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ABSTRACT
Speech processing is an important aspect of affective computing.
Most research in this direction has focused on classifying emotions
into a small number of categories. However, numerical represen-
tations of emotions in a multi-dimensional space can be more ap-
propriate to reflect the gradient nature of emotion expressions, and
can be more convenient in the sense of dealing with a small set
of emotion primitives. This paper presents three approaches (ro-
bust regression, support vector regression, and locally linear re-
construction) for emotion primitives estimation in 3D space (va-
lence/activation/dominance), and two approaches (average fusion
and locally weighted fusion) to fuse the three elementary estimators
for better overall recognition accuracy. The three elementary esti-
mators are diverse and complementary because they cover both lin-
ear and nonlinear models, and both global and local models. These
five approaches are compared with the state-of-the-art estimator on
the same spontaneously elicited emotion dataset. Our results show
that all of our three elementary estimators are suitable for speech
emotion estimation. Moreover, it is possible to boost the estimation
performance by fusing them properly since they appear to leverage
complementary speech features.

Keywords— Affective computing, emotion recognition, emo-
tion estimation, 3D emotion space, estimator fusion, robust regres-
sion, support vector regression, nearest neighbor estimation, locally
linear reconstruction, locally weighted fusion

1. INTRODUCTION

Picard [29] proposed the concept of affective computing, describing
it as “computing that relates to, arises from, or influences emotions.”
It has been gaining popularity rapidly in the last decade because it
has great potential in the next generation human-computer interface
[29, 37], especially, in interactive environments [7, 36], which adapt
automatically according to the user’s emotions.

To make use of emotions, first we need to be able to recognize
emotions. Emotions may be estimated from many different infor-
mation sources, e.g., speech [25], facial expressions [8], physiolog-
ical signals [7], etc. In this paper we focus on emotion recogni-
tion using speech signals. So far most research in this direction
has focused on classifying emotions into a small number of cat-
egories [10, 25, 28, 34, 40], e.g., Lee and Narayanan [25] investi-
gated classifying emotions in spoken dialogs into negative and non-
negative categories using acoustic, lexical, and discourse informa-
tion, and Schuller et al. [34] classified a driver’s emotions into four
categories (anger, confusion, joy, and neutrality) using only acoustic
features.

Emotion psychology research [31, 32, 42] has shown that emo-
tions can also be represented as points in a multi-dimensional space,
i.e., emotions can be quantified as numbers instead of categorical
values. One of the most frequently used emotion spaces consists of
three dimensions [23, 33]:

• Valence (V), which ranges from negative to positive.
• Activation (A), or arousal, which ranges from low to high.
• Dominance (D), which ranges from weak to strong.

In this paper these three dimensions are used and are called primi-
tives in the VAD space.

The 3D representation of emotions can potentially make human-
computer interaction easier to implement because computers are bet-
ter at dealing with numbers for deriving inference and decision mak-
ing. Moreover, in some situations, we may only need to ensure that
a user’s emotion is within some range for a certain primitive instead
of requiring the user to have a certain emotion, e.g., to develop a
good role play game (RPG), we may only want to ensure that the
activation level of the gamer is high (engaged) whereas we may not
care too much about valence and dominance, which may change at
different stages of the game.

There has been limited research on automatic emotion recog-
nition in multi-dimensional space [10, 13–15, 40, 41, 44]. One rea-
son may be that there are very few speech databases that are an-
notated in multi-dimensional spaces [6]. Among them, Vidrascu
and Devillers [40] studied emotion classification in 1D space (va-
lence), where two categories (positive and negative) were used. Yu
et al. [44] investigated emotion classification in 2D space of valence
and arousal by partitioning the dimension of valence into three levels
and arousal into five levels. Fragopanagos and Taylor [10] also in-
vestigated emotion classification in 2D space of valence and arousal1

by partitioning each dimension into two intervals (positive and neg-
ative). Wöllmer et al. [41] studied both emotion classification and
estimation in 2D space of valence and arousal.

To the best knowledge of the authors, Grimm et al. [13–15] are
the first to estimate the values of the emotion primitives in 3D space.
There are several highlights in their approaches. First, they used the
VAM corpus (detailed in Section 2) with the following characteris-
tics:

1. Authentic utterances in real life conversations were used, in-
stead of isolated utterances from actors, as used in most other
speech emotion studies.

2. The emotion in each utterance was evaluated as a point in 3D
space (valence/activation/dominance), whereas most other
datasets in the literature used emotions evaluated in a small
number of categories.

3. There were 6–17 human evaluators for each utterance,
whereas most other datasets in the literature used only 2–5
evaluators.

Second, they investigated several different estimators, e.g., fuzzy
logic system, support vector regression, and k-nearest neighbors.
Their best estimator was comparable to the evaluations given by hu-
man listeners.

1Fragopanagos and Taylor [10] called the 2D space “activation-evaluation
space.”
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Fig. 1. A flowchart for speech emotion primitives estimation.

The present paper introduces several further new approaches on
speech emotion estimation in 3D space, based on the VAM corpus.
The overall flowchart is shown in Fig. 1. The main contributions are:

1. Three elementary estimators, i.e., robust regression, sup-
port vector regression, and locally linear reconstruction, for
speech emotion estimation are introduced. They are diverse
and complementary, in the sense that they cover both linear
and nonlinear models, and both global and local models. All
of them have comparable performance with the best estimator
on the same dataset [14]. Among them, locally linear recon-
struction (Section 3.4) is fairly new and has not been applied
to emotion estimation.

2. We show that better performance can be obtained by properly
fusing several elementary estimators. Two estimator fusion
approaches, i.e., average fusion and locally weighted fusion,
are introduced. Both of them outperform the elementary esti-
mators, and also the best estimator on the same dataset [14].
Among them, locally weighted fusion (Section 4.2) is fairly
new and has not been applied to emotion estimation.

The rest of this paper is organized as follows: Section 2 in-
troduces the data preparation procedure. Section 3 describes three
elementary estimators. Section 4 introduces two estimator fusion
approaches. Section 5 presents our experimental results. Finally,
Section 6 draws conclusions and proposes future works.

2. DATA PREPARATION

This section describes the sub-blocks in the “Data Preparation”
block of Fig. 1 in detail.

2.1. Data Acquisition

The database used in this study is the VAM Corpus, which contains
spontaneous speech with authentic emotions recorded from guests in
a German TV talk-show Vera am Mittag (Vera at Noon in English).
The corpus was released in ICME2008 [16] and has been used by
them in [12–15]. The database contains 947 emotional utterances
from 47 speakers (11m/36f). All signals were recorded using a sam-
pling frequency of 16 kHz and 16 bit resolution.

2.2. Emotion Primitives Evaluation

A listener test was used to evaluate the emotion primitives in each
utterance [12]. A group of evaluators listened to the emotional sen-
tences and assessed the emotion primitives using the 5-point self as-
sessment manikins (SAMs) [24]. One half of the database was eval-
uated by 17 listeners, the other by six, because the second half was
evaluated later when a smaller number of evaluators was available.

Intuitively, different listeners gave different evaluations for the
same utterance. Grimm and Kroschel [12] merged them by a
weighted average. Although each evaluator evaluated each sentence

using only five discrete numbers, after aggregation the final evalua-
tions were almost continuous2 in [-1, 1]. The standard deviation of
the evaluations for each utterance was also computed to measure the
assessment quality. The mean standard deviation and mean correla-
tion between the evaluators are listed in Table 1. Observe that the
mean correlation of listeners’ evaluations on valence is much lower
than those on activation and dominance. The mean correlation of
listeners’ evaluations on valence is much lower than those on acti-
vation and dominance. An ANOVA test shows that the difference is
statistically significant (F (2, 2838) = 42.82, p = 0). This suggests
that for human listeners valence is more difficult to evaluate than ac-
tivation and dominance; so, we expect that valence will also be more
difficult to estimate.

Table 1. Mean standard deviation and mean correlation of evalua-
tions [14].

Mean standard deviation Mean Correlation
V A D V A D

0.29 0.34 0.31 0.49 0.72 0.61

Previous research also supports the hypothesis that valence will
be more difficult to estimate than either activation or dominance us-
ing audio information alone. In [20], the author states that the vocal
channel alone is not sufficient for the estimation of valence. To fully
capture the valence properties of an utterance, additional channels,
such as video, are necessary. Contrastingly, activation is accurately
conveyed using the audio information alone. In [17], the authors
demonstrated, on a different dataset, that activation and dominance
are highly correlated. It is therefore expected that dominance should
also be accurately conveyed by the vocal channel. This hypothesis
is supported by results demonstrated in [15].

2.3. Speech Feature Extraction

Many different features can be extracted from speech signals, e.g.,
Lee and Narayanan [25] used a combination of acoustic, lexical,
and discourse features to detect emotions in spoken dialogs. Among
them, acoustic features [5,28] are most frequently used because they
can be computed easily from speech signal. Major categories of
acoustic features include fundamental frequency f0 (pitch), speak-
ing rate, energy, spectral information, etc. However, it is still un-
clear which features are best suitable for emotion classification and
estimation, and under what conditions.

M = 46 acoustic features were used in our study. They are the
same as those used by Grimm et al. [15] on the same corpus and
cover four major categories:

• Pitch related features (9): f0 mean, standard deviation, me-
dian, minimum, maximum, range, 25% and 75% quantiles,

2True continuous annotations can be obtained by using the FEELTRACE
tool [4]; however, currently it only supports annotations in the 2D activation-
evaluation space.



and the inter-quantile distance.
• Speaking rate related features (5): mean and standard devi-

ation of the duration of voiced segments, mean and standard
deviation of the duration of unvoiced segments, ratio between
the duration of unvoiced and voiced segments.

• Energy related features (6): energy mean, standard deviation,
maximum, 25% and 75% quantiles, and the inter-quantile dis-
tance.

• Spectral features (26): mean and standard deviation of 13 Mel
frequency cepstral coefficients (MFCC) [5].

We normalized each of the 46 features to the interval [0, 1] and then
used them in all estimators introduced in the next section.

Grimm and Kroschel [14] have also used 137 acoustic features,
including the 46 features introduced above. Since the computational
cost increases with the number of features, we only use the 46 fea-
tures in this paper. Our goal is to demonstrate that estimator fusion
can achieve better performance than a single estimator using a larger
number of features. However, it is also interesting to study the per-
formance of estimator fusion using more comprehensive features,
which will be considered in our future research.

3. ELEMENTARY ESTIMATORS

This section introduces three elementary estimators shown in the
block “Elementary Estimators Construction” in Fig. 1, which have
very diverse characteristics:

1. Robust regression (RR), which uses all training examples to
construct a global linear regression model.

2. Support vector regression (SVR), which selects only a subset
of the training examples (called support vectors) to construct
a global nonlinear regression model.

3. Local linear reconstruction (LLR), which uses only nearest
neighbors to construct a local linear regression model.

In summary, our three elementary models cover both global models
and local models, and both linear models and nonlinear models. So,
they are diverse and complementary.

Next, the procedure for feature ranking and selection for the
three estimators is introduced before introducing the details of the
three models.

3.1. Feature Ranking and Selection

It is necessary to select a subset of the best features from the 46
features, because redundant features may deteriorate the estimation
performance and also increase the computational cost.

The wrapper method [19] was used in feature selection. We first
rank the features using sequential backward selection [11], and then
perform 10-fold cross-validation according to the rank of the features
to select the best subset.

3.2. Robust Regression (RR)

Intuitively, least squares regression can be used to estimate the emo-
tion primitives from the 46 features; however, ordinary least squares
estimation is not suitable for our problem because:

1. There may be outliers in the 947 utterances. In this case, ordi-
nary least squares estimation is inefficient and can be biased.

2. Ordinary least squares estimation assumes a homoscedastic
model, i.e., the standard deviation of the estimation error is
a constant and does not depend on the inputs. Clearly, our
dataset is heteroscedastic [1, 35] because different values of
primitives have different standard deviations.

RR [2, 3, 35] has shown to be more suitable for handling outliers
and heteroscedasticity. The most frequently used RR method is M-
estimation [21], and it was used in our study.

Given a set of training examples {(xn, yn)}n=1,...,N , where
xn ∈ RM , RR tries to fit a linear model

yn = a0 +
M∑

m=1

amxn,m + en (1)

by minimizing the weighted objective function

J =
N∑

n=1

w(en)
2e2n (2)

where en (n = 1, ..., N ) are the residuals, and a0 and am (m =
1, ...,M ) are the coefficients to be determined. Observe that the
weight w(en) is a function of the residual en. When w(en) is a
constant, the RR model reduces to the ordinary least squares model.

In RR generally we require that w(en) is a monotonically non-
increasing function of |en|, i.e., possible outliers get lower weights
so that they do not affect the model too much. In the bisquare RR
method [3, 9], the weight function is defined as

w(en) =

{
[1− ( ent )2]2, |en| ≤ t
0, |en| > t

(3)

where t is called a turning constant. Smaller values of t produce
more resistance to outliers, but at the expense of lower efficiency
when the errors are normally distributed [9]. t = 4.685, the default
value in Matlab function robustfit, was used in our study.

3.3. Support Vector Regression (SVR)

Support vector machine [38] is a very powerful tool for classifica-
tion and estimation. In this paper it is used for regression and is
called SVR. ε-SVR [39] was used by Grimm and Kroschel in [14]
and achieved good performance. It was also implemented in this
paper for comparison purpose. The procedure was the same as that
in [14], except that 46 instead of 137 features were used. Due to
space limit, interested readers should refer to [14] for further details.

3.4. Locally Linear Reconstruction (LLR)

Grimm and Kroschel [14] constructed a k-nearest neighbor (k-NN)
estimator for emotion primitive estimation and observed comparable
performance with SVR. A variant of their approach is introduced in
this section.

Given a set of training examples {(xn, yn)}n=1,...,N and a new
input x, the k-NN method first finds the k NNs of x according to a
distance function. Denote the index set of these k NNs as Ix. Then,
the output of the k-NN estimator is computed as:

ŷ =
∑

i∈Ix

wiyi

/
∑

i∈Ix

wi (4)

The performance of k-NN estimator is determined by the number of
NNs k, the distance function, and the weights wi.

The k-NN estimator constructed by Grimm and Kroschel [14]
used equal weights for the k NNs, which is the simplest approach.
LLR, a variant of k-NN proposed by Kang et al. [22], is investigated
in this paper because it assigns different weights to the NNs by con-
sidering the local topology. Moreover, Gupta and Mortensen [18]
have shown that LLR minimizes bias and/or first-order error when it
is used in weighted k-NN classification.



LLR determines the weights w = (w1, ..., wk)
T by minimiz-

ing the reconstruction error E(w) = 1
2 ||x −

∑
i∈Ix

wixi||2. This
minimization problem can be solved explicitly, and the optimal w
is:

w = (XTX)−1XTx (5)

where X is a matrix whose ith column is xi. To eliminate estimation
bias, we also need to normalize w so that

∑
i∈Ix

wi = 1.

4. ESTIMATOR FUSION

Multiple estimators fusion, a branch of the ensemble approach [27,
30], is an important research topic in signal processing and machine
learning, because a fused model may have better performance than
each elementary model. To guarantee performance improvement, we
need multiple diverse elementary models and a good fusion strategy.
In the previous section we have constructed three very diverse and
complementary elementary estimators (i.e., linear/nonlinear models,
and global/local models), and hence better performance is expected
if they are fused properly. Next we will introduce two methods to
fuse the three estimators, as shown in the “Estimator Fusion” block
in Fig. 1.

4.1. Average Fusion (AF)

Average fusion (AF) is the simplest model fusion method, where the
fused output is simply the average output of the elementary estima-
tors. Let ŷp (p = 1, ..., P ) be the output of the pth estimator. Then,
the output of AF is

ŷAF =
1
P

P∑

p=1

ŷp (6)

4.2. Locally Weighted Fusion (LWF)

AF weights the elementary estimators equally, whereas it may be
more appropriate to assign different weights to different models be-
cause they have different accuracy, and utilize different aspects of
the input data. Moreover, the local performance of a given model
is usually not consistent over the entire input domain. So, it is pos-
sible to selectively leverage an elementary model’s locally superior
accuracy to improve overall performance. This is the motivation of
locally weighted fusion (LWF) [43].

Given a set of training examples {(xn, yn)}n=1,...,N , a new in-
put x, and a group of P estimators, the procedure for LWF is:

1. Individual estimate calculation, where the outputs of the ele-
mentary estimators for x are computed. Denote them as ŷp,
p = 1, ..., P .

2. Estimator local performance evaluation, where the weights
{wp}p=1,...,P for the P elementary estimators are deter-
mined. There are different methods for local performance
evaluation. A k-NN approach was used in this paper. First,
k NNs of x are identified from the training examples, where
the best features from LLR were used. Denote the index set
of these k NNs as Ix. Then, each estimator is separately used
to estimate the outputs for these k NNs. Denote Estimator
p’s estimate for the ith NN as ŷp,i. Since the true outputs
for these k NNs are known, the estimation error for each el-
ementary estimator can be computed. The weight for the pth
estimator is then computed as

wp = 1

/
∑

i∈Ix

|yi − ŷp,i| (7)

3. Estimator fusion, where the elementary estimates are fused as

ŷLWF =

∑P
p=1 wpŷp

∑P
p=1 wp

(8)

5. EXPERIMENTAL RESULTS

Our experimental results on the VAM dataset are reported in this
section. To be consistent with the results in [14, 15], two measures
are used in performance evaluation:

• The mean absolute error (MAE) between the estimates, ŷn,
and the human evaluations (references), yn.

• The correlation coefficient (CC) between ŷn and yn.

5.1. Elementary Estimator Performance

The performances of the three estimators were compared using 10-
fold cross-validation. The results are show in the first part of Table 2.
The third part of Table 2 also shows the performance of a fuzzy logic
system (FLS) [14,15] for emotion primitives estimation based on the
same dataset, and the performance of the best estimator (SVR-RBF)
reported in [14], which represents the state-of-the-art results on the
VAM dataset. A graphic comparison of the performances is shown
in Fig. 2. Observe that:

1. Each of our three elementary estimators outperformed FLS
significantly.

2. Each of our three elementary estimators had comparable per-
formance with SVR-RBF, the best estimator so far in the lit-
erature on the VAM dataset. Note that our estimators used
only 1/3 of the features in SVR-RBF. So, this suggests that
all of our three methods are very suitable for speech emotion
estimation.

3. The correlation coefficient for valence is much lower than
those for activation and dominance, which indicates it is more
difficult to estimate valence. This is consistent with the case
for human evaluators, as shown in Table 1, and in previous
research [15, 20].

Table 2. Performance comparison of different estimators.
Mean Absolute Error Correlation

Estimator V A D V A D
RR .1304 .1608 .1437 .4542 .8046 .7893
SVR .1334 .1542 .1438 .4460 .8241 .7871
LLR .1317 .1543 .1468 .5009 .8043 .7798
AF .1240 .1448 .1355 .5376 .8416 .8152
LWF .1225 .1409 .1342 .5456 .8472 .8185
FLS [14] .27 .17 .18 .28 .75 .72
SVR-RBF [14] .13 .15 .14 .46 .82 .79

5.2. Fusion Performance

10-fold cross-validation was also used in selecting the optimal k
(number of NNs) for LWF. Remarkably, a very small number of
NNs (2∼3 in our case) was enough to determine the local weights
for LWF.

The performance of AF and LWF are summarized in the sec-
ond part of Table 2, and a graphic comparison with other estimators
is shown in Fig. 2. Observe that though each of our three elemen-
tary estimators had similar performance as SVR-RBF, both of our
fused models outperformed SVR-RBF, i.e., AF and LWF are effec-
tive estimator fusion strategies to boost performance. Especially,
LWF achieved the best performance of all models.



0.14

0.16

0.18

0.2

0.22

0.24

0.26

M
ea

n
 A

b
so

lu
te

 E
rr

o
r 

(M
A

E
)

 

 

Valence Activation Dominance

FLS

RR
LLR
SVR

SVR−RBF
AF

LWF

(a)

0.3

0.4

0.5

0.6

0.7

0.8

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t 

(C
C

)

 

 

Valence Activation Dominance

LWF

AF
LLR

SVR−RBF

RR
SVR

FLS

(b)

Fig. 2. Performance comparison of the five estimators proposed in
this paper and two methods in [14]. (a) MAE; and, (b) CC. The
black curve in each sub-figure represents the best performance in the
literature on the VAM dataset. The dashed curves are our elementary
models. For (a), a lower curve represents a better performance. For
(b), a higher curve represents a better performance.

The percentage of performance improvement of LWF over the
other six models are shown in Table 3. Observe that for MAE, LWF
was able to gain 6.02-12.40% improvement over each elementary
model, and for CC, the performance improvement was 2.80-22.35%.
Additionally, LWF had 0.95-2.68% performance improvement over
AF on MAE, which was due to the utilization of local performance
information.

Table 3. Percentage of performance improvement of LWF over the
other six approaches.

Mean Absolute Error Correlation
Estimator V A D V A D
RR 6.02 12.40 6.64 20.13 5.29 3.70
SVR 8.13 8.65 6.66 22.35 2.80 3.99
LLR 6.98 8.71 8.61 8.93 5.33 4.97
AF 1.18 2.68 0.95 1.49 0.66 0.41
FLS [14] 54.62 17.12 25.45 94.86 12.96 13.69
SVR-RBF [14] 5.75 6.07 4.15 18.61 3.32 3.61

To see whether the performances of the elementary estimators
and the fusion models are significantly different, we also performed
ANOVA tests on the MAEs. The results are shown in Table 4. Ob-
serve that generally the differences in MAE between the elementary
estimators and the fusion models are statistically significant.

Table 4. p-values of ANOVA tests on the MAEs between the ele-
mentary estimators and the two fusion models.

AF LWF
Estimator V A D V A D
RR .24 .15 0 0 .12 .07
SVR .08 .04 .08 .01 .12 .07
LLR .14 .08 .10 .02 .03 .02

6. CONCLUSIONS AND FUTURE WORKS

Speech information processing is very important for affective com-
puting. Most research in this direction has focused on classify-
ing emotions into a small number of categories. However, numer-
ical representations of emotions in a multi-dimensional space can
be more convenient for human-computer interaction because com-
puters are better at processing numbers, and also sometimes we

only need to deal with a subset of the emotion primitives. Sev-
eral approaches for emotion primitives estimation in 3D space (va-
lence/activation/dominance) have been presented in this paper. They
were compared with the state-of-the-art results on the same dataset.
The main findings are:

1. Robust regression, support vector regression, and locally lin-
ear reconstruction are very suitable for speech emotion esti-
mation. All of them have comparable performance with the
best estimator on the same dataset.

2. Better performance can be obtained by properly fusing sev-
eral elementary estimators. Particularly, locally weighted fu-
sion, which weights each elementary estimator by its local
performance around the new input, appears promising.

Our future research includes:

1. Using more features to improve estimation accuracy. Ex-
tra features can be considered, e.g., Grimm and Kroschel
[14] extracted 137 acoustic features (three times as many
as ours) from the same corpus, and Lee and Narayanan
[25] considered lexical and discourse features in addition
to acoustic features. Additionally, Lu et al. [26] reported
that Mel-Frequency Filter Banks (MFBs) are better features
than MFCCs in text-independent speaker identification. Since
MFCCs were the most important features in our study, it is in-
teresting to investigate how MFBs are useful in speech emo-
tion estimation.

2. Filtering the estimates using the knowledge that usually emo-
tion changes slowly. It is very rare in real life that a person’s
emotion changes rapidly from one utterance to the next. So,
a filter can be designed to smooth the estimates.

3. Applying our algorithms to emotion estimation from physio-
logical signals or facial expressions. As long as features from
physiological signals or facial expressions are extracted, our
algorithms can be applied directly.
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