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ABSTRACT
Traditionally, room response equalization is performed to improve sound quality at a given listener. How-
ever, room responses vary with source and listener positions. Hence, in a multiple listener environment,
equalization may be performed through spatial averaging of magnitude responses at locations of interest.
However, the performance of averaging based equalization, at the listeners, may be affected when listener
positions change. In this paper, we present a statistical approach to map variations in listener positions to
a performance metric of equalization for magnitude response averaging. The results indicate that, for the
analyzed listener configurations, the zone of equalization depends on distance of microphones from a source
and the frequencies in the sound.
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1. INTRODUCTION
A typical room is an acoustic enclosure that can be mod-
eled as a linear system whose behavior at a particular lis-
tening position is characterized by an impulse response.
The impulse response yields a complete description of the
changes a sound signal undergoes when it travels from
a source to a receiver (microphone/listener). The signal
at the receiver consists of direct path components, dis-
crete reflections that arrive a few milliseconds after the
direct sound, as well as a reverberant field component.
In addition, it is well established that room responses
change with source and receiver locations in a room [1],
[2]. In other words, a room response can be uniquely

defined by a set of spatial co-ordinates li
∆
= (xi, yi, zi).

This assumes that the source is at origin and the receiver
i is at the spatial co-ordinates, xi, yi and zi, relative to
a source in the room.

Due to variations in room responses with listener posi-
tions relative to a source, in a multiple listener environ-
ment, room equalization should be performed for all lis-
teners present in the room. With a good multiple listener
equalization technique, all listeners in a given environ-
ment will experience high quality sound. Furthermore,
the equalization technique should be robust to variations
in listener head movements. Specifically, the equalized
response should not vary significantly in the vicinity of
the listeners.

One method for providing simultaneous multiple listener
equalization is by measuring the room responses with
microphones at all possible listener positions, averaging
the measurements, and inverting the stable component
of the result. The microphones are generally positioned,
during measurements, at the expected center of a listener
head. Although this equalization is aimed at achieving
uniform frequency response coverage for all listeners, its
performance is often limited due to, (i) mismatch be-
tween microphone measurement location and actual lo-
cation for the center of the listener head, or (ii) variations
in listener locations (e.g., head movements).

In this paper, we propose a statistical approach using
modal equations for evaluating the robustness of equal-
ization based on magnitude response averaging, due to
the introduction of variations in room responses (gener-
ated either through (i) or (ii)), for different listener ar-
rangements relative to a fixed sound source. In Section
2, we introduce necessary background used in the devel-
opment of the proposed robustness analysis. Section 3
is dedicated to the development of the robustness anal-
ysis for spatial average based equalization. In Section
4, we present results based on simulations for different
listener arrangements relative to a fixed source. Section

5 concludes the paper.

2. ROOM ACOUSTICS FOR SIMPLE
SOURCES

The Green’s function derived from the wave theory for
sound fields in an enclosure is given by [1], [3]
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1
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where the eigenfunctions pn(q
l
) can be assumed to be

orthogonal to each other under certain conditions, and
the point source being at q

o
.

For a rectangular enclosure with dimensions
(Lx, Ly, Lz), q
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3. ROBUSTNESS ANALYSIS OF EQUALIZA-
TION USING MAGNITUDE RESPONSE SPA-
TIAL AVERAGING

A performance function, W (i)
ω (ε), that is used for ana-

lyzing the robustness, of spatial average equalization, to
room response variations is given as

W (i)
ω (ε) = E{|pω(ν(i)

ε )p−1
ω,avg − pω(q

i
)p−1

ω,avg|2} (3)

pω,avg =
1
N

N∑

l=1

|pω(q
l
)|

where, pω(ν(i)
ε ) is the pressure at locations in the ε

neighborhood of position i having pressure pω(q
i
) (ε-

neighourhood is defined as all points at a distance of
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ε from location i), and E{.} denotes the expectation op-
erator.

The performance measure (1) is defined in such a manner
that when the displacement ε, about position i (whose re-
sponse pω(q

i
) is originally used for determining the spa-

tially averaged equalization filter p−1
ω,avg), is zero, then

W (i)
ω (ε) = 0. Furthermore, the performance measure

is computed as an average of the error between the re-
sponse at the equalized location and the response at a
displaced location having distance ε from the equalized
location. Obviously, this is not a psychoacoustic measure
(i.e., it is not computed with different weights at differ-
ent frequencies). However, a future direction would be to
form a psychoacoustically motivated composite measure
using a weighted combination of W (i)

ω (ε) over specific
frequencies (f ∈ [20 Hz, 20 kHz]).

For simplicity, in our analysis, we assume variations in
responses due to displacements (or mismatch) in a hor-
izontal plane (x-y plane). The analysis can be easily
extended to include the vertical plane. Thus, simplifica-
tion of (3) leads to

W (i)
ω (ε) = N2/(
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l
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We only need to compute the statistics associated with
Terms (I), (II) and (III) (the terms within the expecta-
tions) in (4), since Term (IV) is a deterministic quantity.

Now, E{pω(ν(i)
ε )p∗

ω(ν(i)
ε )} is the average over all locations

along a circle of radius ε from the i-th listener location.
Assuming the source, all listeners, and each of the lis-
tener displacements are along the same z-plane (z = 0),
then (I) in (4) can be simplified using the following equa-
tions,
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Now, with φ(i)
x = xi + ε cos θ and φ(i)

y = yi + ε sin θ
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Eq. (8) can be solved using the Matlab trapz function.
However, we found an approximate closed form expres-
sion to be computationally much faster. The follow-
ing expressions were derived from standard trignometric
formulae; and using the first two terms in the polyno-
mial expansion of the cosine function, and the first term
in the polynomial expansion of the sine function since
(ε/Lx, ε/Ly, ε/Lz) << 1. Thus,
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where,

εx =
πε√
2Lx

; εy =
πε√
2Ly

ux = nxmx ; uy = nymy (11)

vx = (m2
x + n2

x) ; vy = (m2
y + n2

y)

Thus (10) can be substituted in (9) and subsequently in
(4) to determine Term I.

Now Terms (II) and (III) in (4) can be combined to give,
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Now again using φ(i)
x = xi + ε cos θ;φ(i)

y = yi + ε sin θ, we
have
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Thus, upon again using the fact that
(ε/Lx, ε/Ly, ε/Lz) << 1, we can solve (13) as
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) cos(
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Substituting (14) in (12) and subsequently into (4) gives
Terms II and III.

4. RESULTS

Simulation of (3) using (6), (9), and (12) was performed
in Matlab for a room of dimensions 6 m × 6 m × 6 m
with two positions that were equalized with magnitude
response averaging. The two positions were q

1
= (2, 2)

and q
2

= (3, 4) (shown in Fig. 1 as asterisks), whereas
the source was at the origin (shown in Fig. 1 as a circle
at the origin).

Fig. 2 shows the results from the simulation for 0.1 m
≤ ε ≤ 0.5 m and f = 150 Hz. Clearly, the trend of
poor equalization performance as ε increases is shown
for both positions. An interesting difference, at higher
displacements, can be seen between the two positions,
with the farther position (relative to the source) q

2
had

a more robust equalization as compared to position q
1
.

Future directions will focus on determining the cause of
such differences.

5. CONCLUSIONS

In this paper we presented a statistical approach using
modal equations for evaluating the robustness of equal-
ization based on magnitude response averaging, due to
the introduction of variations in room responses (gen-
erated either through (i) or (ii)), for different listener
arrangements relative to a fixed sound source. The sim-
ulations were performed for a two “listener” setup with
a simple source in a cubic room. For both listener po-
sitions, the equalization performance degraded with dis-
placements as is to be expected. However, at higher dis-
placements, the farther position (relative to the source)
had a more robust equalization as compared to the closer
position.

Future research will be directed towards, (i) determin-
ing the cause of the differences in performance mea-
sure, W (i)

ω (ε), between equalized positions, (ii) extend-
ing the simulations over more frequencies and positions,
(iii) forming a psychoacoustically motivated composite

measure using a weighted combination of W (i)
ω (ε) over

specific frequencies,
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Fig. 1: Simulated setup for a two position robustness
analysis. The two equalized positions are marked by
an asterisk and the source is denoted by a circle.
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Fig. 2: Results from the simulation for the setup in
Fig. 1. The solid line indicates the robustness of
spatial average equalization at position 1, while the
dashed line shows the robustness at position 2 .
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