
Shift-Reduce Dependency DAG Parsing

Kenji Sagae
†

Institute for Creative Technologies

University of Southern California

13274 Fiji Way

Marina del Rey, CA 90292

sagae@ict.usc.edu

Jun’ichi Tsujii

Department of Computer Science

University of Tokyo

School of Computer Science

University of Manchester

National Center for Text Mining

tsujii@is.s.u-tokyo.ac.jp

Abstract

Most data-driven dependency parsing

approaches assume that sentence struc-

ture is represented as trees. Although
trees have several desirable properties

from both computational and linguistic

perspectives, the structure of linguistic
phenomena that goes beyond shallow

syntax often cannot be fully captured by

tree representations. We present a pars-

ing approach that is nearly as simple as
current data-driven transition-based de-

pendency parsing frameworks, but out-

puts directed acyclic graphs (DAGs). We
demonstrate the benefits of DAG parsing

in two experiments where its advantages

over dependency tree parsing can be
clearly observed: predicate-argument

analysis of English and syntactic analysis

of Danish with a representation that in-

cludes long-distance dependencies and
anaphoric reference links.

1 Introduction

Natural language parsing with data-driven de-

pendency-based frameworks has received an in-
creasing amount of attention in recent years

(McDonald et al., 2005; Buchholz and Marsi,

2006; Nivre et al., 2006). Dependency represen-
tations directly reflect word-to-word relation-

†
This work was conducted while the author was at

the Computer Science Department of the University

of Tokyo.

© 2008. Licensed under the Creative Commons At-

tribution-Noncommercial-Share Alike 3.0 Unported

license (http://creativecommons.org/licenses/by-nc-
sa/3.0). Some rights reserved.

ships in a dependency graph, where the words in

a sentence are the nodes, and labeled edges cor-
respond to head-dependent syntactic relations. In

addition to being inherently lexicalized, depen-

dency analyses can be generated efficiently and
have been show to be useful in a variety of prac-

tical tasks, such as question answering (Wang et

al., 2007), information extraction in biomedical

text (Erkan et al., 2007; Saetre et al, 2007) and
machine translation (Quirk and Corston-Oliver,

2006).

However, despite rapid progress in the devel-
opment of parsers for several languages (Nivre et

al., 2007) and algorithms for more linguistically

adequate non-projective structures (McDonald et

al., 2005; Nivre and Nilsson, 2006), most of the
current data-driven dependency parsing ap-

proaches are limited to producing only depen-

dency trees, where each word has exactly one
head. Although trees have desirable properties

from both computational and linguistic perspec-

tives, the structure of linguistic phenomena that
goes beyond shallow syntax often cannot be fully

captured by tree representations. Well-known

linguistically-motivated dependency-based syn-

tactic frameworks, such as Hudson’s Word
Grammar (Hudson, 1984), recognize that to

represent phenomena such as relative clauses,

control relations and other long-distance depen-
dencies, more general graphs are needed. Hud-

son (2005) illustrates his syntactic framework

with the analysis shown in figure 1. In this ex-

ample, the arcs above the sentence correspond to
a typical dependency tree commonly used in de-

pendency parsing. It is clear, however, that the

entire dependency structure is not a tree, but a
directed acyclic graph (DAG), where words may

have one or more heads. The arcs below the sen-

tence represent additional syntactic dependencies
commonly ignored in current dependency pars-

ing approaches that are limited to producing tree

structures. There are several other linguistic

phenomena that cannot be represented naturally
with dependency trees, but can easily be

represented with dependency DAGs, including

anaphoric reference and semantically motivated

predicate-argument relations. Although there are
parsing approaches (often referred to as deep

parsing approaches) that compute DAG depen-

dency structures, this is usually done through
more complex lexicalized grammar formalisms

(such as HPSG, CCG and LFG) and unification

operations with tree-based parsing algorithms.
We introduce a new data-driven framework

for dependency parsing that produces dependen-

cy DAGs directly from input strings, in a manner

nearly as simple as other current transition-based
dependency parsers (Nivre et al., 2007) produce

dependency trees. By moving from tree struc-

tures to DAGs, it is possible to use dependency
parsing techniques to address a wider range of

linguistic phenomena beyond surface syntax.

We show that this framework is effective and
efficient in analysis of predicate-argument de-

pendencies represented as DAGs, and in syntac-

tic parsing using DAGs that include long-

distance dependencies, gapping dependents and
anaphoric reference information, in addition to

surface syntactic dependents.

Our parsing framework, based on shift-reduce
dependency parsing, is presented in section 2.

Experiments and results are presented and dis-

cussed in section 3. We review related work in

section 4, and conclude in section 5.

2 A shift-reduce parsing framework for

dependency DAGs

One of the key assumptions in both graph-based

(McDonald et al., 2005) and transition-based

(Nivre, 2004; Nivre and Nilsson, 2006) ap-
proaches to data-driven dependency parsing is

that the dependency structure produced by the

parser is a tree, where each word has exactly one
head (except for a single root word, which has no

head in the sentence). This assumption, of

course, has to be abandoned in dependency DAG

parsing. McDonald et al. (2006) point out that,
while exact inference is intractable if the tree

constraints are abandoned in their graph-based

parsing framework, it is possible to compute
more general graphs (such as DAGs) using ap-

proximate inference, finding a tree first, and add-

ing extra edges that increase the graph’s overall
score. Our approach, in contrast, extends shift-

reduce (transition-based) approaches, finding a

DAG directly. Because data-driven shift-reduce

dependency parsing is based on local decisions

(informed by rich a rich feature set), the addi-
tional computational cost of computing DAGs

instead of trees is small in practice, as we will

show.

We first describe how the basic shift-reduce
bottom-up dependency parsing algorithm de-

scribed by Nivre (2004) can be modified to allow

multiple heads per word. We then explore the
same type of modification to Nivre’s arc-eager

algorithm, which is a variant of the basic shift-

reduce algorithm where arcs can be created at the

first opportunity. Like their tree counterparts,
our algorithms for dependency DAGs produce

only projective structures, assuming that projec-

tivity for DAGs is defined in much the same way
as for trees. Informally, we define a projective

DAG to be a DAG where all arcs can be drawn

above the sentence (written sequentially in its
original order) in a way such that no arcs cross

and there are no covered roots (although a root is

not a concept associated with DAGs, we borrow

the term from trees to denote words with no
heads in the sentence). However, non-

projectivity is predictably more wide-spread in

DAG representations, since there are at least as
many arcs as in a tree representation, and often

more, including arcs that represent non-local re-

lationships. We then discuss the application of
pseudo-projective transformations (Nivre and

Nilsson, 2005) and an additional arc-reversing

transform to dependency DAGs. Using a shift-

reduce algorithm that allows multiple heads per
word and pseudo-projective transformations to-

What do you think we should wait for ?

r

x

x

x

x
x,c

s

s

s s

o

r r

Figure 1: Word Grammar dependency graph

(Hudson, 2005). Key for edge types: com-

plement (c), object (o), sharer/xcomp (r),

subject (s), and extractee (x).

gether forms a complete dependency DAG pars-

ing framework.

2.1 Basic shift-reduce parsing with multiple

heads

The basic bottom-up left-to-right dependency

parsing algorithm described by Nivre (2004)

keeps a list of tokens (initialized to contain the
input string) and a stack (initialized to be empty),

and allows three types of actions: (1) shift, which

removes the next item from the input list and
pushes it onto the top of the stack; (2) left-

reduce, which pops the top two items from the

stack, creates a left-arc between the words they
represent in the sentence, and push the top item

(which is now the head of the item previously

below it) back onto the stack; and (3) right-

reduce, which works in the same way as left-
reduce, but creates a right-arc instead, and push-

es back onto the stack the item that was below

the top item on the stack (which is now the head
of the item previously on top of the stack)

1
. New

dependency edges (or arcs) are only created by

reduce actions, which are constrained so that

they can only be applied to create a head-
dependent pair where the dependent has already

found all of its own dependents (if any). This is

necessary because once a word is assigned a
head it is popped from the stack and never visited

again, since each word has only one head. This

constraint, responsible for the parser’s bottom-up
behavior, should be kept in mind, as it is relevant

in the design of the multiple-head parsing algo-

rithm below.

To allow words to have multiple heads, we
first need to create two new parser actions that

create dependency arcs without removing the

dependent from further consideration for being a
dependent of additional heads. The first new

action is left-attach, which creates a left depen-

dency arc attaching the top two items on the
stack, making the top item the head of the item

immediately below, as long as a right arc be-

tween the two items does not already exist. This

action is similar to left-reduce, except that nei-
ther item is removed from the stack (no reduction

occurs). The second new action, right-attach,

includes one additional final step: first, it creates
a right dependency arc between the top two items

on the stack (as long as a left arc between the two

items does not already exist), making the top

item a dependent of the item immediately below;

1 Like Nivre (2004), we consider the direction of the
dependency arc to be from the head to the dependent.

X Y Z

Initial state:

(a) Desired output:

X Y Z

Input tokens Stack

Action: SHIFT

Y Z

Input tokens Stack

X

Current arcs: X Y Z

Current arcs: X Y Z

Action: SHIFT

Z
Y

Input tokens Stack

X

Current arcs: X Y Z

Action: LEFT-ATTACH

Z
Y

Input tokens Stack

X

Current arcs: X Y Z

Action: SHIFT

Z

Y

Input tokens Stack

X

Current arcs: X Y Z

Action: LEFT-REDUCE

Z

Input tokens Stack

X

Current arcs: X Y Z

Action: LEFT-REDUCE

Z

Input tokens Stack

Current arcs: X Y Z

X Y Z

Initial state:

(b) Desired output:

X Y Z

Input tokens Stack

Action: SHIFT

Y Z

Input tokens Stack

X

Current arcs: X Y Z

Current arcs: X Y Z

Action: SHIFT

Z
Y

Input tokens Stack

X

Current arcs: X Y Z

Action: SHIFT

Z

Y

Input tokens Stack

X

Current arcs: X Y Z

Action: RIGHT-ATTACH

Y

Input tokens Stack

X

Current arcs: X Y Z

Action: RIGHT-REDUCE

X

Input Stack

Current arcs: X Y Z

Z

Z

Action: SHIFT

X

Input tokens Stack

Current arcs: X Y Z

Z

Action: RIGHT-REDUCE

Z

Input tokens Stack

Current arcs: X Y Z

Figure 2: Example of how the basic algorithm
builds dependencies with multiple heads.

and, as a second step, it pops the top item on the

stack (newly made a dependent), and places it
back on the list of input words. This second step

is necessary because of the constraint that words

can only be made dependents once all of its own

dependents have been found. The behavior of
the algorithm is illustrated in figure 2, where (a)

shows an application of left-attach, and (b)

shows an application of right-attach. In (b), we
note that without placing the dependent in the

right-attach action (Z) back on the input list, the

dependency between X and Y could not be
created. If we abandon the algorithm’s bottom-

up behavior, it is possible to modify the parser

actions so that it is not necessary to place items

back in the input list. This is discussed in section
2.2.

In summary, the algorithm has each of the

three actions from the tree-based algorithm (shift,
right-reduce, and left-reduce), and two additional

actions that allow words to be dependents of

more than one head (right-attach and left-attach).
Although the algorithm as described so far builds

unlabeled structures, the extension to labeled

structures is straightforward: any action that re-

sults in a new arc being created must also choose
a label for the arc. Another way to accomplish

the same goal is to have a copy of each arc-

producing action for each possible arc label.
This is the same labeling extension as in the al-

gorithm for trees. Finally, we note that the algo-

rithm does not explicitly prevent multiple arcs

(with the same direction) from being created be-
tween the same two words. In the unlabeled

case, such a constraint can be easily placed on

arc-producing actions. In the labeled case, how-
ever, it is useful to allow arcs with different la-

bels to link the same two words
2
.

2.2 Arc-eager shift-reduce parsing with

multiple heads

Nivre’s arc-eager algorithm was designed to

build dependencies at the first opportunity,

avoiding situations where items that form a chain

of right arcs all have to be placed on the stack
before any structure is built, as in figure 2(b) for

example. This is done by creating dependencies

not between the top two items on the stack, but
between the single top item on the stack and the

next word on the input list, resulting in a hybrid

2 This means that the structures produced by the algo-

rithm are technically not limited to projective DAGs,

since they can also be projective labeled multi-
digraphs.

bottom-up/top-down strategy. A similar idea can

result in an algorithm for dependencies that allow
multiple heads per word, but in this case the re-

sulting algorithm is not as similar to the arc-

eager algorithm for trees as the algorithm in sec-

tion 2.1 is to its tree-based counterpart.
The projective DAG arc-eager algorithm has

four actions, each corresponding to one action of

the tree-based algorithm, but only the shift action
is the same as in the tree based algorithm. The

four actions in the new algorithm are: (1) shift,

which removes the next token from the input
string and pushes it onto the top of the stack; (2)

reduce, which pops the stack, removing only its

top item, as long as that item has at least one

head (unlike in the tree-based algorithm, howev-
er, the algorithm may not reduce immediately

when an item that has a head is on the top of the

stack); (3) left-arc, which creates a left depen-
dency arc between the word on top of the stack

and the next token in the input string, where the

token in the input string is the head and the item
on the stack is the dependent (the stack and input

list are left untouched), as long as a right arc does

not already exist between the two words; and (4)

right-arc, which creates a right dependency arc
between the word on top of the stack and the

next token in the input list, where the item on the

stack is the head and the token in the input list is
the dependent (again, the stack and input list are

left untouched), as long as a left arc does not al-

ready exist between the two words.

Like the algorithm in section 2.1, this algo-
rithm can easily be extended to produce labeled

structures, and it also allows multiple edges (with

the same direction) between the same two words.

2.3 Graph transformations for DAGs

Although the algorithms presented in sections 2.1

and 2.2 can produce dependency structures

where a word may have more than one head,
they are of limited interest on their own, since

they can only produce projective structures, and

many of the interesting linguistic phenomena that

can be represented with DAGs cannot be
represented with projective DAGs. Fortunately,

the pseudo-projective transformations (Nivre and

Nilsson, 2006) used in tree-based dependency
parsing can easily be applied to DAGs. These

transformations consist of identifying specific

non-projective arcs, and moving their heads up

towards the root, making them projective. The
process also involves creating markings on the

labels of the edges involved, so that the trans-

formations are (mostly) reversible. Because non-

projectivity is more common in linguistically

interesting DAGs, however, the trans-
form/detransform process may be more lossy

than it is when applied to trees. This, of course,

varies according to specific DAGs used for

representing specific phenomena. For pseudo-
transformations to work well, we must allow

multiple differently labeled arcs between the

same two words (which, as mentioned before, the
algorithms do). Combining the algorithm in sec-

tions 2.1 or 2.2 with pseudo-projective parsing,

we can use DAG training data and produce DAG
output in the overall parsing framework.

An alternative to using pseudo-projective

transformations is to develop an algorithm for

DAG parsing based on the family of algorithms
described by Covington (2001), in the same way

the algorithms in sections 2.1 and 2.2 were de-

veloped based on the algorithms described by
Nivre (2004). Although this may be straightfor-

ward, a potential drawback of such an approach

is that the number of parse actions taken in a Co-
vington-style algorithm is always quadratic on

the length of the input sentence, resulting in

parsers that are more costly to train and to run

(Nivre, 2007). The algorithms presented here,
however, behave identically to their linear run-

time tree counterparts when they are trained with

graphs that are limited to tree structures. Addi-
tional actions are necessary only when words

with more than one head are encountered. For

data sets where most words have only one head,

the performance the algorithms described in sec-
tions 2.1 and 2.2 should be close to that of shift-

reduce projective parsing for dependency trees.

In data sets where most words have multiple
heads (resulting in higher arc density), the use of

a Covington-style algorithm may be advanta-

geous, but this is left as an area of future investi-
gation.

In addition to pseudo-projective transforma-

tions, an additional transformation that is useful

in DAG parsing is arc reversal. This consists of
simply reversing the direction of an edge, adding

a special mark to its label to indicate that its di-

rection has been reversed. Detransformation is
trivial and can be done with perfect accuracy,

since it can be accomplished by simply reversing

the arcs marked as reversed. This transformation
is useful in cases where structures are mostly in

DAG form, but may sometimes contain cycles.

Arc reversal can be used to change the direction

of an arc in the cycle, making the previously cyc-
lic structure a DAG, which can be handled in the

framework presented here.

3 Experiments

To investigate the efficacy of our DAG parsing

framework on natural language data annotated
with dependency DAGs, we conducted two expe-

riments. The first uses predicate-argument de-

pendencies taken from the HPSG Treebank built
by Miyao et al. (2004) from the WSJ portion of

the Penn Treebank. These predicate-argument

structures are, in general, dependency graphs that
do contain cycles (although infrequently), and

also contain a large number of words with mul-

tiple heads. Since the predicate-argument de-

pendencies are annotated explicitly in the HPSG
Treebank, extracting a corpus of gold-standard

dependency graphs is trivial. The second expe-

riment uses the Danish Dependency Treebank,
developed by Kromann (2003). This treebank

follows a dependency scheme that includes, in

addition to standard grammatical relations com-
monly used in dependency parsing, long-distance

dependencies, gapping dependents, and anaphor-

ic reference links. As with the HPSG predicate

argument data, a few structures in the data con-
tain cycles, but most of the structures in the tree-

bank are DAGs. In the experiments presented

below, the algorithm described in section 2.1 was
used. We believe the use of the arc-eager algo-

rithm described in section 2.2 would produce

similar results, but this is left as future work.

3.1 Learning component

The DAG parsing framework, as described so
far, must decide when to apply each appropriate

parser action. As with other data-driven depen-

dency parsing approaches with shift-reduce algo-
rithms, we use a classifier to make these deci-

sions. Following the work of Sagae and Tsujii

(2007), we use maximum entropy models for

classification. During training, the DAGs are
first projectivized with pseudo-projective trans-

formations. They are then processed by the pars-

ing algorithm, which records each action neces-
sary to build the correct structure in the training

data, along with their corresponding parser con-

figurations (stack and input list contents). From
each of these parser configurations, a set of fea-

tures is extracted and used with the correct pars-

ing action as a training example for the maxi-

mum entropy classifier. The specific features we
used in both experiments are the same features

described by Sagae and Tsujii, with the follow-

ing two changes: (1) the addition of a feature that
indicates whether an arc already exists between

the top two items on the stack, or the top item on

the stack and the next item on the input list, and

if so, what type of arc (direction and label); and
(2) we did not use lemmas, morphological in-

formation or coarse grained part-of-speech tags.

For the complete list of features used, please see

(Sagae and Tsujii, 2007).
During run-time, the classifier is used to de-

termine the parser action according to the current

parser configuration. Like Sagae and Tsujii, we
use a beam search instead of running the algo-

rithm in deterministic mode, although we also

report deterministic parsing results.

3.2 Predicate-argument analysis

The predicate-argument dependencies extracted

from the HPSG Treebank include information

such as extraction, raising, control, and other

long-distance dependencies. Unlike in structures
from PropBank, predicate-argument information

is provided for nearly all words in the data. Fol-

lowing previous experiments with Penn Tree-
bank WSJ data, or data derived from it, we used

sections 02-21 as training material, section 22 for

development, and section 23 for testing. Only

the predicate-argument dependencies were used,
not the phrase structures or other information

from the HPSG analyses. Part-of-speech tagging

was done separately using a maximum entropy
tagger (Tsuruoka and Tsujii, 2005) with accuracy

of 97.1%.

Cycles were eliminated from the dependency
structures using the arc reversal transform in the

following way: for each cycle detected in the

data, the shortest arc in the cycle was reversed

until no cycles remained. We applied pseudo-
projective transformation and detransformation

to determine how much information is lost in this

process. By detransforming the projective
graphs generated from gold-standard dependen-

cies, we obtain labeled precision of 98.1% and

labeled recall of 97.7%, which is below the accu-
racy expected for detransformation of syntactic

dependency trees, but still within a range we

considered acceptable. This represents an upper-

bound for the accuracy of the DAG parser (in-
cluding the arc-reversal and pseudo-projective

transformations, and the algorithm described in

section 2.1).
Table 1 shows the results obtained with our

DAG parsing framework in terms of labeled pre-

cision, recall and F-score (89.0, 88.5 and 88.7,

respectively). For comparison, we also show
previously published results obtained by Miyao

and Tsujii (2005), and Sagae et al. (2007), which

used the same data, but obtained the predicate-

argument analyses using an HPSG parser. Our

results are very competitive, at roughly the same
level as the best previously published results on

this data set, but obtained with significantly

higher speed. The parser took less than four mi-

nutes to process the test set, and pseudo-
projective and arc-reversal detransformation took

less than one minute in standard hardware (a Li-

nux workstation with a Pentium 4 processor and
4Gb of RAM). Sagae et al. (2007) reported that

an HPSG parser took about 20 minutes to parse

the same data. Our results were obtained with a
beam width of 150 parser states. Running the

parser with a beam width of 1 (a single parser

state), emulating the deterministic search used by

Nivre (2004), resulted in numerous parse failures
(the end of the input string is reached, and no

further dependency arcs are created) in the de-

velopment set, and therefore very low dependen-
cy recall (90.1 precision and 36.2 recall on de-

velopment data). Finally, in table 1 we also

show results obtained with standard bottom-up
shift-reduce dependency parsing for trees, using

the parser described in (Sagae and Tsujii, 2007).

To train the dependency tree parser, we trans-

formed the DAG predicate-argument structures
into trees by removing arcs. Arcs were selected

for removal as follows: for each word that had

more than one head, only the arc between the
word and its closest head (in linear distance in

the sentence) was kept. Although this strategy

still produces dependency analyses with relative-

ly high F-score (87.0), recall is far lower than
when DAG parsing is used, and the tree parser

has no mechanism for capturing some of the

structures captured by the DAG parser.

Parser Precision Recall F-score

DAG-beam 89.0 88.5 88.7

Tree only 89.8 84.3 87.0
Sagae et al. 88.5 88.0 88.2

Miyao & Tsujii 85.0 84.3 84.6

Table 1: Results from experiments with HPSG

predicate-argument dependencies (labeled preci-

sion, recall and F-score). Our results are denoted
by DAG-beam and tree only, and others are pre-

viously published results using the same data.

3.3 Danish Dependency Treebank experi-

ments

Our experiments with the Danish Dependency
Treebank followed the same setup as described

for the HPSG predicate-argument structures.

The accuracy of pseudo-projective transforma-

tion and detransformation was higher, at 99.4%

precision and 98.8% recall. To divide the data
into training, development and test sections, we

followed the same procedure as McDonald et al.

(2006), who used the same data, so our results

could be compared directly (a small number of
graphs that contained cycles was discarded, as

done by McDonald et al.).

Our results are shown in table 2 (unlabeled
precision and recall are used, for comparison

with previous work, in addition to labeled preci-

sion and recall), along with the results obtained
by McDonald et al., who used an approximate

inference strategy in a graph-based dependency

parsing framework, where a dependency tree is

computed first, and arcs that improve on the
overall graph score are added one by one. As in

the previous section, we also include results ob-

tained with tree-only parsing. Obtaining tree
structures from the Danish Dependency Tree-

bank is straightforward, since anaphoric refer-

ence and long-distance dependency arcs are
marked as such explicitly and can be easily re-

moved.

In addition to overall results, we also meas-

ured the parser’s precision and recall on long-
distance dependencies and anaphoric reference.

On long-distance dependencies the parser had

83.2 precision and 82.0 recall. On anaphoric
reference links the parser has 84.9 precision and

84.4 recall. Although these are below the pars-

er’s overall accuracy figures, they are encourag-

ing results. Finally, unlike with the HPSG predi-
cate-argument structures, using a beam width of

1 reduces precision and recall by only about 1.5.

Parser Precision Recall F-score

DAG-beam 87.3 87.1 87.2

Tree only 87.5 82.7 85.0

McDonald et al. 86.2 84.9 85.6

DAG-labeled 82.7 82.2 82.4

Table 2: Results from experiments with the

Danish Dependency Treebank. Precision, recall

and F-score for the first three rows are for unla-
beled dependencies. The last row, DAG-labeled,

shows our results in labeled precision, recall and

F-score (not directly comparable to other rows).

4 Related work

The work presented here builds on the dependen-
cy parsing work of Nivre (2004), as discussed in

section 2, on the work of Nivre and Nilsson

(2006) on pseudo-projective transformations, and

on the work of Sagae and Tsujii (2007) in using a
beam search in shift-reduce dependency parsing

using maximum entropy classifiers. As men-

tioned before, McDonald et al. (2006) presented

an approach to DAG parsing (that could also eas-
ily be applied to cyclic structures) using approx-

imate inference in an edge-factored dependency

model starting from dependency trees. In their
model, the addition of extra arcs to the tree was

learned with the parameters to build the initial

tree itself, which shows the power and flexibility
of approximate inference in graph-based depen-

dency models.

Other parsing approaches that produce depen-

dency graphs that are not limited to tree struc-
tures include those based on linguistically-

motivated lexicalized grammar formalisms, such

as HPSG, CCG and LFG. In particular, Clark et
al. (2002) use a probabilistic model of dependen-

cy DAGs extracted from the CCGBank (Hock-

enmeier and Steedman, 2007) in a CCG parser
that builds the CCG predicate-argument depen-

dency structures following the CCG derivation,

not directly through DAG parsing. Similarly, the

HPSG parser of Miyao and Tsujii (2005) builds
the HPSG predicate-argument dependency struc-

ture following unification operations during

HPSG parsing. Sagae et al. (2007) use a depen-
dency parsing combined with an HPSG parser to

produce predicate-argument dependencies.

However, the dependency parser is used only to

produce a dependency tree backbone, which the
HPSG parser then uses to produce the more gen-

eral dependency graph. A similar strategy is

used in the RASP parser (Briscoe et al., 2006),
which builds a dependency graph through unifi-

cation operations performed during a phrase

structure tree parsing process.

5 Conclusion

We have presented a framework for dependency

DAG parsing, using a novel algorithm for projec-
tive DAGs that extends existing shift-reduce al-

gorithms for parsing with dependency trees, and

pseudo-projective transformations applied to
DAG structures.

We have demonstrated that the parsing ap-

proach is effective in analysis of predicate-

argument structure in English using data from the
HPSG Treebank (Miyao et al., 2004), and in

parsing of Danish using a rich dependency repre-

sentation (Kromann, 2003).

Acknowledgements

We thank Yusuke Miyao and Takuya Matsuzaki

for insightful discussions. This work was partial-
ly supported by Grant-in-Aid for Specially Pro-

moted Research (MEXT, Japan).

References

Briscoe, T., Carroll, J. and Watson, R. 2006. The

second release of the RASP system. In Proceed-

ings of the COLING/ACL-06 Demo Session.

Buchholz, Sabine and Erwin Marsi. 2006. CoNLL-X

Shared Task on Multilingual Dependency Parsing.

In Proceedings of the 10th Conference on Compu-

tational Natural Language Learning (CoNLL-X)

Shared Task session.

Clark, Stephen, Julia Hockenmaier, and Mark Steed-

man. 2002. Building Deep Dependency Structures

using a Wide-Coverage CCG Parser. In Proceed-

ings of the 40th Annual Meeting of the Association

for Computational Linguistics (ACL).

Covington, Michael A. 2001. A fundamental algo-

rithm for dependency parsing. In Proceedings of

the Annual ACM Southeast Conference, 95-102.

Erkan, Gunes, Arzucan Ozgur, and Dragomir R. Ra-

dev. 2007. Semisupervised classification for ex-

tracting protein interaction sentences using depen-
dency parsing. In Proceedings of CoNLL-EMNLP.

Hudson, Richard. 1984. Word Grammar. Oxford:

Blackwell.

Hudson, Richard. 2005. Word Grammar. In K. Brown

(Ed.), Encyclopedia of Language and Linguistics

(second ed., pp 633-642). Elsevier.

Hockenmaier, Julia and Mark Steedman. 2007.

CCGbank: a corpus of CCG derivations and de-

pendency structures extracted from the Penn Tree-

bank. In Computational Linguistics 33(3), pp 355-

396, MIT press.

Kromann, Matthias T. 2003. The Danish dependency
treebank and the underlying linguistic theory. In

Proceedings of the Second Workshop on Treebanks

and Linguistic Theories (TLT).

McDonald, Ryan and Fernando Pereira. 2006. Online

learning of approximate dependency parsing algo-

rithms. In Proceedings of the 11th Conference of

the European Chapter of the Association for Com-

putational Linguistics (EACL).

McDonald, Ryan, Fernando Pereira, Kiril Ribarov and

Jan Hajic. 2005. Non-projective Dependency Pars-

ing using Spanning Tree Algorithms. In Proceed-
ings of the Human Language Technology Confe-

rence and Conference on Empirical Methods in

Natural Language Processing (HLT-EMNLP).

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsu-

jii. 2004. Corpus-oriented grammar development

for acquiring a Head-driven Phrase Structure

Grammar from the Penn Treebank. In Proceedings

of the International Joint Conference on Natural

Language Processing (IJCNLP).

Miyao Yusuke and Jun'ichi Tsujii. 2005. Probabilistic

disambiguation models for wide-coverage HPSG

parsing. In Proceedings of the 43rd Annual Meet-

ing on Association for Computational Linguistics.

Nivre, Joakim. 2004. Incrementality in Deterministic

Dependency Parsing. In Incremental Parsing:

Bringing Engineering and Cognition Together

(Workshop at ACL-2004).

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan

McDonald, Jens Nilsson, Sebastian Riedel, Deniz

Yuret. 2007. In Proceedings of the CoNLL 2007

Shared Task in the Joint Conference on Empirical
Methods in Natural Language Processing and

Computational Natural Language Learning.

Nivre, Joakim. and Jens Nilsson. 2005. Pseudo-

Projective Dependency Parsing. In Proceedings of

the 43rd Annual Meeting of the Association for

Computational Linguistics (ACL), pp. 99-106.

Nivre, Joakim. 2007. Incremental non-projective de-

pendency parsing. In Proceedings of Human Lan-

guage Technologies: The Annual Conference of the

North American Chapter of the Association for

Computational Linguistics (NAACL-HLT’07).

Saetre, R., Sagae, K., and Tsujii, J. 2007. Syntactic

features for protein-protein interaction extraction.

In Proceedings of the International Symposium on

Languages in Biology and Medicine (LBM short

oral presentations).

Sagae, Kenji., Yusuke Miyao Jun’ichi and Tsujii.

2007. HPSG Parsing with shallow dependency

constraints. In Proceedings of the 44th Meeting of

the Association for Computational Linguistics.

Sagae, K., Tsujii, J. 2007. Dependency parsing and

domain adaptation with LR models and parser en-

sembles. In Proceedings of the CoNLL 2007
Shared Task. in EMNLP-CoNLL.

Tsuruoka, Yoshimasa and Tsujii, Jun’ichi. 2005. Bidi-

rectional inference with the easiest-first strategy for

tagging sequence data. In Proceedings of the Hu-

man Language Technology Conference and Confe-

rence on Empirical Methods in Natural Language

Processing (HLT-EMNLP), pp. 523-530.

Wang, Mengqiu, Noah A. Smith, and Teruko Mita-

mura. 2007. What is the Jeopardy Model? A Quasi-

Synchronous Grammar for QA. In Proceedings of

the Joint Conference on Empirical Methods in
Natural Language Processing and Computational

Natural Language Learning (EMNLP-CoNLL).

