 
message.  A key optimization here, 
as in Bayesian networks, is to use 
the commutative and distributive 
laws to redistribute multiplicative 
factors outside of summations. 

For tree-structured factor graphs 
in which only a single marginal is 
desired, the graph can be reduced to 
an expression tree in which the 
products and sums are computed 
upwards towards the root of the tree.  
Beyond this simplest case, the 

Figure 2. Sample Bayesian network 

Figure 3. Sample factor graphs 
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algorithm works iteratively by sending output messages from nodes as they receive input 
messages.  For polytrees, which have at most one path between any two nodes, this iterative 
algorithm always terminates and yields the correct answer.  For arbitrary graphs with loops, 
neither correct answers nor termination are guaranteed.  However, it does often work quite well 
in practice, as has been most strikingly evident for turbo codes. 

The sum-product algorithm utilizes two specific arithmetic operations: sum and product.  
However, the same generic algorithm works for any pair of operations forming a commutative 
semi-ring, where both operations are associative and commutative and have identity elements, 
and the distributive law exists.  Max-product, for example, is key to computing maximum a 
posteriori (MAP) probabilities.  Or-and also works, as do a range of other operation pairs. 

To improve the efficiency of the sum-product algorithm, various additional optimizations can 
also be applied, and alternative algorithms can be used (such as survey propagation [25] and 
Monte Carlo sampling [26]).  A connection exists between factor graphs and statistical 
mechanics, revealing that the sum-product algorithm minimizes the Bethe free energy, and 
yielding further algorithmic innovations [27]. 

3 Reimplementing Soar’s Elaboration Cycle via Factor Graphs 
The core computational process in Soar’s elaboration cycle is production match, as implemented 
by the Rete algortihm.  Rete consists of a discrimination network for sorting working memory 
elements (wmes) to matching production conditions; a join network to determine which 
combinations of wmes yield production instantiations while respecting across-condition variable 
equality constraints; and support for both incremental match across cycles and shared match 
across productions.  Most individual productions match efficiently, although worst-case match 
cost is exponential in the number of conditions. 

The purpose of this section is to demonstrate that graphical models in general, and factor 
graphs in particular, can straightforwardly implement a state-of-the-art production match 
algorithm – i.e., one that is as good as or better than Rete – and in so doing to expand their 
known repertoire within symbol processing to a capability that is used in many cognitive 
architectures and that is absolutely central to Soar.  The functionality implemented in this section 
does not go beyond what already exists in Soar, but it does show how such a capability can be 
provided uniformly with the other forms of symbol, probability and signal processing that are 
already part of the graphical model oeuvre. 

A mapping of Rete onto factor graphs has been designed on paper in which factor nodes 
handle discriminations and joins, variable nodes effectively represent both the wmes that match 
production conditions and the instantiations that match combinations of conditions – analogous 
to Rete’s α and β memories, respectively – and unidirectional message passing over an 
expression tree enables incremental and shared match.  However, rather than imposing Rete a 
priori on factor graphs, the primary focus in these investigations has been on algorithms that 
arise naturally from viewing production match as 
a multivariate function. 

Consider the rule in Figure 4, for simple 
color inheritance.  This is not exactly Soar’s 
representation, although it does retain Soar’s 
object-attribute-value scheme, with conditions 
testing wmes via constants and variables 
(denoted in angle brackets).  The simplest Figure 4. Sample color inheritance rule 
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mapping of this production to a factor graph views it as a Boolean function of the three 
production variables – P1(v0,v1,v2) – which, for each combination of variable values, yields 0 or 1 
depending on whether the combination defines a legal instantiation.   The production’s 
conditions then specify how the function is to factor: P1(v0,v1,v2) = C1(v0,v1)C2(v1,v2) (Figure 5).  

In the implementation of this mapping, WM is a 
3D Boolean array – objects  attributes  values – 
with 1s for every wme in WM and 0s elsewhere; and 
messages are Boolean vectors with 1s for valid 
bindings of the link’s variable and 0s elsewhere.  In 
essence, productions define graphs while WM defines 
distributions over graph variables. 

This initial approach indicates the feasibility of 
implementing match via factor graphs, but it also 
raises three issues: (1) both WM and constant tests are 
hidden within condition factors; (2) production match 
ignores conditions without variables in determining 
legal instantiations; and (3) it leads to errors from 
binding confusion [28].  The first problem doesn’t affect correctness – only how much message 
processing is leveraged during the match process – and the second can’t actually occur in Soar 
because all of the conditions in its productions must be linked via variables, so only brief 
overviews of their solutions are provided before the third issue is discussed in some detail. 

To use message processing more directly in handling WM and constant tests, new factor 
nodes are added to the graph, with WM and constants being represented explicitly via their 
functions. By connecting these nodes to the condition factors through new variables and their 
associated variable nodes, condition match automatically becomes appropriately constrained 
when the messages from these nodes are processed.  For example, in condition (<vo> ^type 
<v1>) the constant attribute type is replaced by a new variable, yielding (<vo> ^<x> <v1>), 
with the new variable being constrained by a factor node whose function is 0 for all symbols 
except type.  The second problem is also solved through creation of new variables (and variable 
nodes).  In this case, the issue arises because conditions without variables become detached from 
the graph, and thus do not constrain the instantiations generated.  The solution adds a common 
production variable to all of the conditions in a production, enabling the corresponding variable 
node to determine whether all of the conditions match. 

Binding confusion arises because the graph independently tracks the legal bindings of each 
variable – called instantiationless match in [28] – rather than maintaining Rete’s explicit 
combinations of condition instantiations.  Suppose (A ^type B), (C ^type D), (B ^color 
Red) and (D ^color Blue) are in working memory.  The match binds v0 to A & C, v1 to B & 
D, and v2 to Red & Blue, but it can’t, for example, distinguish which color (v2) to associate with 
object A (v0), even though a correct match requires Red rather than Blue. 

This problem is a direct consequence of the interaction between two constraints imposed by 
factor graphs: (1) the locality of processing in the network; and (2) the limiting of message 
content to the values of one variable.  Approaches to binding confusion must either work around 
these constraints to yield correct combinations or redefine match to live within them.  Correct 
combinations can be yielded, for example, by post-extraction [29] or by implementing Rete.  If 
instead match is to be redefined to be what is produced, we must then determine how to write 
rules that yield the desired overall behavior given the new semantics.  This approach could also 

Figure 5. Sample rule graph 
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be further refined by replacing the Boolean values in working memory with apportioned 
fractional values to represent ambiguity in the binding combinations. 

The most promising approach at this point modestly redefines the semantics of match to 
produce the needed combinations of bindings for action variables, while still avoiding creation of 
Rete’s full instantiations.  In the process, it eliminates binding confusion, alters the worst-case 
match cost for a production to exponential in its treewidth (see below), and avoids the 
unnecessary cost and potential confusion engendered when Rete creates redundant instantiations; 
that is, instantiations differing in bindings of condition variables but not in bindings of action 
variables.  Binding confusion is eliminated by extending variable nodes from their default role of 
representing individual production variables to representing combinations of production 
variables (Figure 6).  First, an ordering is imposed on the production’s conditions and actions to 
yield a sequence of factor nodes, one for each condition and action.  A variable node is then 
added between each successive pair of factor nodes.  Finally, to determine which production 
variables are assigned to each variable node, the first and last condition or action that uses each 
production variable is determined, and that 
variable is added to each variable node 
between the corresponding factor nodes. The 
approach is based on stretching in factor 
graphs, which itself maps onto junction trees 
[16].  Its implementation eliminates binding 
confusion by tracking combinations of variable 
bindings just as they are needed.  The treewidth 
in such a structure is simply the maximum 
number of variables at a node; two in this case. 

Since individual variable nodes in the graph may now represent multiple production 
variables, messages can be multi-dimensional arrays that are expensive to process without 
further optimization.  The most critical optimization here is the kind of factor rearrangement that 
is enabled by the distributive law.  Without it, the full factor graph for the rule in Figure 4 – 
comprising 8 factor nodes and 8 variable nodes when all three issue solutions are included along 
with a goal memory added in analogy to working memory in order to explore backward chaining 
– exhausts heap space before match completes (in LispWorks PE).  With factor rearrangement, 
match takes only 1.7 sec. 

A second critical optimization leverages the uniformity of WM and message arrays – they are 
almost all 0s or 1s – via an N-dimensional generalization of region quad/octrees called exptrees, 
which are akin to the CPT-trees used in Bayesian networks [30].  If an array is uniform, it 
becomes a single-valued unit.  Otherwise, each dimension is bisected to yield 2N sub-arrays, and 
the process recurs. The sum and product algorithms are trickier here, but have been worked out.  
With this optimization, match time is reduced by a further factor of ~7 (from 1.7 to .25 sec).  
Using exptrees enables match of the rule in Figure 4 to complete even without factor 
rearrangement, but it then still requires 132 sec.  This implies that factor rearrangement, at least 
for this rule with exptrees, speeds up match by a factor of ~500. 

One interesting implication of representing WM as an exptree is that it effectively becomes a 
piece-wise constant function.  Extending this to piece-wise linear functions, as is being 
investigated in follow on work, holds the potential for effectively and uniformly handling the 
kinds of continuous variables that are necessary for the processing of probabilities and signals. 

Figure 6. Modified rule graph 
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4 Revisiting Soar’s Decision Cycle via Alchemy 
Soar’s decision cycle, comprising an elaboration phase and a decision, is the lowest level at 
which knowledge may affect decisions, at which multiple fragments of knowledge may combine, 
and at which k-search may involve more than one cycle of match and firing.  It is also the key 
scale at which extending Soar beyond symbol processing could lead to radically expanded 
functionality and at which it first makes sense to consider incorporation of Soar 9’s diversity. 

Any reimplementation of Soar’s elaboration phase must support its three core functions: (1) 
elaborating the description of the current situation in working memory based on relevant long-
term knowledge; (2) generating operator preferences based on this elaborated working memory; 
and (3) altering working memory to reflect the application of selected operators.  The first two 
functions are mostly monotonic, while the third is inherently non-monotonic.  Overall, operation 
is similar to that of a truth maintenance system [31], with operators determining the current 
assumptions and elaborations automatically asserting and retracting as these assumptions change. 

A second constraint on any reimplementation of the elaboration phase is that it must be 
executable in bounded time and space.  Soar’s production-based elaboration phase runs in time 
that is bounded by the volume of the elaboration phase – cost per production × number of 
productions × number of elaboration cycles.  In reality, the second dimension is close to 
constant, as a suitably optimized Rete algorithm enables match time to remain close to constant 
with growth in the number of productions [32].  However, the other two dimensions can be 
problematic. As mentioned earlier, the cost per production may be exponential in the number of 
conditions in the production.  This can be reduced to exponential in the production’s treewidth 
via the approach in the previous section, but this is still combinatoric.  Even worse, the length of 
the elaboration phase can be infinite – new working memory elements can be generated on each 
elaboration cycle that lead to more productions firing in the next cycle.  A reimplementation 
should at least avoid exacerbating these boundedness issues, and ideally should improve them. 

Beyond these two constraints, the uniform versions of Soar also lived with a third constraint 
that all long-term knowledge must be cast as productions.  Productions have the advantage that 
they are uniform, active, relatively flexible, modular and learnable.  They also have a long 
successful history in cognitive modeling.  Still, they do not cope well with declarative and 
perceptual knowledge, leading to the ultimate elimination of this long held constraint in Soar 9 
and the addition of three new long-term memories – two for declarative knowledge (semantic 
and episodic) and one for perceptual knowledge (imagery) – each with its own distinct form of 
knowledge.  The approach explored here is not to eliminate this third constraint, but to replace it 
with one based on the varieties of knowledge structures efficiently implementable via graphical 
models.  The hope is thereby to support both hybrid and mixed functionality, as well as Soar 9’s 
new kinds of knowledge structures, in a general yet uniform fashion. 

Rather than building on the implementation of production match described in the previous 
section, a tactical decision was made to explore a hybrid mixed decision cycle via an existing 
graphical language that already combines some form of symbolic and probabilistic reasoning, 
such as Alchemy, BLOG or FACTORIE.  This was done to help understand the potential 
applicability of such languages to cognitive architecture, to see if they could provide a short cut 
to the ultimate goal of simple-yet-diverse architectures, and because of an unresolved issue with 
the existing implementation that was blocking further progress. For general probability and 
signal processing, cycles of bidirectional message passing are required across the graph.  For 
example, for sequential signal processing – as is found in the kinds of hidden Markov models 
used in speech – bidirectional message processing needs to occur across a trellis diagram, in 
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which a graph is constructed as a linked sequence of identical subgraphs.  The existing 
implementation could use bidirectional message passing within rules in computing the match, 
but only communicated across rules through working memory.  The initial hope had been to 
combine forward and backward chaining for bidirectional message passing across rules, but this 
has not so far panned out. 

Alchemy, which combines first-order logic and Markov networks in the form of Markov 
logic, was ultimately selected because it: supports forms of both symbolic and probabilistic 
processing along with nascent signal processing [33]; provides an obvious approach to working 
with both rules and their instantiations; is publically available, runs on multiple types of 
computers, and has manuals, tutorials, and rapid response to emailed questions.  In Alchemy, a 
Markov logic network (MLN) is defined via first-order predicates and formulas, with weights 
assigned to the formulas; for example, the Alchemy sentence “(Color(o1,c)^Type(o2,o1)) 
=> Color(o2,c).” expresses simple color inheritance, à la Figure 4, while the sentence “10 
Color(F, Green)” states that the particular object F is green with a weight of 10.  The MLN 
is then compiled into a ground Markov network with binary nodes for each ground predicate – 
such as the fact that F is green – links among nodes that appear in common formulas, such as 
would be generated between Color(F,Green) and Type(E,F) by their co-occurrence in at 
least one grounding of the implication; and features for each possible ground formula.  Inference 
is performed on this ground Markov network, unless additional optimizations such as laziness 
(where grounding only occurs for variables that take on non-default values [34]) or lifting (where 
multiple ground atoms are combined into single network nodes when they can be guaranteed to 
pass the same messages during belief propagation [35]) are included. 

The initial mapping of Alchemy to Soar’s decision cycle has focused on the first two 
functions of the elaboration phase: elaborating the current situation in working memory based on 
the contents of (a rule-based) long-term memory, and generating preferences.  Productions are 
represented as conditional formulas in an MLN file and the state of working memory at the 
beginning of the decision cycle is represented as evidence in an Alchemy database file.  A single 
elaboration phase is then mapped onto an invocation of Alchemy’s inference procedure with this 
network and database.  Given the MLN file and the evidence, Alchemy compiles the productions 
into a ground Markov network, and then performs inference in this ground network.  Because 
nodes in this network correspond to working memory elements, and each such node links to 
every other element with which it coexists in a ground formula, the ground Markov network 
provides a single linked network for the entire elaboration phase, enabling the requisite 
bidirectional inference across structures.   If the productions define a trellis by repetition across 
elaboration cycles, bidirectional inference also occurs appropriately for it. 

Several small-scale experiments have been run to help understand the relevance of this 
approach to the specific problem of building uniform graphical cognitive architectures and to the 
general problem of building hybrid mixed decision cycles.1  These experiments amounted to: (1) 
re-implementing the simple production systems that were previously implemented via factor 
graphs; (2) adding a form of semantic long-term memory to the production memory; (3) 
exploring an implementation of the eight puzzle, one of the earliest tasks investigated in Soar 
[36] and the basis for early learning experiments with it [23]; and (4) experimenting with trellis 
diagrams.  Several of these experiments have also been replicated with BLOG, but the results are 
not fundamentally different from those described here based on Alchemy. 

                                                
1 Alchemy was also earlier explored in the context of the Icarus cognitive architecture [37], but with a specific focus on the 

implementation of inference [38]. 
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The details of these experiments are not terribly interesting, so the strategy here is to ignore 
the nitty-gritty and instead focus on the high level lessons learned from the experiments.  The 
two main lessons are that: (1) a simple mixed decision cycle can be implemented in this fashion, 
yielding an elaboration phase that combines Soar’s standard rule-based capabilities with 
probabilistic reasoning, simple trellises and semantic memory (fact storage); and (2) there are 
sufficient issues with it to suggest that it does not provide a short cut to the ultimate goal.  The 
remainder of this section focuses on these issues, and on what can be learned from them for 
achieving the ultimate goal. 

One issue with the Alchemy approach that immediately pops out is that match actually 
occurs during the compilation of the (first-order) Markov logic network to the ground Markov 
network, rather than proceeding via the kind of within-network inference that occurred in the 
factor graph implementation.  In essence, the Markov logic network corresponds to the definition 
of the production system while the ground Markov network corresponds to working memory 
elements (the ground nodes) and production instantiations (the ground formulas).   In contrast to 
the factor graph implementation, working memory elements are represented by distinct nodes in 
this network rather than simply serving as the basis for messages among nodes. Given that the 
ultimate goal is to implement a broadly functional cognitive architecture uniformly in graphs, 
this match-as-compilation approach is problematic.  The resulting inhomogeneity is one of the 
main reasons why subsequent work has moved back into factor graphs, where the question can 
be asked as to whether it is possible to unify match – i.e., the computation of ground instances 
from first-order formulas – with the other necessary forms of probability and signal processing 
into a single graph that is processed in a uniform manner, or whether it will be necessary to go 
with something like Alchemy’s dual graph/network approach in which match occurs via a first-
order graph that generates a ground graph within which the remaining inference occurs. 

Despite this fundamental difference in how match is implemented, it turns out that exptrees 
serve a role in the factor graphs that is analogous to the use of laziness and lifting in Alchemy.  
The latter mechanisms eliminate unnecessary computation, either by avoiding the processing of 
default values or by grouping items that can be treated the same.  With exptrees, defaults are 
identified naturally and neighboring items are grouped by region if their values are identical.  
Exptrees appear to be a coarser approach, but it may ultimately be possible to bring these 
approaches more into alignment as differences between the approaches are better understood. 

The other major issue worth mentioning is a broad one concerning search, times scales, 
locality of processing, and non-monotonicity.  Systems like Alchemy that combine general first 
order reasoning with probabilistic inference perform global propagation of information in their 
knowledge structures in service of reaching global minima in a solution space.  In other words, 
they are engaged in search; and, in particular, combinatoric search that can easily get stuck in 
local minima [38].  This clearly has the essential character of problem space search rather than 
knowledge search, although it has been mapped here onto Soar’s decision cycle.  Even though 
there is no distinction between k-search and ps-search in such systems, this mapping suggests 
that perhaps should be.  Combinatoric search needs to be controlled by knowledge, which itself 
must be processed in a more tractable fashion.  This leads to the hypothesis that Alchemy, and in 
fact this whole class of systems, might be more effective in solving real problems if they 
bounded what they tried to compute within a single settling of the graph – essentially only 
striving for local minima based on global propagation of information – while adding an explicit 
capability for controlled search over a sequence of such local minimas to find global minima. 
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Taking this a step further, such an approach enables assigning simple yet principled 
functional characterizations to the three time scales at which Soar is defined: activity in a 
problem space (≥ 1 sec) finds global minima; the decision cycle (100 ms) finds local minima 
based on global information propagation; and the elaboration cycle (10 ms) only provides local 
propagation of information.  Spatially, the 10 ms scale corresponds to neural circuits, so this last 
choice is plausible from this perspective.  Such an assignment of functionality provides a simple 
yet powerful view of these cognitive scales that could be applicable to any cognitive architecture.  
Lack of consistency with this pattern may then reveal incoherence in the architectural definition. 

This novel mapping of functionality onto architectural levels in Soar does in fact reveal some 
potential issues.  The biggest one is the use of working memory to enable global communication 
within elaboration cycles.  If the mapping is correct, then this is too powerful for this time scale.  
Global communication instead should be limited to decision cycles.  Interestingly, although rules 
are used in many architectures, this conflict only exists in those like Soar, where rules map onto 
the 10 ms level.  In most architectures rules map onto the 100 ms level, where global 
communication is fine.  In ACT-R, for example, rules are the objects of selection, and execute 
sequentially.  It has been known for some time that ACT-R’s rules actually map onto Soar’s 
operators rather than Soar’s rules, with Soar’s rules mapping onto ACT-R’s subsymbolic 
processing rather than its rules.  Yet, prior to this analysis there was no reason to select between 
these two distinct alternative levels for rules.  It is important to note though that this analysis 
does not ban rules at the 10 ms level, only global rather than local communication among them. 

One less momentous aspect of this issue concerns non-monotonic reasoning.  Architectures 
such as Soar embody non-monotonic reasoning in various forms.  Operator application, for 
example, is inherently non-monotonic in the changes it makes to the current state.  Soar also 
maintains an implicit closed world assumption with respect to working memory – that anything 
not present is false – enabling negated conditions to implement negation as failure, a form of 
default reasoning.  Non-monotonic reasoning is difficult in general in a first order reasoner such 
as Alchemy.  It is also problematic within rules, from a levels perspective, because it is implicitly 
global.  Default reasoning, for example, draws conclusions from a lack of evidence; that is, based 
on a global assumption about what does not exist.  Operator application in Soar does not 
engender a level conflict because it occurs at the 100 ms level, but negated conditions do because 
they are defined at the level below. 

In contrast to the elaboration phase, there are many fewer constraints on the decision 
procedure that follows it.  Decisions in Soar were based on vote counting in a very early version, 
on symbolic preferences – acceptable, reject, better worse, etc. – in most versions, and on a 
combination of symbolic and (additive) numeric preferences in Soar 9. The key constraint on a 
reimplementation of the decision procedure is that all of the preferences accessed during the 
elaboration phase must be combined in an appropriate and tractable manner to yield either the 
selection of a unique operator or the detection of an impasse.  Limited experiments with 
decisions have been performed by leveraging Alchemy’s provision of weights on formulas to 
encode preferences, and most-probable-explanation (MPE) inference to select operators based on 
these preferences.  This has proven adequate for simple examples, but developing a full decision 
mechanism is left for future work. 

5 Conclusion and Next Steps 
The ultimate goal for work in cognitive architecture should be architectures that are 
comprehensive models of human cognition and/or effective architectures for constructing 
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human-like artificial intelligence.  To reach this goal, it is important to resolve the diversity 
dilemma, enabling the development of architectures that are functional and efficient yet simple, 
elegant, extensible, integrable and maintainable.  This article proposes achieving this by 
combining architectural diversity with a uniform implementation level based on graphical 
models.  As initial evidence for the plausibility of this approach, experiments have been 
described that reimplement Soar’s lowest two architectural levels – the elaboration and decision 
cycles – via graphical models.  The latter begins the process of investigating a hybrid mixed 
architecture by exploring simple versions of the kinds of trellises used in sequential signal 
processing and the use of weights on productions to encode preferences.   

Many outstanding issues remain with these partial reimplementations, but they start to reveal 
the potential of a uniform, graphical implementation level to support diverse cognitive 
architectures.  Current work is focused on completing a uniform implementation of a hybrid 
mixed decision cycle based on factor graphs that is capable of combining symbol, probability 
and signal processing to integrate together procedural knowledge, declarative knowledge (e.g., 
semantic and episodic memories) and perceptual knowledge.  Learning from the experiments 
with Alchemy, and the resulting analysis, this work is paying careful attention to locality of 
computation.  It is, for example, looking at how to keep the elaboration cycle a local rather than a 
global process, by directly linking actions of some productions with conditions of others, rather 
than going through a global WM.  There is also a major focus on understanding how to perform 
production match and probabilistic processing compatibly via message passing, rather than 
relegating the former to a precompilation phase. 

Future work will include reimplementing much of the rest of Soar 9 – including semantic and 
episodic memories, reflection and learning – while enhancing it with additional capabilities, such 
as decision-theoretic planning, Markov decision processes, and theory of mind.  Beyond Soar, it 
will also be essential to explore: reimplementation of other leading architectures, as well as 
hybrids among them; new architectures that are more directly inspired by the uniform 
multipotency of a graphical implementation level; and the potential of graphical models to bridge 
the gap between symbolic and neural architectures. 
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