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ABSTRACT

Our long-term objective is to create Smart Room Technologies that
are aware of the users presence and their behavior and can be-
come an active, but not an intrusive, part of the interaction. In this
work, we present a multimodal approach for estimating and track-
ing the location and identity of the participants including the ac-
tive speaker. Our smart room design contains three user-monitoring
systems: four CCD cameras, an omnidirectional camera and a 16
channel microphone array. The various sensory modalities are pro-
cessed both individually and jointly and it is shown that the mul-
timodal approach results in significantly improved performance in
spatial localization, identification and speech activity detection of
the participants.

1. INTRODUCTION

New developments in communications technologies have brought
to light a number of exciting and challenging applications that
promise to change the way people communicate and interact. An
application that has recently gained significant attention in the lit-
erature is the development of multimodal, unobtrusive Smart Room
Technologies (SRT): monitor and infer important clues about users
in specific environments such as their spatial position, identities
and behavior. This is a challenging multidisciplinary application
that involves research in diverse topics including object tracking,
speaker activity detection, speaker identification, human action
recognition and user behavior modeling.
One of the well-studied areas in SRT is the detection and track-

ing of user locations. Two important sources of information are the
visual and the acoustic modality. Within a multimodal framework,
these two sources have been used to track a single active speaker
using methods such as Sequential Monte Carlo [1] [2], Kalman
filtering [3] and Dynamic Bayesian Networks (DBN) [4], taking
advantage of the complementary information represented by these
two modalities.
Recently, [5] and [6] extended these approaches to trackmultiple

speakers using particle filtering, while at the same time achieving
active speaker detection, which is another important aspect of smart
room technologies. In [7], visual clues were used to track users and
a microphone array to select the active speaker by computing the
distance between the visual and acoustic results.
Another important aspect of SRT is speaker identification (SID),

in which the identity of the user is detected. There are several
additional possible biometric systems for smart room applications
(e.g., retina, fingerprint), although most of them are impractical due
to their invasive nature. One feasible option is to classify the user
according to acoustic speech features [8] or through face recogni-
tion.
In this paper, we propose a real time multimodal approach to de-

termine the spatial position of the user, detect speaker activity, and
additionally determine the speaker’s identity aimed at applications
such as remote video-conferencing and audio-video indexing and
retrieval for tasks such as meetings.

Our conference room contains three user monitoring systems:
four synchronized cameras located in the corners of the room, a
full-circle 360 degree camera located at the center of the table, and
an array of sixteen microphones located at the end of the table.
The location of each user is computed based on (i) the 3D polygon
surface model from 4 synchronized cameras and (ii) a face detec-
tion technique using a full-circle 360 degree camera. Subsequently
a dynamic model, under the Gaussian distribution assumption, is
used with a moving window to combine the above information and
localize the participants. The Speaker ID, operating on far-field
sound obtained from the microphone array, algorithm employs a
standard Gaussian Mixture model based on MFCCs. Finally, the
active speaker’s identity and location is estimated by fusing all the
information channels.
The long-term objective of this project is to create a system

which is cognizant of the users and can become an active but non-
intrusive member of the ir interaction. The specific goal of this
paper is to present a smart room design suitable for real time multi-
speaker remote video-conferencing, with augmented information
channels containing speaker IDs and relative location of the partic-
ipants and the active speaker. Moreover, the extracted information
can be used in a number of other applications such as video index-
ing and retrieval, human posture inference [9], modeling of human
behavior, and as the device technologies further mature, for appli-
cations such as audio-visual speech and emotion recognition [10].

2. THE SMART ROOM

The present initial design primarily comprises microphones and
cameras for activity sensing. The microphone array consists of
16 omnidirectional microphones that process sound at 48kHz sam-
pling frequency. Fourteen microphones are distributed on a square
frame of 50×50cm and two microphones are raised in the middle
of the frame to allow for vertical plane localization. The room is
acoustically treated on three walls and has a full-wall glass window
on the other side, and has ceiling panels and carpeting on the floor.
The 3D camera system consists of 4 firewire CCD cameras near

the corners on the ceiling that overlook the meeting area around the
main table and capture the image sequences of the meeting from
multiple angles. Each camera provides 1024× 768 images at 15
frames per second, but we scale them to 320× 240 for real time
processing. The room is lighted with halogen lights.
At the center of the meeting table, a full-circle omnidirectional

(360◦) camera captures the faces of all participants. The size of the
original omnidirectional image is 1280×960.
The next subsection describes the algorithms used to process

each of these raw information sources.

2.1. Microphone array
One modality of localization is the sound source localization using
a microphone array. The principle of sound source localization is
based on the Time Difference of Arrival (TDOA) of the sound to the
various sensors and the geometric inference of the source location



Fig. 1. Four firewire CCD cameras

from this TDOA. In this microphone array implementation we first
estimate the pair-wise delays [11] and then employ a least-squares
estimation procedure for the source localization[12].
Georgiou et al[11] have demonstrated the impulsive nature of

audio signals and introduced a time delay estimation approach to
mitigate its effects. The algorithm called Fractional Lower Order
Statistics-Phase Transform Method (FLOS-PHAT) is based on a
signed-non linearity on the input signal that reduces the detrimental
effects of outliers.
As is common practice, this implementation of the FLOS-PHAT

algorithm employs memory in order to approximate the expectation
in the lower order statistics, and additionally the memory varies as
a function of time to mitigate temporal propagation of errors.
Subsequently, based on the TDOA estimates, a computationally

simple algorithm presented by Huang et al[12], called One Step
Least Squares (OSLS), can be used to spatially locate the souce
using these pairs of delays.
The resulting localization algorithm is quite robust, but as ex-

pected, not very accurate in range due to the small aperture of the
array. We expect, however, that this shortcoming will be countered
by the visual modalities, which have higher accuracy in the hori-
zontal plane.

2.2. Speaker ID
Speaker identification was implemented by analyzing the short-
time spectrum (through mel frequency cepstral coeeficients,
MFCCs) of the spoken phrases. In speaker recognition, the Gaus-
sian Mixture Model (GMM), a weighted sum of Gaussian distribu-
tions, has been found to be good to capture the speaker informa-
tion in MFCCs, and hence a GMM with 16 mixtures was used as
a speaker model. Model training was accomplished by the stan-
dard Expectation-Maximization (EM) algorithm. All frames were
initially divided into 16 clusters. An initial model was obtained by
parameter estimation (for mean and covariance matrices), which
were estimated from the vectors in each cluster. The prior weights
of GMM can be simply set by the proportion of feature vectors
in each cluster. Next, the feature vectors are clustered by the
Maximum Likelihood (ML) method using the previously estimated
model. This process is iteratively executed until the model parame-
ters converged. Additionally, we have created a silence/background
noise model.
The speech signal was obtained through beamforming from the

microphone array (see Fig. 4). The result of the speaker identifica-
tion was in terms of pairs, (Si,Pi), where Pi refers to the probability
of speech activity of speaker Si given for all speakers i. This infor-
mation is evaluated and transmitted to the fusion algorithm every 1
second.
We should note that the acoustic signal processed is a reverber-

ant, far-field signal corrupted by noise, and so the performance of
this method is expected to be lower compared to a case when clean
signal from a close-talking microphone is to be used.

Fig. 2. Omnidirectional image from 360◦camera and its panoramic
transform

2.3. Video detection

The goal of visual tracking is to detect and track the 3D locations of
the participants in the meeting room using video streams acquired
by multiple synchronized cameras.
We use a Gaussian background-learningmodel to segment mov-

ing regions in the scene. When large variations from the learned
Gaussian models are detected the foreground pixels are extracted.
These pixel changes are then merged into regions. However, this
method will segment actual people as well as their shadows and re-
flections. In our indoor setting, the shadow regions cast by diffused
light do not have strong boundaries. We eliminate the shadows by
combining the foreground pixels detection and the edge features
detection [9] for segmenting into moving regions and correspond-
ing cast shadows. The resulting regions are the silhouettes of the
moving objects in the room.
The detected silhouettes across the views are integrated for infer-

ring the 3D visual hulls of people in the room [13]. The silhouette
contour is converted to a polygon approximation and a visual hull
with polyhedral representation is then computed directly from these
polygons [14]. This polygonal 3D approximation of the shapes is
fast and is done in real-time. In detecting the locations of the people
in the meeting room, we only need an estimation of general location
of blobs of shapes instead of a precise reconstruction. Furthermore,
we want the detection to cover an area as large as possible given a
limited number of cameras. For this purpose we use a variation of
the visual hull method proposed by [15]: the polyhedral visual hull
is required to be the integration of only a subset (at least 3 out of 4)
of the silhouettes instead of all of them. The resulting visual hull
shape is less accurate, but the 3D shape of all people in the room
can be approximated.
The computed visual hull is in a polygonal representation. We

randomly sample points on the polygon surface and construct a
height map of those points. This map assumes the XY plane in
the Cartesian space is the meeting room floor and the Z coordinate
represents the height. The local maximums of the height are then
detected and considered as heads of the meeting participants. In
this process some thresholds are applied to eliminate small regions
such as moving chairs.

2.4. Full-circle 360-degree camera
We have added an omnidirectional (360◦) camera on the meeting
table to capture faces of all participants in order to get thumbnail
representation of ”who’s talking”. The image of the omnidirec-
tional (360◦) camera is the result of the projection of the surround-
ing scene into a hemisphere. We can unroll the captured original
image and project it back onto a cylinder as in Fig. 2.



Fig. 3. Detection of participants’ faces with the 360◦camera
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Fig. 4. The system is distributed running over TCP, with informa-
tion exchange as depicted above.

To detect the foreground region, we use adaptive Gaussian
background-learning model. All pixels in a new frame are com-
pared to the current color distribution in order to detect moving
blobs prior to capturing the faces. Morphological operators are
used to group detected pixels into foreground regions, and small re-
gions are eliminated. Pixel color distributions are updated in these
regions for adapting the background model to slow variations. In
these moving regions, we perform face detection. The face de-
tector is based on Haar-like features and is implemented using In-
tel’s open source computer vision library [16]. To accurately detect
faces under low light level conditions, the color histogram of de-
tected regions is normalized beforehand. Detected regions are then
tracked using a graph-based tracking approach [17]. These regions
correspond to the upper body of the meeting participants. Spatial
and temporal information of tracking regions are combined as a
graphical structure where nodes represent the detected moving re-
gions and edges represent the relationship between two moving re-
gions detected in two separate frames. Each newly processed frame
generates a set of regions corresponding to the detected moving ob-
jects. The size of original omnidirectional image is 1280×960 and
the panoramic image resolution is 848×180. The average size of
detected faces is approximately 30× 30. The faces are detected
and tracked at approximately 13 FPS in a 2.8 GHz Pentium4 PC.
In Fig. 3 we show an example of detection and tracking of the par-
ticipants’ faces during a meeting.

2.5. Synchronization
Each modality was initially processed independently and asyn-
chronously. Therefore, the estimated 3D coordinates from the
polygonal representation (Xv) and from the microphones array
(XMA), the angles of the faces detected (Xθ ), and the speaker in-
formation from the acoustic analysis (Si,Pi) are sent to the fusion
algorithm for integration. Although the results are received in an
asynchronous manner, they are transformed and processed in a syn-
chronous fashion.

3. MULTIMODAL INTEGRATION

The various modalities are subsequently received and processed by
a fusion algorithm for the purpose of finding and tracking the par-
ticipants’ spatial locations and identifying where and who the cur-
rent active speaker is. Fig. 4 shows the information flow between
the various modules, and what information is used for each deci-
sion.

Fig. 5. Microphone Array Distribution

3.1. Participant localization
It is well known that visual tracking algorithms have better spatial
resolution than acoustic localization techniques [7, 6]. Hence, our
algorithm for localization of all the participants’ location employs
a dynamic visual approach that uses only information obtained by
cameras X = (Xv,Xθ ). Based on the distribution of the samples
X , we model the position of each speaker as a multidimensional
Gaussian distribution.
A single distribution with covariance K of a significant spread

and mean M is initialized at the center of the room. As data are
obtained, the variance and mean converge to the detected object’s
location. When information is received for a location scoring be-
low a certain threshold of belonging to the existing distribution, a
new multidimensional Gaussian is initialized at (M,K). The pro-
cess continues sequentially until all the speakers are detected, with
new data points either spawning new participant models or adapt-
ing the existing ones. In addition, temporal filtering ensures that
false participant detections are identified and removed. This proce-
dure allows us to determinate not only the spatial positions of the
participants (XP), but also the number of participants in the room
(NP).

3.2. Participant Identification
The spatial location of the current speaker (XMA+P) as obtained
from the microphone array (XMA) and participants’ location infor-
mation (XP), as well as the speaker ID from the GMM algorithm
(Si,Pi) are used to determine the identities of the participants. The
goal is to detect who the participants are and also correlate their
identity with their location in space (derive the “seating arrange-
ment”).
Fig. 5 shows a sample scatter plot of the raw microphone array

localization XMA, and as can be observed, the range information is
highly noisy. For simplicity, we model P(Ci|XMA), the probability
that the acoustic source comes from cluster i given XMA, as a multi-
dimensional Gaussian distribution centered at the locations XP and
with a large variance in range and smaller variance in the other two
dimensions.
Using (S,P), the probabilistic identity of the participant along

with P(C|XMA), the probabilistic location of the current speaker,
over time and with physical constraints1 we estimate the partici-
pants seating arrangement (L).

3.3. Speaker Identification and Localization
We compute activity speaker detection by employing all modali-
ties: XMA+P, which is derived from the visual modality and the
microphone array, and (S,P) obtained from the acoustic analysis of
the signal. The information is fused as described in (1), where ri j
is the correlation measure between the probabilities of the current
speaker belonging in cluster j and being speaker i.

1Such that a participant can only be at one point in space at a time, and
one position can only be occupied by one participant at a time
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Fig. 6. All of the above results are obtained in real time, and include
the whole length of the meeting, with no time given for initial con-
vergence. A: Speaker ID as obtained purely from the speech signal
using a GMM; B: Localization obtained by the two visual informa-
tion channels and the microphone array; C: Speaker Identification
& Localization based on all information channels. Assumes per-
fect knowledge of L, the seating arrangement of the participants;
D: As C, but the mapping of speaker-location, L, is continuously
estimated from the data; E: Speaker Location mapping, L.

P(Si) = Pi ·
n

∑
i
ri j ·P(C j|XMA) (1)

4. RESULTS & DISCUSSION

The experiments were performed using two meetings (each 5
minute long) with four participants, processed in real time. Off-line
computations were also performed later for comparison purposes.
The conversation in the meetings was casual with many interup-
tions, overlaps and short utternaces, making this an extremely chal-
lenging task for both the microphone array and the Speaker ID. We
used two criteria: strong decision, in which the detection was con-
sidered correct if the speaker was active at least 50% of the time
interval, and weak decision, in which the detection is considered
correct if the speaker was active in any part of the time interval.
The participants localization algorithm takes about 3 seconds per

participant to converge during the start of the meeting. As can be
observed from the results in Fig. 6 (rows C&D), the speaker identi-
fication and localization based on all the modalities is fairly robust,
achieving about 70% performance. This is a significant improve-
ment of about 30% compared to the speaker ID based purely on the
speech signal as shown in row A, which suffers from the far field
and noisy nature of the data.
Similarly, there is a significant improvement in the accuracy of

localization (row B) as contrasted to the performance based purely
on the microphone array. The microphone array as a single modal-
ity is very unreliable when it comes to the range of the speaker (as
can be observed from Fig. 5), both due to the noisy environment as
well as the range errors due to the aperture of the array. The multi-
modal localization accuracy is also further improved by the acous-
tic speaker ID modality, as the correlation between active speaker
and sound source location is providing additional information. This
results in about 10% improvement when comparing all modalities
(row C & D) versus the visual and microphone array only (row B).
Finally, the identification of the participants’ spatial arrangement

(row E) is extremely accurate, a fact that explains the very close
results observed in rows C & D.

5. CONCLUSION

In this paper, we have presented the first results from the smart
room that we are developing at USC. We have demonstrated that
complementary modalities can increase the general participant
identification and localization (without any prior knowledge of the
number of participants) including the active speaker identification
and localization.
Our goal of increasing the system’s awareness of the users in

the space has many more challenges ahead. In our future work we

propose to investigate further integrated recognition technologies
including face recognition, gesture recognition and head pose esti-
mation. Additionally we plan to collect and share with the research
community a multimodal data corpus from this testbed.
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