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Abstract—Reduced frequency range in vowel production is a well documented speech characteristic of individuals with psychological
and neurological disorders. Affective disorders such as depression and post-traumatic stress disorder (PTSD) are known to influence
motor control and in particular speech production. The assessment and documentation of reduced vowel space and reduced
expressivity often either rely on subjective assessments or on analysis of speech under constrained laboratory conditions (e.g.
sustained vowel production, reading tasks). These constraints render the analysis of such measures expensive and impractical. Within
this work, we investigate an automatic unsupervised machine learning based approach to assess a speaker’s vowel space. Our
experiments are based on recordings of 253 individuals. Symptoms of depression and PTSD are assessed using standard
self-assessment questionnaires and their cut-off scores. The experiments show a significantly reduced vowel space in subjects that
scored positively on the questionnaires. We show the measure’s statistical robustness against varying demographics of individuals and
articulation rate. The reduced vowel space for subjects with symptoms of depression can be explained by the common condition of
psychomotor retardation influencing articulation and motor control. These findings could potentially support treatment of affective
disorders, like depression and PTSD in the future.

Index Terms—Depression, Post-traumatic stress, psychomotor retardation, vowel space, unsupervised learning
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1 INTRODUCTION

R EDUCED frequency range in vowel production is a
well documented speech characteristic of individuals

suffering from psychological and neurological disorders,
including but not limited to depression [1], [2], cerebral
palsy [3], amyotrophic lateral sclerosis [4], and Parkinson’s
disease [5]. The assessment and documentation of reduced
vowel space often either rely on subjective assessments or
on analysis of speech under constrained laboratory condi-
tions (e.g. sustained vowel production, designed reading
tasks), rendering analysis impractical and expensive [6].
Such limited and constrained approaches are at present
the only ways to assess such acoustic characteristics, that
would otherwise be inaccessible to the clinician. Hence, we
aim towards an automatic approach to support clinicians
and healthcare providers with much needed additional,
quantified, and objective measures of nonverbal behavior
and in particular voice characteristics to allow for a more
informed and objective assessment of an individual’s health
status [7], [8].

In particular, analysis of acoustic characteristics of
speech in depression, an affective disorder that is one of
the leading causes of disability worldwide1, has received
considerable attention in the past [9], [10], [11]; a detailed re-
view of speech characteristics of depression and suicidality
is provided in [12]. Specifically, prior investigations revealed
that depressed patients often display flattened or negative
affect [11], [13], reduced speech variability and monotonicity
in loudness and pitch [1], [14], [15], [16], reduced speech
[17], reduced articulation rate [18], increased pause duration

1. http://www.who.int/mediacentre/factsheets/fs369/en/

[6], [9], and varied switching pause duration [19]. Further,
depressed speech was found to show increased tension in
the vocal tract and the vocal folds [1], [20].

In the present work, we aim to extend the existing body
of related work and investigate vowel space, a measure of
frequency range, extracted from unconstrained conversa-
tional speech and its relationship to self-reported symptoms
of depression and post-traumatic stress disorder (PTSD);
two conditions that have been found to be highly co-morbid
[8], [21], [22], [23]. In particular, we investigate an auto-
matic unsupervised machine learning approach to assess
a speaker’s vowel space - defined as the frequency range
spanned by the first and second formant of the vowels /i/
(as in heed), /a/ (as in hod), and /u/ (as in who’d) with respect
to the reference sample - within unconstrained screening
interviews. Our approach is based on an accurate voiced-
speech detector, a robust formant tracker, and a subsequent
vector quantization step using the k-means algorithm.

We evaluate the automatically assessed vowel space in
experiments with a sample of 253 individuals and show
that the novel measure reveals a significantly reduced vowel
space in subjects that reported symptoms of depression and
PTSD. We show that the measure is robust when analyzing
only parts of the full interactions or limited amounts of
speech data, which has implications on the approach’s prac-
ticality. Lastly, we successfully show the measure’s statistical
robustness against varying demographics of individuals
and articulation rate. We are convinced that such a robust
automatic measure characterizing an individual’s vowel
space is viable for manifold applications, without requiring
highly constrained recording conditions.
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2 RESEARCH HYPOTHESES

Motivated by findings of prior and related work discussed
in Section 1, we investigate automatically assessed vowel
space and its relationship to reported symptoms of depres-
sion and PTSD. Specifically, for this work we identify three
research hypotheses:

H1: We hypothesize that the automatically assessed
vowel space of subjects with self-reported symp-
toms of depression or PTSD is significantly re-
duced, when compared to those of subjects without
the respective symptoms. We hypothesize that the
vowel space for subjects with depression or PTSD
is reduced based on the findings and characteri-
zations of prior work. In particular, psychomotor
retardation is hypothesized to have an impact on the
individuals’ vowel space due to its effect on motor
control and speech production.

H2: We hypothesize that our findings for vowel space
are robust even when only limited amounts of
data are available. Specifically, we investigate the
total amount of conversation length and speech
time required to significantly discriminate subjects
with and without symptoms of depression or PTSD.
This investigation is of particular importance when
considering practical applications of the approach
to characterize an individual’s vowel space in the
healthcare context.

H3: We further hypothesize that the observed differ-
ences are associated with the underlying psycho-
logical conditions and the speakers’ affective state
rather than other factors such as demographics (e.g.
gender, education, ethnicity) and articulation rate.

3 RELATED WORK

3.1 Speech Characteristics of Depression and PTSD
As mentioned speech characteristics of depression have
been investigated extensively in the past [12]. More specifi-
cally, researchers for example investigated the speech char-
acteristics of 13 male subjects with major depressive disor-
der and six male control subjects [1]. The evaluation and
characterization of the speakers were conducted subjec-
tively by one experienced judge following the Mayo clinic
dysarthria scale [24], [25]. The Mayo clinic dysarthria scale
is a standard 40 item scale which is well documented for a
large variety of neurologic disorders and covers a large va-
riety of speech characteristics. The analyzed speech samples
(about 30-40 minutes in length) comprise conversational
speech, spontaneous monologues, read speech, as well as
sustained vowels, and phoneme repetitions. Total scores of
subjects on the assessed scale were significantly higher for
those with depression than those for healthy controls, both
in variance (p < .01) and mean (p < .001). In particular, the
ratings revealed the following characteristics in depressed
patients: reduced stress patterns, reduced pitch and inten-
sity, increased harshness of the voice, as well as lack of pitch
and intensity variability.

Speech characteristics of psychomotor retardation - a
common finding in depression were investigated in [26].
They assessed the speech of 30 depressed subjects, 30

subjects with Parkinson’s disease, and 31 control subjects.
The subjects were repeatedly asked to read four specifically
designed sentences, which formed the basis of analysis for
three investigated features, namely second formant transi-
tion, voice onset time between consonants and vowels that
follow, and spirantization referring to the presence of noise
- not attributable to background noise - during closure of
the vocal tract. Subjects with depression have significantly
reduced second formant transitions (p ≤ .05), reduced
voice onset times (p < .04), and increased spirantization
(p = .02) when compared to healthy controls. Increased
spirantization can be perceived as a more breathy voice
quality, which somewhat is a contradiction with respect
to the previously noted harsher or tenser voice qualities
in depression. However, this finding can be explained by
the speech task (reading vs. free speech) as well as with
the investigation of psychomotor retardation, as a specific
symptom of depression. No significant differences were
found between subjects with depression and those with
Parkinson’s disease.

Acoustic spectral measures associated with psychomotor
retardation at different time resolutions are investigated
[27], [28] in two international challenges to identify depres-
sion severity in subject’s voice characteristics, namely the
Audiovisual Emotion Challenge AVEC 2013 and 2014 [29],
[30]. The investigations aimed to exploit changes in coordi-
nation across articulators as reflected in observed formant
frequencies. Specifically, the authors investigated changes
in correlation that occur at different time scales across
formant frequencies and also across channels of the delta-
mel-cepstrum. The approach is motivated by the observa-
tion that auto- and cross-correlations of measured signals
can reveal hidden parameters in the stochastic-dynamical
systems that generate the signals. The approach was further
tuned and extended for AVEC 2014. The phonetic-based
features were expanded to include phoneme-dependent
pitch dynamics. New coordination-based features were also
added, including the correlation between formant frequen-
cies and a cepstral-peak-prominence measure [31], reflecting
coordination between articulators and the vocal source. The
challenge was won by the researchers with an achieved root
mean square error (RMSE) of 8.12 [28].

In our prior work, we complement investigations on
acoustic characteristics of individuals reporting symptoms
of depression with those reporting symptoms of post-
traumatic stress disorder (PTSD). In particular, we investi-
gate characteristics related to voice quality, i.e. the timbre
or perceptual coloring of the voice, in individuals with
and without the respective symptoms [8], [20], [32]. As in
the present work, the conditions were assessed using stan-
dard self-assessment questionnaires. Specifically, 18 subjects
scored positively for symptoms of depression and 20 scored
positively for symptoms of PTSD [20]. A high overlap of the
groups was observed. We focused on speaker-independent
vocal tract features characterizing the speech on a breathy
to tense voice quality dimension [33], [34]. Using this ap-
proach, we observed significant differences in the speakers’
voice quality and vocal tract source parameters with respect
to symptoms of depression and PTSD when compared to
control participants. In particular, speakers with symptoms
of psychological disorders exhibit more tense voice quali-
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ties, confirming previous results [1], [16], [26]. For example,
participants with symptoms of depression or PTSD show
a significantly reduced opening phase of the vocal fold
vibration (p < .02 for depression and p = .024 for PTSD)
which is correlated with tenser voice quality, as measured
with a novel neural network based approach [35].

In the work closest to the present work, researchers
investigated reduced spectral variability using Monte Carlo
methods to assess the probabilistic acoustic volume of a
speaker and its relationship to depression [2]. The identi-
fied acoustic volume was significantly reduced for subjects
with depression (p<0.01) and was strongly correlated with
depression severity. The utilized dataset was the same as in
AVEC 2013 [29]. These findings are closely related to the in-
vestigated vowel space of the present work that only focuses
on the first two formant frequencies and their distribution
in a two dimensional frequency space rather than the entire
spectrum.

3.2 Vowel Space Assessment in the Literature

Within the present work we focus on vowel space and its
relationship to symptoms of depression and PTSD. Unlike
the above introduced investigations, vowel space measures
themselves have not been directly investigated for depres-
sion and PTSD. However, some researchers previously as-
sessed vowel space to characterize other clinical conditions
including Parkinson’s disease [5] and cerebral palsy [3].

In particular, the vowel space of speakers with Parkin-
son’s disease was compared to that of healthy controls
in reading tasks [5]. Thirteen subjects and controls read a
passage out loud at three different rates, i.e. habitual, fast,
and slow rates. The acoustic characteristics of the vowels
/i/, /a/, /u/, and /æ/ were investigated along with those
of two fricatives /s/ and /S/. The tokens for each of the
investigated vowels and fricatives were manually selected
from the recordings and spectrally analyzed. The observed
average vowel space for subjects with Parkinson’s disease
was significantly smaller than that of healthy controls (p =
.019). Further, the articulation rate of subjects with Parkin-
son’s was significantly higher (p = .024).

The reduced vowel space of young adults with cerebral
palsy, for example, was investigated with respect to the
intelligibility of Mandarin [3]. In that work vowel space
is characterized as “an index of the accuracy of vowel
articulation, which signifies gross motor control ability of
the tongue and jaw coordination”, which poses a major
challenge for patients with cerebral palsy [36], [37], [38]. The
researchers found that vowel space has been significantly
reduced for subjects with cerebral palsy when compared to
healthy controls (p< .001) and directly correlated with word
and vowel intelligibility (r > 0.6; p < .005). The researchers
defined the investigated vowel space as the frequency range
triangle of the first and second formant, i.e. the resonance
frequencies of the vocal tract, spanned by the vowels /i/,
/a/, and /u/. Within the present work, we adopt the same
definition for consistency. However, here we opt to evaluate
vowel space as a ratio between an individual’s vowel space
and that of a reference sample rather than the actual area
as measured in Hz2 in order to render the method gender
independent and more comparable. Gender based vowel

space differences have been identified and investigated in
the past [39].

4 MATERIALS AND METHODS

4.1 Ethics Statement

The purpose of this interview study - approved by the Uni-
versity of Southern California Institutional Review Board
(UP-11-00342) - is to collect behavioral data that will be used
to train computer techniques for recognizing human mental
state factors (such as emotion, depressive-tendencies, social
anxiety) from behavioral cues such as head nods, head
shakes, posture shifts, eye gaze, facial expression, speech
prosody and breathing patterns. All participants in this
research were treated in accordance with APA guidelines
for the ethical treatment of research participants.

4.2 Distress Assessment Interview Corpus

Within this work we utilize the Distress Analysis Interview
Corpus (DAIC), a large multimodal collection of semi-
structured clinical interviews [23], [40]. These interviews
are designed to simulate standard protocols for identifying
people at risk for post-traumatic stress disorder (PTSD)
or major depression and to elicit nonverbal and verbal
behavior indicative of such psychological distress. In order
to increase the comparability of behaviors between individ-
uals, we use a virtual human as an interviewer2. A virtual
human, i.e. a digital graphical representation of a human, in
the present work allows for a higher level of control for the
administration of stimuli (e.g. asking questions of varying
levels of intimacy or acoustic parameters of the interviewer).
It is known that with human interviewers accommodation
effects or mirroring is persistent in human interactants [41],
[42], [43] and could lead to biases in the observed results
[44]. The interviews were collected as part of a larger effort
named SimSensei to create a virtual agent that interviews
people and identifies verbal and nonverbal indicators of
mental illness [45].

4.2.1 Participants
The DAIC was recorded at the USC Institute for Creative
Technologies (ICT). Participants are drawn from two distinct
populations: veterans of the U.S. armed forces and U.S. gen-
eral population. They are coded for depression and PTSD
based on accepted psychiatric questionnaires. In total 253
subjects interacted with the automatic SimSensei system.
Overall, 186 male subjects and 67 female subjects with an
average age of 44.7 (SD = 12.37) years were recorded. Out
of the 253 subjects 40.3% have some college education (N
= 102), 42.2% are African American (N = 107), and 11.6%
are of Hispanic ethnicity (N = 30). The sessions all followed
the same general procedure introduced below. On average
each conversation lasted for 18.76 minutes with a standard
deviation of SD = 7.85.

The sample of subjects consisted of individuals recruited
from Craigslist and the direct recruitment of veterans at a US
Vets facility in Long Beach. One posting on Craigslist asked

2. Sample interaction between the virtual agent and a human actor
can be seen here: http://youtu.be/ejczMs6b1Q4
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for participants who had been previously diagnosed with
depression, PTSD, or traumatic brain injury, while another
asked for any subjects between the ages of 18 and 65.
All subjects who met requirements (i.e. age requirements,
adequate eyesight) were accepted. Some subjects were con-
nected to a BIOPAC3 to measure psychophysiological sig-
nals.

When participants were asked about their history of
particular psychological disorders, 54% reported that they
have been diagnosed with depression in their past and
32% reported PTSD. Following the assessment using the
self-assessment questionnaires introduced in the following
sections, 18.6% scored positive for depression (N = 47;
33 male and 14 female) and 34.6% for PTSD (N = 88;
58 male and 29 female). The self-reported conditions for
PTSD and depression are significantly correlated for both
the categorical (i.e. positive vs. negative) as well as the score
assessments (i.e. assessed severity scores). In particular, the
observed categorical correlation is r = .494 (p < .001) and
the continuous correlation r = .814 (p < .001). In our pre-
vious investigations we have observed similar correlations
between these conditions [23]. Here, it is important to note
that the self-assessment questionnaires do not constitute
diagnoses of depression or PTSD and that participants who
scored positively for both conditions were included in both
the PTSD and depression groups. Sample distribution across
distress groups are summarized in Table 1.

TABLE 1
Participant distribution based on conditions. All values are

numbers of participants.

Distress Group: Gender College African Am. Hispanic
Depression 33/14 16/31 17/30 1/46

No Depression 153/52 88/117 88/117 28/177
PTSD 58/30 33/55 35/53 11/77

No PTSD 128/37 71/94 70/95 18/147

Sample distribution over distress groups as assessed using
self-assessment questionnaires. Gender is reported as male/female;
College as has college degree/no college degree; African American (African
Am.) as is African American/not African American; and Hispanic as is
Hispanic/not Hispanic.

4.2.2 Procedure

For the recording of the dataset we adhered to the following
procedure: after a short explanation of the study and giving
consent, participants were left alone to complete a series
of questionnaires at a computer. Questionnaires included
the following: basic demographic information, the PTSD
Checklist-Civilian version (PCL-C), and the Patient Health
Questionnaire depression module (PHQ-9). This process
took from 30-60 minutes, depending on the participant.

Upon completion of the questionnaires, the participants
were asked to sit down in a chair facing the virtual human
interviewer directly, which was displayed on a large 50 inch
monitor at about 1.5 meter distance. Within this work we
utilize the SimSensei virtual human platform designed to
create an engaging interaction through both verbal and non-
verbal communicative channels [45]. For verbal processing,

3. http://www.biopac.com/

the platform integrates modules to recognize spoken words
(e.g., using CMU’s PocketSphinx recognizer [46]), analyze
the spoken responses [47] and decide on the proper re-
sponse or question using the Flores dialogue manager [48].
For nonverbal processing, acoustic and visual signals (e.g.,
facial expressions, gaze and voice quality) are automatically
recognized using MultiSense4 before being integrated with
the verbal responses in the dialogue manager [49].

The participants are video recorded with an HD webcam
(Logitech 720p) and a depth sensor (Microsoft Kinect). A
confederate helped the participant set up the head mounted
microphone (Sennheiser HSP 4-EW-3) and then the vir-
tual human appeared and proactively started the semi-
structured conversation. The audio is recorded at 16 kHz
and a 16 bit resolution. The interaction between the partici-
pants and the fully automatic virtual human was designed
as follows: the virtual human explains the purpose of the in-
teraction and that it will ask a series of questions. It further,
tries to build rapport with the participant in the beginning of
the interaction with a series of ice-breaker questions about
Los Angeles, the location of the recordings. Then a series
of more personal questions with varying valence polarity
follow. The positive phase included questions like: “What
would you say are some of your best qualities?” or “What
are some things that usually put you in a good mood?”.
The negative phase included questions such as: “Do you
have disturbing thoughts?” or “What are some things that
make you really mad?”. Neutral questions included: “How
old were you when you enlisted? ” or “What did you
study at school?”. The recordings of the entire interviews
are used in the present study. The questions were pre-
recorded and animated using the SmartBody architecture
[50]. In addition to SmartBody, ICT’s Cerebella software
automates the generation of physical behaviors for virtual
humans, including nonverbal behaviors accompanying the
virtual human interaction, responses to perceptual events,
as well as listening behaviors [51], [52].

Finally, the participant was asked to complete a final set
of questionnaires, which took between 10 and 20 minutes.
Participants were then debriefed, paid $35, and escorted out.

4.2.3 Measures
Standard clinical screening measures were used to assess
symptoms of PTSD and depression.

Post-traumatic stress disorder checklist-civilian (PCL-
C). The PTSD Checklist-Civilian version (PCL-C) [53] is
a self-report measure that evaluates all 17 PTSD criteria
using a 5-point Likert scale5. It is based on the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV; American Psychiatric Association, 1994). Scores
range from 17-85, and PTSD severity is reflected in the size
of the score, with larger scores indicating greater severity.
Sensitivity and specificity are reportedly 0.82 and 0.83, re-
spectively for detecting DSM PTSD diagnoses. The PCL-C
is scored based on the DSM-IV schema, with symptomatic
responses (moderately or above) to at least six items from
three categories. The scores are added to assess the severity
of symptoms. The PCL is widely used in PTSD research [54],

4. http://multicomp.ict.usc.edu
5. http://tinyurl.com/boa6zar
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[55]. Within our investigations, we follow the standardized
guidelines that at least six of the 17 items in the PCL-C need
to be scored at moderately or above for an individual to be
considered as scoring positively.

Patient Health Questionnaire-Depression 9 (PHQ-9).
The Patient Health Questionnaire-Depression 9 (PHQ-9) is a
ten-item self-report measure based directly on the diagnostic
criteria for major depressive disorder in the DSM-IV [56].
The PHQ-9 is typically used as a screening tool for assisting
clinicians in diagnosing depression as well as selecting and
monitoring treatment. Further, it has been shown to be
a reliable and valid measure of depression severity [57].
Scores range from 0-27, with higher scores indicating higher
depression severity. Due to IRB requirements, we used a
9-question PHQ-9 instrument, excluding question 9 about
suicidal thoughts. When scoring the PHQ-9, response cate-
gories 2-3 (More than half the days or above) are treated as
symptomatic and responses 0-1 (Several days or below) as
non-symptomatic. At least five of the first eight questions
must be checked as symptomatic, including at least one
of the first two questions. Additionally, the last question
must be checked as at least somewhat difficult6. Severity is
calculated by totaling the answers to all of the questions. A
PHQ-9 score of at least 10 was used to determine a positive
assessment, in addition to the previous requirements. PHQ-
9 score of at least 10 (i.e. moderate depression) results in a
specificity and sensitivity of 88% for depression as reported
in [57].

Voicing 
Detection

Vowel Space
Ratio

Vector 
Quantization

Formant 
Tracking

Speech Signal

Speech Processing Vowel Space Assessement

Fig. 1. Algorithm overview figure. Basic overview figure of the ap-
proach to automatically assess vowel space ratio. The process is sep-
arated into two major steps including speech processing (i.e. voicing
detection and vowel tracking) and the vowel space assessment (i.e.
vector quantization using k-means clustering and vowel space ratio cal-
culation). The output of the algorithm is the ratio between the reference
sample vowel space (depicted as a red triangle) and the individual’s
vowel space (depicted as a green triangle). The larger the ratio the larger
the individual’s vowel space with respect to the reference.

4.3 Speech Processing and Formant Tracking
For the processing of the speech signals, we use the freely
available COVAREP toolbox (v 1.1.0), a collaborative speech
analysis repository available for Matlab and Octave [58]7.
COVAREP provides an extensive selection of open-source
robust and tested speech processing algorithms enabling
comparative and cooperative research within the speech
community8.

In particular, we employ the following steps for speech
processing: First, we utilize a robust fundamental frequency
tracker and voicing detection algorithm to identify regions

6. http://tinyurl.com/mjddf7r
7. http://covarep.github.io/covarep/
8. The vowel space assessment algorithm presented within this work

will be made publicly available within COVAREP after publication.

of interest for our vowel space analysis [59]. While formants
can be tracked throughout unvoiced (i.e. the vocal folds are
not vibrating) speech [60], we are primarily interested in
the characteristics of the spoken vowels, which are always
voiced. Next, based on the identified voiced regions, we
track the first two formants F1 and F2 (i.e. the vocal tract
resonance frequencies) using a robust formant tracker based
on the so-called differential phase spectrum [61]. The first
two formants (i.e. the two spectral peaks with the lowest
frequencies) of the speech signal are in large responsible
for the identification and characterization of vowels [62].
Their formant frequencies are characterized to a large part
by the tongue position and the overall shape of the vocal
tract producing the vowel. These two steps are applied for
each individual speech recording. Below, we describe the
approach in more detail. The entire algorithm is shown in
Figure 1.

4.3.1 Voicing Detection and Fundamental Frequency
Tracking
In [59], a method for fundamental frequency f0 tracking and
simultaneous voicing detection based on residual harmonics
is introduced. The method is especially suitable in noisy
and unconstrained conditions. The residual signal r(t) is
calculated from the speech signal s(t) for each frame using
inverse filtering, for all times t. In particular, we utilize
a linear predictive coding (LPC) filter of order p = 12
estimated for all Hann windowed speech segments. Each
speech segment has the length of 25 ms and is shifted by
5 ms. This process removes strong influences of noise and
vocal tract resonances. For each r(t) the amplitude spectrum
E(f) is computed, revealing peaks for the harmonics of f0,
the fundamental frequency. Then, the summation of residual
harmonics (SRH) is computed as follows [59]:

SRH(f) = E(f) +
Nharm∑
k=2

[E(k · f)− E((k − 1

2
) · f)], (1)

for f ∈ [f0,min, f0,max], with f0,min = 50 and f0,max =
500, and Nharm = 5. The frequency f for which SRH(f)
is maximal f0 = argmaxf (SRH(f)) is considered the
fundamental frequency of the investigated speech frame. By
using a simple threshold θ = 0.07, the unvoiced frames can
be discarded as in [59].

4.3.2 Formant Tracking
The formant tracker used in this approach is introduced
in detail in [61]. Initially, the speech signal s(t) is win-
dowed using a Blackman window and differentiated [63].
Each analyzed speech segment has the size of 25 ms and
shifted by 5 ms. For each segment we then remove the
phase information. Subsequently we calculate the chirp z-
transformation and compute the differential phase spec-
trum as in [61]. For the differential phase spectrum it has
been shown that observable peaks caused by the vocal
tract resonance frequencies are more prominent than in
the amplitude spectrum, which renders the approach more
robust and accurate. Lastly, we identify the peaks within the
differential phase spectrum to identify the formants of the
observed sample. In particular, we are interested in the first
and second formants F1 and F2. In order to remove small
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fluctuations we apply a median filter with a filter length
n = 15 to the tracked formants. Here it is important to
acknowledge that formant tracing in general can be noisy
or inaccurate [60], [61], [64]. Hence, we apply a median
filter after formant tracking as well as the subsequent vector
quantization to allow for a robust and accurate assessment
of the vowel space (cf. Figure 1). Formants are tracked for
all voiced regions, i.e. not only vowels.

4.3.3 Articulation Rate (manual and automatic)
We further assess articulation rate approximated by number
of words spoken per second based on manual transcriptions
of 95 of the 253 interactions. Due to the high cost of precise
manual annotations we only annotated a subset of the
conversations. Based on manual transcriptions, we have
conducted further evaluations comprising the valence of the
spoken words, articulation rate, answer onset timings, and
overall answer lengths with respect to the here evaluated
psychological conditions [47]. As an exemplary result, we
find that speakers that scored positively for depression
or PTSD take significantly longer time to respond to the
positive question “When was the last time you felt really
happy?” than those without. Further, their responses are
significantly shorter and include less positively valenced
words. Within the present study we only utilize articulation
rate to assess its influence on the automatically measured
vowel space. In addition, we automatically assessed articu-
lation rate within all 253 interactions. For this purpose we
utilize an algorithm developed in Praat for the detection
of syllable nuclei that relies on an intensity peak detection
and subsequent voicing detection algorithm [65]. We ob-
served some strong outliers after automatically extracting
articulation rate from all 253 interactions and removed those
for which the articulation rate was below one syllable per
second, which is far below the expected rate [66]. We report
results for both the manual and automatic approach.

4.4 Vowel Space Assessment

Based on the tracked formants F1 and F2 for the voiced
regions of speech we compute the vowel space for each
recorded subject individually. Figure 2 shows an example of
the assessed vowel space for two subjects. In particular, the
observed formant frequency pairs (gray dots), the reference
vowel space (red triangle), and the subject’s vowel space
(green triangle) are seen. We define the vowel space, as
seen in Figure 2, as the frequency region covered by the
triangle in the two dimensional frequency space spanned
by F1 and F2 for the vowels /i/ (as in heed), /a/ (as in
hod), and /u/ (as in who’d) following [3]. These three vowels
represent the vowels with the most extreme positions of
the tongue and are therefore located in the extremes of this
triangularly shaped two-dimensional frequency space [62],
[67] (cf. Figure 2).

As we do not precisely know when the recorded subjects
produced these vowels, we propose to apply a vector quan-
tization approach, namely k-means clustering, to identify
the prototypical locations of /i/, /a/, and /u/ for each
speaker to automatically assess the individual’s vowel space
[68] (cf. Figure 1). We closely follow a recently proposed ap-
proach to automatically identify the vowel space in speech,

that has been validated to highly correlate with manual
measures of vowel space (r > .7) for both male and female
speakers [69].

In detail the approach comprises the following steps: (1)
To assess an individual’s vowel space using k-means, we
first initialize the k = 12 cluster centers ci with i = 1, . . . , 12
with the prototypical formant frequencies of F1 and F2 for
the investigated individual’s gender as proposed in [70]
and reported in Table 2. (2) We adapt the cluster centers
ci based on the observed formant frequencies xm ∈ R2

for the investigated individual using the basic k-means
algorithm. The algorithm iteratively minimizes the within
cluster sum of squares and yields prototypical locations
for all k cluster centers. (3) After optimization we identify
the three cluster centers c/i/, c/a/, and c/u/ closest to the
average formant locations of the vowels /i/, /a/, and /u/
using Euclidian distance, as listed in Table 2. At this point
we would like to note that the three cluster centers c/i/,
c/a/, and c/u/ are not necessarily located near the formant
locations of the vowels /i/, /a/, and /u/. (4) After identi-
fying the cluster centers c/i/, c/a/, and c/u/, we compute
the area A of the spanned triangle using Heron’s formula
A =

√
s(s− a)(s− b)(s− c) with s = a+b+c

2 and a, b, c
the lengths of the triangle’s three sides. We then compute
the vowel space ratio vsratio = Aind

Aref
of the individual’s

vowel space area Aind and the reference vowel space area
Aref to characterize how large the individual’s vowel space
is to the reference sample vowel space with respect to the
individual’s corresponding gender. The reported values in
Section 5 are vowel space ratios.

5 RESULTS

Here, we report the statistical findings with respect to the
three hypotheses stated in Section 2. It is important to note
that if participants scored positively for both conditions they
were utilized in both the PTSD and Depression groups.

5.1 Psychological Condition Group Differences
We report statistical evaluation results below with M de-
noting the arithmetic mean. Additionally, we present the
p-values of two-tailed t-tests and Hedges’ g values as a
measure of the effect size. The g value denotes the estimated
difference between means of the two samples in magnitudes
of standard deviations [71]. Hedges’ g is a commonly used
standardized mean difference measure that can be trans-
ferred into other measures like Cohen’s d [72]. The observed
mean vowel space measure per condition and the standard
errors are visualized in Figure 3. The observed mean values
M , standard deviations SD, and Hedges’ g are summarized
in Table 3.

We first consider differences in vowel space by distress
group membership, namely depression and PTSD. Partici-
pants categorized as having depression by the PHQ-9 ex-
hibited smaller vowel space than those not categorized as
having depression (depressed M = 0.49, non-depressed M
= 0.55, t(251) = 2.69, p = .008, Hedges’ g = -0.43). Likewise,
those categorized as having PTSD by the PCL-C had smaller
vowel space than those not categorized as having PTSD
(PTSD M = 0.51, non-PTSD M = 0.56, t(251) = 2.55, p =
.01, Hedges’ g = -0.34).
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Fig. 2. Example vowel space assessment for two male subjects. The male reference sample vowel space (i.e. /i/, /a/, /u/) depicted in red
is compared to the subjects’ vowel spaces depicted in green, for a subject that scored positively for depression using the self-assessment
questionnaires (A) and a subject that scored negatively (B). The vowel spaces are visualized on a two-dimensional plot with Formant 1 on the
x-axis and Formant 2 on the y-axis (both in Hz). Additional two-dimensional vowel centers are displayed for both the male reference sample (red
x-symbols) and the investigated subjects’ vowel space cluster centroids (green circles). The corners of the triangular vowel space for both subjects
are determined through minimal distance of cluster centroids to the reference locations of /i/, /a/, and /u/. The grey dots depict all observations of
the first two formants across an entire interview. The subject’s vowel space scoring positively (A) is visibly smaller than the non-depressed subject’s
vowel space (B) resulting in a smaller vowel space ratio value.

TABLE 2
Average formant frequencies of F1 and F2 for American English vowels as reported in [67].

Formant Gender /i/ /I/ /e/ /E/ /æ/ /A/ /O/ /o/ /U/ /u/ /2/ /3/

F1 Male 342 427 476 580 588 768 652 497 469 378 623 474
F1 Female 437 483 536 731 669 936 781 555 519 459 753 523
F2 Male 2322 2034 2089 1799 1952 1333 997 910 1122 997 1200 1379
F2 Female 2761 2365 2530 2058 2349 1551 1136 1035 1225 1105 1426 1588
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Fig. 3. Vowel space ratio across conditions. Observed mean vowel
space ratios across conditions depression (D) vs. no-depression (ND)
and PTSD (P) vs. no-PTSD (NP). The displayed whiskers signify stan-
dard errors and the brackets show significant results with ∗∗ ... p < .01.

None of the observed differences in vowel space, how-
ever, can be explained by articulation rate (both automat-
ically and manually assessed), as articulation rate did not

TABLE 3
Distress group evaluation of investigated vowel space measure, F2

interquartile range, and articulation rate.

Distress Group:
Feature M (SD) M (SD) Hedges’ g

Depression No Depression
Vowel space 0.49 (0.15) 0.55 (0.15) -0.43∗∗

F2 IQR 375.72 (37.26) 381.32 (44.90) -0.13
Art. rate 3.15 (0.45) 3.09 (0.35) 0.20

Art. rate (auto) 2.74 (0.94) 2.77 (0.87) -0.03
PTSD No PTSD

Vowel space 0.51 (0.14) 0.56 (0.15) -0.34∗∗
F2 IQR 376.85 (41.93) 382.07 (44.39) -0.12

Art. rate 3.06 (0.42) 3.12 (0.34) 0.14
Art. rate (auto) 2.65 (0.93) 2.83 (0.86) -0.19

Distress group differences with respect to observed acoustic features,
namely the proposed vowel space measure, the standard F2
interquartile range (F2 IQR), and articulation rate (Art. rate) both
manual and automatic (auto). The arithmetic mean M and the
standard deviations SD (in brackets) are shown along with Hedges’ g
a measure for effect size. ∗∗ ... indicate significant difference with
p-values < .01.

differ based on distress. Participants did not significantly
differ in articulation rate based on being categorized with
depression (manual: depressed M = 3.15 non-depressed M
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Fig. 4. Development of effect size Hedges’ g over varying intervals
of the virtual human interviews. Observed Hedges’ g value for the
investigated conditions over the initial intervals of the virtual human
interviews, namely after the first, third, fifth, seventh, and ninth minute of
the interaction. Hedges’ g values are depicted (symbols) with their 95%
confidence intervals. Significant differences in the investigated groups
are found if the entire confidence interval is below zero for a two-tailed
test.

= 3.09, t(92) = -0.65, p = .52, Hedges’ g = 0.20; automatic:
depressed M = 2.74 non-depressed M = 2.77 t(188) = 0.21, p
= .83, Hedges’ g = -0.03) or PTSD (manual: PTSD M = 3.06,
non-PTSD M = 3.12, t(92) = 0.80, p = .43, Hedges’ g = 0.14;
automatic: PTSD M = 2.65 non-PTSD M = 2.83 t(188) = 1.32,
p = .19, Hedges’ g = -0.19).

While our measure of vowel space differentiated all
groups of distressed participants, F2 interquartile distance
showed no differences by distress. Participants did not sig-
nificantly differ in F2 interquartile distance based on being
categorized with depression (depressed M = 375.72, non-
depressed M = 381.32, t(251) = 0.80, p = .42, Hedges’ g =
-0.13) or PTSD (PTSD M = 376.85, non-PTSD M = 382.07,
t(251) = 0.91, p = .37, Hedges’ g = -0.12)

5.2 Temporal analysis of vowel space ratio
We next consider how differences in vowel space by dis-
tress group membership are stable over different lengths
of speech. The observed effect sizes as measured using
Hedges’ g and the 95% confidence intervals of g for the
different analyzed interaction lengths are shown in Figure 4.
First, using repeated measures ANOVA, we examine differ-
ences by distress group at different lengths of conversation
including the first minute of conversation after the intro-
duction by our virtual human, the first three minutes after
this introduction, the first five minutes after, the first seven
after, and the first nine after. When depression was entered
into this repeated measures ANOVA, beyond the significant
main effect (F(1, 250) = 6.86, p = .009) reflecting the differ-
ence in vowel space by depression described above, there
was a trend for a main effect of conversation length (F(4,
1000) = 1.97, p = .10) such that vowel space peaks at first five
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Fig. 5. Development of effect size Hedges’ g over intervals of the
individuals’ actual voiced speech. Observed Hedges’ g value for the
investigated conditions over the initial observed time intervals of the
individuals’ actual voiced speech, namely 30 sec, 1 min, 1.5 min, 2
min, 2.5 min, and 3 min. Hedges’ g values are depicted (symbols) with
their 95% confidence intervals. Significant differences in the investigated
groups are found if the entire confidence interval is below zero for a two-
tailed test.

minutes of conversation. The difference in vowel space by
group membership did not depend on conversation length
(interaction F(4, 1000) = 1.60, p = .17). Likewise, when PTSD
was entered, analysis revealed a significant main effect of
PTSD (F(1, 250) = 5.40, p = .02), and there was a trend for
a main effect of conversation length (F(4, 1000) = 1.99, p
= .09). However, there was no interaction between PTSD
group status and conversation length (F(4, 1000) = 210, p =
.08).

Next, we examine differences by distress group at differ-
ent lengths of actual participants’ voiced speech including
the first thirty seconds of speech, the first minute of speech,
the first minute and a half of speech, the first two minutes of
speech, the first two and a half minutes of speech, and the
first three minutes of observed voiced speech. The observed
effect sizes as measured using Hedges’ g and the 95%
confidence intervals of g for the varying amounts of actual
speech analyzed are shown in Figure 5. When depression
was entered into this repeated measures ANOVA it revealed
only a significant main effect of depression group (F(1, 250)
= 6.04, p = .02), barely a trend for a main effect of speech
length (F(4, 1000) = 1.71, p = .13) such that vowel space
peaks at one and a half minutes, and no interaction (F(4,
1000) = 0.54, p = .74). When PTSD was entered, we again
saw a significant main effect of PTSD (F(1, 250) = 7.31, p =
.007), and this time a significant main effect of speech length
(F(4, 1000) = 2.22, p = .05), but no interaction (F(4, 1000) =
0.43, p = .83).

5.3 Demographic differences
We next consider differences in vowel space by demo-
graphic variables including gender, race, ethnicity, and ed-
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TABLE 4
Demographic evaluation of investigated vowel space measure, F2

interquartile range, and articulation rate.

Demographics:
Feature M (SD) M (SD) Hedges’ g

Male Female
Vowel space 0.55 (0.16) 0.51 (0.12) 0.25

F2 IQR 372.7 (39.66) 401.22 (47.14) -0.68∗∗∗
Art. rate 3.12 (0.35) 3.04 (0.42) 0.10

Art. rate (auto) 2.79 (0.87) 2.70 (0.95) 0.08
African Am. Other Race

Vowel space 0.55 (0.14) 0.54 (0.16) 0.04
F2 IQR 383.85 (42.51) 377.66 (44.23) 0.14

Art. rate 3.06 (0.37) 3.12 (0.37) 0.27
Art. rate (auto) 2.68 (0.91) 2.82 (0.87) -0.16

Hispanic Other Ethnicity
Vowel space 0.57 (0.18) 0.54 (0.15) 0.19

F2 IQR 382.14 (39.70) 380.01 (44.09) 0.05
Art. rate 3.22 (0.34) 3.08 (0.37) 0.32

Art. rate (auto) 2.97 (0.72) 2.73 (0.91) 0.17
Some College No College

Vowel space 0.56 (0.14) 0.53 (0.16) 0.17
F2 IQR 386.2 (46.53) 376.97 (40.97) 0.23

Art. rate 3.07 (0.41) 3.12 (0.34) 0.02
Art. rate (auto) 2.79 (0.90) 2.75 (0.88) 0.05

Demographic differences with respect to observed acoustic features,
namely the proposed vowel space measure, the standard F2
interquartile range (F2 IQR), and articulation rate (Art. rate) both
manual and automatic (auto). African American is abbreviated as
African Am.. The arithmetic mean M and the standard deviations SD
(in brackets) are shown along with Hedges’ g a measure for effect size.
Significant results are marked with the following symbols: ∗∗∗ ...
indicate significant difference with p-values < .001.

ucation. We present the p-values of two-tailed t-tests and
Hedges’ g values as a measure of the effect size.

Within our analysis, male and female vowel spaces
are not significantly different (Female M = 0.51, Male
M = 0.55, t(251) = -1.73, p = .09, Hedges’ g = 0.25).
African-American participants do not differ from other races
(African-American M = 0.55, other race M = 0.54, t(251)
= -0.28, p = .78, Hedges’ g = 0.04), nor do participants of
Hispanic ethnicity differ from non-Hispanics (Hispanic M =
0.57, non-Hispanic M = 0.54, t(251) = -0.97, p = .33, Hedges’
g = 0.19). Additionally, participants with some college edu-
cation do not differ from those who never attended college
(college M = 0.56, no college M = 0.53, t(251) = -1.33, p =
.19, Hedges’ g = 0.17).

Although vowel space did not tend to differ by these de-
mographic characteristics, F2 interquartile distance showed
more differences. Females show a significantly larger F2
interquartile distance than men (Female M = 401.22, Male
M = 372.70, t(251) = 4.79, p < .001, Hedges’ g = -0.68).
Like vowel space, African-American participants do not
differ from other races in F2 interquartile distance (African-
American M = 383.85, other race M = 377.66, t(251) = -1.12,
p = .27, Hedges’ g = 0.14), nor do participants of Hispanic
ethnicity differ from non-Hispanics (Hispanic M = 382.14,
non-Hispanic M = 380.01, t(251) = -0.25, p = .81, Hedges’ g
= 0.05). However, participants with some college education
show marginally larger F2 interquartile distance those who
never attended college (college M = 386.20, no college M =
376.97, t(251) = -1.82, p = .07, Hedges’ g = 0.23).

None of the observed differences in vowel space or F2

interquartile distance, however, are likely due to articula-
tion rate, as articulation rate did not differ based on de-
mographic characteristics (both manual and automatically
assessed). Among the 95 participants for whom manual
transcriptions, and therefore articulation rate as words per
second, were available, participants did not significantly
differ in articulation rate based on gender (Female M = 3.04,
Male M = 3.12, t(92) = -0.82, p = .42, Hedges’ g = 0.10), race
(African-American M = 3.06, other race M = 3.12, t(92) =
0.81, p = .42, Hedges’ g = -0.27), ethnicity (Hispanic M =
3.22, non-Hispanic M = 3.08, t(92) = -1.01, p = .32, Hedges’
g = 0.18), or education level (college M = 3.07, no college M
= 3.12, t(92) = 0.61, p = .55, Hedges’ g = 0.02).

Similarly, participants did not significantly differ in auto-
matically assessed articulation rate based on gender (Female
M = 2.70, Male M = 2.79, t(188) = -0.58, p = .56, Hedges’
g = 0.08), race (African-American M = 2.68, other race M
= 2.82, t(188) = 1.09, p = .28, Hedges’ g = -0.16), ethnicity
(Hispanic M = 2.97, non-Hispanic M = 2.73, t(188) = -1.19,
p = .24, Hedges’ g = 0.17), or education level (college M =
2.79, no college M = 2.75, t(188) = -0.33, p = .74, Hedges’ g
= 0.05). The observed mean values M , standard deviations
SD, and Hedges’ g are summarized in Table 4.

5.4 Interaction of depression and PTSD

We also consider the combined influence of depression
and PTSD, as assessed using self-assessment questionnaires,
while controlling for demographic characteristics that are re-
lated to our dependent variables (gender, college education).
A two-way ANOVA revealed a trend for participants in the
depressed group to have smaller vowel space (depressed
M = 0.49, non-depressed M = 0.55, F(1, 246) = 2.54, p =
.11, Hedges’ g = -0.20), whereas vowel space did not differ
based on PSTD (PTSD M = 0.51, non-PTSD M = 0.53, F(1,
246) = 0.60, p = .44, Hedges’ g = -0.09) or the interaction of
depression and PTSD (F(1, 246) = 0.02, p = .90, Hedges’ g
= 0.04). In this analysis, gender was a marginally significant
covariate (F(1, 246) = 3.43, p = .07, Hedges’ g = 0.24) and
there was a trend for college attendance (F(1, 246) = 2.26, p
= .13, Hedges’ g = 0.19).

Again, the trend for depression to be associated with
reduced vowel space cannot be attributed to articulation
rate. Articulation rate (manual) did not differ based on
depression (depressed M = 3.14, non-depressed M = 3.10,
F(1, 59) = 0.05, p = .83, Hedges’ g = 0.06), PTSD (PTSD
M = 3.13, non-PTSD M = 3.11, F(1, 59) = 0.02, p = .90,
Hedges’ g = 0.02), their interaction (F(1, 59) = 0.12, p =
.74, Hedges’ g = 0.09), gender (F(1, 184) = 0.14, p = .72,
Hedges’ g = 0.09) or college attendance (F(1, 59) = 0.54, p
= .46, Hedges’ g = 0.19). Using the automatically derived
measure of articulation rate, articulation rate did not differ
based on depression (depressed M = 2.92, non-depressed
M = 2.73, F(1, 184) = 0.83, p = .36, Hedges’ g = 0.13), PTSD
(PTSD M = 2.66, non-PTSD M = 2.99, F(1, 184) = 2.26, p =
.14, Hedges’ g = -0.22), their interaction (F(1, 184) = 0.59, p
= .44, Hedges’ g = 0.11), gender (F(1, 184) = 0.09, p = .76,
Hedges’ g = 0.06) or college attendance (F(1, 184) = 0.13, p =
.73, Hedges’ g = 0.06).

While our measure of vowel space showed a trend to dif-
ferentiate distressed participants, F2 interquartile distance
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still showed no differences when both depression and PTSD
were considered in the model with demographic covariates.
In this model, only gender was a significant predictor of F2
interquartile distance (F(1, 246) = 22.30, p < .001, Hedges’
g = -0.60). F2 interquartile distance did not differ based
on depression (depressed M = 372.02, non-depressed M =
378.72, F(1, 246) = 0.58, p = .45, Hedges’ g = -0.09), PTSD
(PTSD M = 375.38, non-PTSD M = 375.36, F(1, 246) = 0.00,
p = .99, Hedges’ g = -0.01), their interaction (F(1, 246) = 1.39,
p = .24, Hedges’ g = 0.16), or college attendance (F(1, 246) =
0.82, p = .37, Hedges’ g = 0.11).

6 DISCUSSION

6.1 Hypothesis 1 - Effect of Psychological Conditions
on Vowel Space
Our experiments indeed reveal that the observed vowel
space for individuals that scored positively for depression,
as categorized by the utilized PHQ-9 questionnaire, are
significantly smaller than those that scored negatively (cf.
Table 3 and Figure 3). The measure assesses the longitudinal
frequency coverage of the first and second formant for an
individual in an unconstrained interaction. Specifically, the
measure captures the range and extremes of a speaker’s
vowel articulation and aims to capture assessments of
psychomotor retardation, a commonly found symptom of
depression and Parkinson’s disease [10], [26]. While prior
work often focused on the analysis of fundamental fre-
quency, pitch variations, and inflection for the purpose of
automatically quantifying lack of expressivity, the present
work aims to assess a more holistic measure of vowel
articulation over longer periods of time for this purpose [6],
[18], [73]. One notable exception is recent work investigating
a measure of probabilistic acoustic volume [2]. Similar to the
present work the researchers found a reduced volume for
individuals that suffer from depression.

Vowel space assessment for the characterization of
speech motor control in general has been investigated for
various conditions including cerebral palsy [3], amyotrophic
lateral sclerosis [4], and Parkinson’s disease [5]. However,
the present work is the first to automatically identify re-
duced vowel space in conversational speech for individuals
that scored positively for symptoms of depression. While
we expect that psychomotor retardation is correlated with
the assessed vowel space measure further investigations are
required to draw the direct link. Within the present study,
we do not have access to diagnosis and expert assessments
of psychomotor retardation, which we plan to accomplish
in the near future.

As for individuals scoring positively for depression, the
vowel space for individuals within our study that scored
positively for PTSD are also found to be significantly re-
duced. This finding can be explained as a characteristic
of PTSD or by the high overlap and correlation between
conditions of PTSD and depression within the investigated
sample. Indeed the comorbidity between PTSD and depres-
sion has been previously identified in the literature [21],
[22] and the observed strong correlation between conditions
has been further discussed in our prior work, where we
have identified the more generic condition of general distress
as a common denominator of the investigated instruments

[23]. Overall, speech characteristics of PTSD have been
widely understudied in the past, which renders these results
interesting and promising. Specifically, future applications
for PTSD screening, diagnosis, and symptoms monitoring
could highly benefit from our findings if confirmed and
verified in subsequent investigations.

In order to confirm our investigations with the DAIC
corpus, we analyzed the vowel space measure with two
additional datasets of depressed and suicidal speech in
a separate study [74]. Specifically, we analyze the AVEC
2013 audio-visual depression corpus (AVEC) read speech
portions [29]. We found that the vowel space ratio is again
reduced for depressed subjects. While the effect is not sig-
nificant (depressed M = 0.47, non-depressed M = 0.51, t(66)
= 1.12, p = .268, Hedges’ g = -0.27), several factors might
have influenced the findings: Read speech is articulated
differently from conversational speech, reading proficiency
might be a confounding factor, and the individuals spoke
German. We are planning to further investigate this as the
probabilistic acoustic volume was found to be reduced for
this sample [2]. In addition, we expanded our investiga-
tions to an interview dataset of suicidal and non-suicidal
adolescents recorded at the Cincinnati Children’s Hospital
Medical Center [44]. In fact this separate study reveals that
suicidal adolescents showed a reduced vowel space when
compared to their non-suicidal peers (suicidal M = 0.36,
non-suicidal M = 0.42, t(57) = 2.14, p = .037, Hedges’ g
= -0.55). This finding is aligned with prior work reporting
high comorbidity between PTSD as well as suicidality and
depression [21], [75].

Further, we compare our measure of vowel space with
the commonly used interquartile range of F2 to assess
articulatory motility within longer segments of speech [76],
[77]. Overall, we found no significant effect for any of the
assessed conditions and F2 interquartile range (cf. Table 3).
In general, F2 is gender dependent due to the anatomi-
cal differences of the vocal tract length [70], [78], which
could have possibly influenced the finding (cf. Table 4).
This suggests, that the interquartile range of F2 is less
robust against demographic influences and would require
subsequent normalization steps. Further, we are convinced
that the incorporation of F1 measures into the assessment
of the vowel space adds to the robustness and the holistic
assessment of articulatory characteristics.

One of the clear benefits of the present approach is
the possibility to assess an individual’s vowel space in
an unconstrained automatic fashion during conversational
speech instead of under laboratory conditions, allowing
for much needed objective assessments of conversational
speech that can be of great benefit to healthcare personnel
[6]. For example, tele-health interviews with mental health
providers could add such objective acoustic measures to
better assess a patient’s mental distress and compare it
from visit to visit. This is possible because in our evalua-
tion, no specifically designed and structured tasks, such as
prolonged articulation of vowels, or specifically designed
reading tasks are necessary. In fact conversational speech
might reveal clearer voice characteristics of depression than
constrained reading tasks as it can be assessed in a less
obtrusive and more naturalistic manner.

Our approach could be of advantage for the assessment
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of an individual’s condition over long periods of time. As
this approach allows the assessment of unconstrained con-
versational speech, the biasing effect of boredom in highly
constrained tasks over repeated measures is minimized.

Automatic assessment approaches, as the proposed one,
are of additional value in a wide range of speech related
research including manifold affective computing applica-
tions, as the automatic setup allowed us to assess the vowel
space of a much larger sample than commonly investigated
with tedious and expensive manual assessments. In total,
here we investigate the vowel space of over 250 individuals.
Such large scale investigations have a lot of potential to un-
derstand the connection between nonverbal behaviors and
various affective, psychological, and neurological disorders.
Further, the analysis of nonverbal behavior with respect
to such disorders is not limited to speech alone. In fact,
researchers have started to approach the characterization
of depression and other psychological conditions using au-
diovisual or multimodal behavior quantization approaches
[79], [80], [81], [82], [83], [84], [85], [86].

6.2 Hypothesis 2 - Robustness of Vowel Space Mea-
sure Based on Limited Data

It is known that formant tracking in general can be noisy
or inaccurate [60], [61], [64], however, as proposed here the
applied median filter after formant tracking as well as the
subsequent vector quantization step allow for a robust and
accurate assessment of the vowel space. In order to assess
the required amount of data to obtain a robust assessment of
vowel space, we investigate the measure on segments of the
available conversational data. Within our experiments we
found that conversation length is not significantly influenc-
ing the discriminative faculty of the vowel space measure
for depression. For the condition PTSD we observed a
minor interaction with conversation segment length (p =
.08), which can be explained by a reversal of observed vowel
space when analyzing the first minute of conversation only.
This underlines the robustness of the measure after only
several minutes of interaction. Overall, we see that the
vowel space measure stabilizes for each condition within the
first five minutes of the conversation. The measure shows
significant differences in observed vowel space for both
conditions at five minutes of conversation (cf. Figure 4),
which corresponds to a quarter the average length (i.e. 18
minutes) of the interactions in this study.

As we cannot guarantee the amount of speech produced
by the investigated individual is adequate when segmenting
the data based on conversation segments of one or more
minutes, we further investigate the observed vowel space
measure based on parts of actual individual speech. In
particular, we analyze the observed vowel space measure
for each individual on 30 seconds up to 3 minutes of actual
speech in the interaction. Here, we found that speech length
is not significantly influencing the discriminative faculty
of the vowel space measure for depression. Again, for the
condition PTSD we observed a marginally significant effect
of speech length (p = .05). Overall, the observed discrimi-
native faculty of the vowel space measure stabilizes around
only 2 minutes of actual required speech (cf. Figure 5). This
finding suggests that as little as 2-3 minutes of speech per

individual is enough to characterize an individual’s vowel
space robustly, rendering the proposed method valuable for
manifold applications, such as distress call center hotlines
or mobile health applications monitoring the severity or
changes of an individual’s psychological condition over
time.

The validity of our findings is further supported by
prior research, where the automatic measure of vowel space
was first validated against actual manual assessments. The
researchers could find strong correlations that support the
present investigations based on only ten sentences per
speaker [69], which resembles a similarly small amount of
required data as in the present study.

6.3 Hypothesis 3 - Robustness of Vowel Space Mea-
sure with Respect to Demographic Variables and Articu-
lation Rate
Lastly, we investigate the approach’s robustness against
other factors such as demographics (i.e. gender, race, eth-
nicity, and education), as well as articulation rate, which can
reportedly have an influence on vowel space [67]. Overall,
we could not find any significant differences between the
automatically assessed vowel space measure and gender,
race, ethnicity, or education, which suggests that the mea-
sure is quite robust against such factors. In particular, eth-
nicity, race, and accordingly varying dialects (e.g. African
American Vernacular English) have no observed effect on
the assessed measure. In fact, the identified cluster centers
for the vowels might be dependent on dialect and gender,
however, the overall measure of vowel space is not affected
by this. The approach using vector quantization and a
subsequent ratio calculation allows for a much wanted and
needed generalization capability.

In addition, the initialization of the cluster centers (cf.
Table 2) renders the approach flexible for future adaptations
and investigations. For example, in the present study we
initialize the cluster centers based on gender and calculate
the vowel space ratio with respect to the reference gen-
der. This allows the evaluated measure to remain gender
independent, in contrast to the reference approach (i.e.
interquartile range of F2), which is highly gender dependent
(cf. Table 4). Further, the approach could easily be extended
to other languages, e.g. German formant frequencies [87], or
age groups, e.g. average vowel frequencies of children [70].

As suggested by prior work, articulation rate can have a
significant impact on the size of the observed vowel space
[67]. Our investigations reveal that the vowel space measure
negligibly correlates negatively with the articulation rate
with r = -.12 (p = .25). Nor can the effect of observed reduced
vowel space for subjects with psychological conditions be
explained by articulation rate (cf. Table 3). This suggests
that the assessed psychological conditions of the individuals
dictate the reduction of the vowel space.

6.4 Why Virtual Human Interviewers?
The investigated unconstrained speech samples in this work
are recorded using a fully automatic virtual human inter-
viewer [45]. We chose this approach as virtual humans
hold several advantages over their natural counterparts [88]:
the involvement and use of virtual humans increases the
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available level of control for the investigators or clinical
personnel over the assessment process and the presentation
of stimuli (e.g. questions with positive or negative affect);
the virtual human’s behavior can be pre-programmed to the
slightest detail and no behavioral bias is introduced into the
interview process. This enables comparability between each
session, as it reduces contagion effects that have been ob-
served in human-human interaction [19], [32], [44]. Further,
findings suggest that virtual humans can reduce the stress
and fear associated with the perception of being judged,
and thereby, lower emotional barriers to seeking help [88].
Virtual humans have also been studied within the context of
schizophrenia, depression, and autism [20], [89], [90], [91].

Another potential benefit of using virtual human inter-
viewers is that researchers may be able to get more, or
richer samples of speech than with real human interviewers.
Interacting with a virtual human can increase participants’
willingness to say more. In particular, an investigation of
the effects of framing the character as human-controlled or
autonomous showed that participants felt more comfortable
disclosing personal information with a character that was
framed as autonomous than when it was framed as human-
controlled [92], [93]. Specifically, participants reported ex-
periencing lower fear of negative evaluation and engaged
in less impression management when the character was
framed as autonomous than when it was framed as human-
controlled [92], [93]. In fact, actual method of data collection
(human-controlled versus automated agent interviews) had
no impact on fear of negative evaluation or impression
management, but participants who believed they were in-
teracting with human versus computer effected both fear of
negative evaluation and impression management.

7 CONCLUDING REMARKS

Overall, we showed that the proposed method reveals
promising results that are robust against varying factors
including demographic variables, articulation rate, as well
as only small amounts of data. Our investigations show that
the assessed reduced vowel space indeed is associated with
conversational speech of individuals with symptoms related
to depression or PTSD, as assessed with self-assessment
questionnaires. The possibly largest caveat of our inves-
tigations is the lack of gold standard clinical assessments
of the individuals’ psychological conditions, which we are
planning to investigate in the near future. We would like to
further acknowledge that the proposed measure of vowel
space is not specific to depression or PTSD, but should also
be investigated in the context of other conditions. Hence, we
would like to expand our investigations to conditions such
as Parkinson’s disease and schizophrenia, for which speech
deficits have also been reported [94].

Further, we plan to extend our investigations towards
the longitudinal assessment of vowel space in conversa-
tional speech. With this we aim towards creating a measure
that could be of help in identifying various psychological
conditions, affective states, and related symptoms at an
early stage or assess therapeutic success for different condi-
tions. We are convinced that automatically assessed vowel
space from conversational data could become an essential
piece for the objective analysis and assessment by healthcare

providers for a wide range of psychological or neurologic
conditions.
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