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Abstract

 

Most data-driven dependency parsing 

approaches assume that sentence struc-

ture is represented as trees. Although 
trees have several desirable properties 

from both computational and linguistic 

perspectives, the structure of linguistic 
phenomena that goes beyond shallow 

syntax often cannot be fully captured by 

tree representations.  We present a pars-

ing approach that is nearly as simple as 
current data-driven transition-based de-

pendency parsing frameworks, but out-

puts directed acyclic graphs (DAGs). We 
demonstrate the benefits of DAG parsing 

in two experiments where its advantages 

over dependency tree parsing can be 
clearly observed: predicate-argument 

analysis of English and syntactic analysis 

of Danish with a representation that in-

cludes long-distance dependencies and 
anaphoric reference links.  

1 Introduction 

Natural language parsing with data-driven de-

pendency-based frameworks has received an in-
creasing amount of attention in recent years 

(McDonald et al., 2005; Buchholz and Marsi, 

2006; Nivre et al., 2006).  Dependency represen-
tations directly reflect word-to-word relation-
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ships in a dependency graph, where the words in 

a sentence are the nodes, and labeled edges cor-
respond to head-dependent syntactic relations.  In 

addition to being inherently lexicalized, depen-

dency analyses can be generated efficiently and 
have been show to be useful in a variety of prac-

tical tasks, such as question answering (Wang et 

al., 2007), information extraction in biomedical 

text (Erkan et al., 2007; Saetre et al, 2007) and 
machine translation (Quirk and Corston-Oliver, 

2006).  

However, despite rapid progress in the devel-
opment of parsers for several languages (Nivre et 

al., 2007) and algorithms for more linguistically 

adequate non-projective structures (McDonald et 

al., 2005; Nivre and Nilsson, 2006), most of the 
current data-driven dependency parsing ap-

proaches are limited to producing only depen-

dency trees, where each word has exactly one 
head.  Although trees have desirable properties 

from both computational and linguistic perspec-

tives, the structure of linguistic phenomena that 
goes beyond shallow syntax often cannot be fully 

captured by tree representations.  Well-known 

linguistically-motivated dependency-based syn-

tactic frameworks, such as Hudson’s Word 
Grammar (Hudson, 1984), recognize that to 

represent phenomena such as relative clauses, 

control relations and other long-distance depen-
dencies, more general graphs are needed.  Hud-

son (2005) illustrates his syntactic framework 

with the analysis shown in figure 1.  In this ex-

ample, the arcs above the sentence correspond to 
a typical dependency tree commonly used in de-

pendency parsing.  It is clear, however, that the 

entire dependency structure is not a tree, but a 
directed acyclic graph (DAG), where words may 

have one or more heads. The arcs below the sen-

tence represent additional syntactic dependencies 
commonly ignored in current dependency pars-

ing approaches that are limited to producing tree 



structures.  There are several other linguistic 

phenomena that cannot be represented naturally 
with dependency trees, but can easily be 

represented with dependency DAGs, including 

anaphoric reference and semantically motivated 

predicate-argument relations.  Although there are 
parsing approaches (often referred to as deep 

parsing approaches) that compute DAG depen-

dency structures, this is usually done through 
more complex lexicalized grammar formalisms 

(such as HPSG, CCG and LFG) and unification 

operations with tree-based parsing algorithms. 
We introduce a new data-driven framework 

for dependency parsing that produces dependen-

cy DAGs directly from input strings, in a manner 

nearly as simple as other current transition-based 
dependency parsers (Nivre et al., 2007) produce 

dependency trees.  By moving from tree struc-

tures to DAGs, it is possible to use dependency 
parsing techniques to address a wider range of 

linguistic phenomena beyond surface syntax.  

We show that this framework is effective and 
efficient in analysis of predicate-argument de-

pendencies represented as DAGs, and in syntac-

tic parsing using DAGs that include long-

distance dependencies, gapping dependents and 
anaphoric reference information, in addition to 

surface syntactic dependents. 

Our parsing framework, based on shift-reduce 
dependency parsing, is presented in section 2.  

Experiments and results are presented and dis-

cussed in section 3.  We review related work in 

section 4, and conclude in section 5. 

2 A shift-reduce parsing framework for 

dependency DAGs 

One of the key assumptions in both graph-based 

(McDonald et al., 2005) and transition-based 

(Nivre, 2004; Nivre and Nilsson, 2006) ap-
proaches to data-driven dependency parsing is 

that the dependency structure produced by the 

parser is a tree, where each word has exactly one 
head (except for a single root word, which has no 

head in the sentence).  This assumption, of 

course, has to be abandoned in dependency DAG 

parsing.  McDonald et al. (2006) point out that, 
while exact inference is intractable if the tree 

constraints are abandoned in their graph-based 

parsing framework, it is possible to compute 
more general graphs (such as DAGs) using ap-

proximate inference, finding a tree first, and add-

ing extra edges that increase the graph’s overall 
score.  Our approach, in contrast, extends shift-

reduce (transition-based) approaches, finding a 

DAG directly.  Because data-driven shift-reduce 

dependency parsing is based on local decisions 

(informed by rich a rich feature set), the addi-
tional computational cost of computing DAGs 

instead of trees is small in practice, as we will 

show. 

We first describe how the basic shift-reduce 
bottom-up dependency parsing algorithm de-

scribed by Nivre (2004) can be modified to allow 

multiple heads per word.  We then explore the 
same type of modification to Nivre’s arc-eager 

algorithm, which is a variant of the basic shift-

reduce algorithm where arcs can be created at the 

first opportunity.  Like their tree counterparts, 
our algorithms for dependency DAGs produce 

only projective structures, assuming that projec-

tivity for DAGs is defined in much the same way 
as for trees.  Informally, we define a projective 

DAG to be a DAG where all arcs can be drawn 

above the sentence (written sequentially in its 
original order) in a way such that no arcs cross 

and there are no covered roots (although a root is 

not a concept associated with DAGs, we borrow 

the term from trees to denote words with no 
heads in the sentence).  However, non-

projectivity is predictably more wide-spread in 

DAG representations, since there are at least as 
many arcs as in a tree representation, and often 

more, including arcs that represent non-local re-

lationships.  We then discuss the application of 
pseudo-projective transformations (Nivre and 

Nilsson, 2005) and an additional arc-reversing 

transform to dependency DAGs.  Using a shift-

reduce algorithm that allows multiple heads per 
word and pseudo-projective transformations to-
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Figure 1: Word Grammar dependency graph 

(Hudson, 2005). Key for edge types: com-

plement (c), object (o), sharer/xcomp (r), 

subject (s), and extractee (x). 



gether forms a complete dependency DAG pars-

ing framework. 

2.1 Basic shift-reduce parsing with multiple 

heads 

The basic bottom-up left-to-right dependency 

parsing algorithm described by Nivre (2004) 

keeps a list of tokens (initialized to contain the 
input string) and a stack (initialized to be empty), 

and allows three types of actions: (1) shift, which 

removes the next item from the input list and 
pushes it onto the top of the stack; (2) left-

reduce, which pops the top two items from the 

stack, creates a left-arc between the words they 
represent in the sentence, and push the top item 

(which is now the head of the item previously 

below it) back onto the stack; and (3) right-

reduce, which works in the same way as left-
reduce, but creates a right-arc instead, and push-

es back onto the stack the item that was below 

the top item on the stack (which is now the head 
of the item previously on top of the stack)

1
.  New 

dependency edges (or arcs) are only created by 

reduce actions, which are constrained so that 

they can only be applied to create a head-
dependent pair where the dependent has already 

found all of its own dependents (if any).  This is 

necessary because once a word is assigned a 
head it is popped from the stack and never visited 

again, since each word has only one head.  This 

constraint, responsible for the parser’s bottom-up 
behavior, should be kept in mind, as it is relevant 

in the design of the multiple-head parsing algo-

rithm below. 

To allow words to have multiple heads, we 
first need to create two new parser actions that 

create dependency arcs without removing the 

dependent from further consideration for being a 
dependent of additional heads.  The first new 

action is left-attach, which creates a left depen-

dency arc attaching the top two items on the 
stack, making the top item the head of the item 

immediately below, as long as a right arc be-

tween the two items does not already exist.  This 

action is similar to left-reduce, except that nei-
ther item is removed from the stack (no reduction 

occurs).  The second new action, right-attach, 

includes one additional final step: first, it creates 
a right dependency arc between the top two items 

on the stack (as long as a left arc between the two 

items does not already exist), making the top 

item a dependent of the item immediately below; 

                                                
1 Like Nivre (2004), we consider the direction of the 
dependency arc to be from the head to the dependent. 
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Figure 2: Example of how the basic algorithm 
builds dependencies with multiple heads. 



and, as a second step, it pops the top item on the 

stack (newly made a dependent), and places it 
back on the list of input words.  This second step 

is necessary because of the constraint that words 

can only be made dependents once all of its own 

dependents have been found.  The behavior of 
the algorithm is illustrated in figure 2, where (a) 

shows an application of left-attach, and (b) 

shows an application of right-attach.  In (b), we 
note that without placing the dependent in the 

right-attach action (Z) back on the input list, the 

dependency between X and Y could not be 
created.  If we abandon the algorithm’s bottom-

up behavior, it is possible to modify the parser 

actions so that it is not necessary to place items 

back in the input list.  This is discussed in section 
2.2. 

In summary, the algorithm has each of the 

three actions from the tree-based algorithm (shift, 
right-reduce, and left-reduce), and two additional 

actions that allow words to be dependents of 

more than one head (right-attach and left-attach).  
Although the algorithm as described so far builds 

unlabeled structures, the extension to labeled 

structures is straightforward: any action that re-

sults in a new arc being created must also choose 
a label for the arc.  Another way to accomplish 

the same goal is to have a copy of each arc-

producing action for each possible arc label.  
This is the same labeling extension as in the al-

gorithm for trees.  Finally, we note that the algo-

rithm does not explicitly prevent multiple arcs 

(with the same direction) from being created be-
tween the same two words.  In the unlabeled 

case, such a constraint can be easily placed on 

arc-producing actions.  In the labeled case, how-
ever, it is useful to allow arcs with different la-

bels to link the same two words
2
. 

2.2 Arc-eager shift-reduce parsing with 

multiple heads 

Nivre’s arc-eager algorithm was designed to 

build dependencies at the first opportunity, 

avoiding situations where items that form a chain 

of right arcs all have to be placed on the stack 
before any structure is built, as in figure 2(b) for 

example.  This is done by creating dependencies 

not between the top two items on the stack, but 
between the single top item on the stack and the 

next word on the input list, resulting in a hybrid 

                                                
2 This means that the structures produced by the algo-

rithm are technically not limited to projective DAGs, 

since they can also be projective labeled multi-
digraphs. 

bottom-up/top-down strategy.  A similar idea can 

result in an algorithm for dependencies that allow 
multiple heads per word, but in this case the re-

sulting algorithm is not as similar to the arc-

eager algorithm for trees as the algorithm in sec-

tion 2.1 is to its tree-based counterpart. 
The projective DAG arc-eager algorithm has 

four actions, each corresponding to one action of 

the tree-based algorithm, but only the shift action 
is the same as in the tree based algorithm.  The 

four actions in the new algorithm are: (1) shift, 

which removes the next token from the input 
string and pushes it onto the top of the stack; (2) 

reduce, which pops the stack, removing only its 

top item, as long as that item has at least one 

head (unlike in the tree-based algorithm, howev-
er, the algorithm may not reduce immediately 

when an item that has a head is on the top of the 

stack); (3) left-arc, which creates a left depen-
dency arc between the word on top of the stack 

and the next token in the input string, where the 

token in the input string is the head and the item 
on the stack is the dependent (the stack and input 

list are left untouched), as long as a right arc does 

not already exist between the two words; and (4) 

right-arc, which creates a right dependency arc 
between the word on top of the stack and the 

next token in the input list, where the item on the 

stack is the head and the token in the input list is 
the dependent (again, the stack and input list are 

left untouched), as long as a left arc does not al-

ready exist between the two words. 

Like the algorithm in section 2.1, this algo-
rithm can easily be extended to produce labeled 

structures, and it also allows multiple edges (with 

the same direction) between the same two words. 

2.3 Graph transformations for DAGs 

Although the algorithms presented in sections 2.1 

and 2.2 can produce dependency structures 

where a word may have more than one head, 
they are of limited interest on their own, since 

they can only produce projective structures, and 

many of the interesting linguistic phenomena that 

can be represented with DAGs cannot be 
represented with projective DAGs.  Fortunately, 

the pseudo-projective transformations (Nivre and 

Nilsson, 2006) used in tree-based dependency 
parsing can easily be applied to DAGs.  These 

transformations consist of identifying specific 

non-projective arcs, and moving their heads up 

towards the root, making them projective.  The 
process also involves creating markings on the 

labels of the edges involved, so that the trans-

formations are (mostly) reversible.  Because non-



projectivity is more common in linguistically 

interesting DAGs, however, the trans-
form/detransform process may be more lossy 

than it is when applied to trees.  This, of course, 

varies according to specific DAGs used for 

representing specific phenomena.  For pseudo-
transformations to work well, we must allow 

multiple differently labeled arcs between the 

same two words (which, as mentioned before, the 
algorithms do).  Combining the algorithm in sec-

tions 2.1 or 2.2 with pseudo-projective parsing, 

we can use DAG training data and produce DAG 
output in the overall parsing framework. 

An alternative to using pseudo-projective 

transformations is to develop an algorithm for 

DAG parsing based on the family of algorithms 
described by Covington (2001), in the same way 

the algorithms in sections 2.1 and 2.2 were de-

veloped based on the algorithms described by 
Nivre (2004).  Although this may be straightfor-

ward, a potential drawback of such an approach 

is that the number of parse actions taken in a Co-
vington-style algorithm is always quadratic on 

the length of the input sentence, resulting in 

parsers that are more costly to train and to run 

(Nivre, 2007).  The algorithms presented here, 
however, behave identically to their linear run-

time tree counterparts when they are trained with 

graphs that are limited to tree structures.  Addi-
tional actions are necessary only when words 

with more than one head are encountered.  For 

data sets where most words have only one head, 

the performance the algorithms described in sec-
tions 2.1 and 2.2 should be close to that of shift-

reduce projective parsing for dependency trees.  

In data sets where most words have multiple 
heads (resulting in higher arc density), the use of 

a Covington-style algorithm may be advanta-

geous, but this is left as an area of future investi-
gation. 

In addition to pseudo-projective transforma-

tions, an additional transformation that is useful 

in DAG parsing is arc reversal.  This consists of 
simply reversing the direction of an edge, adding 

a special mark to its label to indicate that its di-

rection has been reversed.  Detransformation is 
trivial and can be done with perfect accuracy, 

since it can be accomplished by simply reversing 

the arcs marked as reversed.  This transformation 
is useful in cases where structures are mostly in 

DAG form, but may sometimes contain cycles.  

Arc reversal can be used to change the direction 

of an arc in the cycle, making the previously cyc-
lic structure a DAG, which can be handled in the 

framework presented here. 

3 Experiments 

To investigate the efficacy of our DAG parsing 

framework on natural language data annotated 
with dependency DAGs, we conducted two expe-

riments.  The first uses predicate-argument de-

pendencies taken from the HPSG Treebank built 
by Miyao et al. (2004) from the WSJ portion of 

the Penn Treebank.  These predicate-argument 

structures are, in general, dependency graphs that 
do contain cycles (although infrequently), and 

also contain a large number of words with mul-

tiple heads.  Since the predicate-argument de-

pendencies are annotated explicitly in the HPSG 
Treebank, extracting a corpus of gold-standard 

dependency graphs is trivial.  The second expe-

riment uses the Danish Dependency Treebank, 
developed by Kromann (2003).  This treebank 

follows a dependency scheme that includes, in 

addition to standard grammatical relations com-
monly used in dependency parsing, long-distance 

dependencies, gapping dependents, and anaphor-

ic reference links.  As with the HPSG predicate 

argument data, a few structures in the data con-
tain cycles, but most of the structures in the tree-

bank are DAGs.  In the experiments presented 

below, the algorithm described in section 2.1 was 
used.  We believe the use of the arc-eager algo-

rithm described in section 2.2 would produce 

similar results, but this is left as future work. 

3.1 Learning component 

The DAG parsing framework, as described so 
far, must decide when to apply each appropriate 

parser action.  As with other data-driven depen-

dency parsing approaches with shift-reduce algo-
rithms, we use a classifier to make these deci-

sions.  Following the work of Sagae and Tsujii 

(2007), we use maximum entropy models for 

classification.  During training, the DAGs are 
first projectivized with pseudo-projective trans-

formations.  They are then processed by the pars-

ing algorithm, which records each action neces-
sary to build the correct structure in the training 

data, along with their corresponding parser con-

figurations (stack and input list contents).  From 
each of these parser configurations, a set of fea-

tures is extracted and used with the correct pars-

ing action as a training example for the maxi-

mum entropy classifier.  The specific features we 
used in both experiments are the same features 

described by Sagae and Tsujii, with the follow-

ing two changes: (1) the addition of a feature that 
indicates whether an arc already exists between 

the top two items on the stack, or the top item on 



the stack and the next item on the input list, and 

if so, what type of arc (direction and label); and 
(2) we did not use lemmas, morphological in-

formation or coarse grained part-of-speech tags.  

For the complete list of features used, please see 

(Sagae and Tsujii, 2007). 
During run-time, the classifier is used to de-

termine the parser action according to the current 

parser configuration.  Like Sagae and Tsujii, we 
use a beam search instead of running the algo-

rithm in deterministic mode, although we also 

report deterministic parsing results. 

3.2 Predicate-argument analysis 

The predicate-argument dependencies extracted 

from the HPSG Treebank include information 

such as extraction, raising, control, and other 

long-distance dependencies.  Unlike in structures 
from PropBank, predicate-argument information 

is provided for nearly all words in the data.  Fol-

lowing previous experiments with Penn Tree-
bank WSJ data, or data derived from it, we used 

sections 02-21 as training material, section 22 for 

development, and section 23 for testing.  Only 

the predicate-argument dependencies were used, 
not the phrase structures or other information 

from the HPSG analyses.  Part-of-speech tagging 

was done separately using a maximum entropy 
tagger (Tsuruoka and Tsujii, 2005) with accuracy 

of 97.1%. 

Cycles were eliminated from the dependency 
structures using the arc reversal transform in the 

following way: for each cycle detected in the 

data, the shortest arc in the cycle was reversed 

until no cycles remained.  We applied pseudo-
projective transformation and detransformation 

to determine how much information is lost in this 

process.  By detransforming the projective 
graphs generated from gold-standard dependen-

cies, we obtain labeled precision of 98.1% and 

labeled recall of 97.7%, which is below the accu-
racy expected for detransformation of syntactic 

dependency trees, but still within a range we 

considered acceptable.  This represents an upper-

bound for the accuracy of the DAG parser (in-
cluding the arc-reversal and pseudo-projective 

transformations, and the algorithm described in 

section 2.1). 
Table 1 shows the results obtained with our 

DAG parsing framework in terms of labeled pre-

cision, recall and F-score (89.0, 88.5 and 88.7, 

respectively).  For comparison, we also show 
previously published results obtained by Miyao 

and Tsujii (2005), and Sagae et al. (2007), which 

used the same data, but obtained the predicate-

argument analyses using an HPSG parser.  Our 

results are very competitive, at roughly the same 
level as the best previously published results on 

this data set, but obtained with significantly 

higher speed.  The parser took less than four mi-

nutes to process the test set, and pseudo-
projective and arc-reversal detransformation took 

less than one minute in standard hardware (a Li-

nux workstation with a Pentium 4 processor and 
4Gb of RAM).  Sagae et al. (2007) reported that 

an HPSG parser took about 20 minutes to parse 

the same data.  Our results were obtained with a 
beam width of 150 parser states.  Running the 

parser with a beam width of 1 (a single parser 

state), emulating the deterministic search used by 

Nivre (2004), resulted in numerous parse failures 
(the end of the input string is reached, and no 

further dependency arcs are created) in the de-

velopment set, and therefore very low dependen-
cy recall (90.1 precision and 36.2 recall on de-

velopment data).  Finally, in table 1 we also 

show results obtained with standard bottom-up 
shift-reduce dependency parsing for trees, using 

the parser described in (Sagae and Tsujii, 2007).  

To train the dependency tree parser, we trans-

formed the DAG predicate-argument structures 
into trees by removing arcs.  Arcs were selected 

for removal as follows: for each word that had 

more than one head, only the arc between the 
word and its closest head (in linear distance in 

the sentence) was kept.  Although this strategy 

still produces dependency analyses with relative-

ly high F-score (87.0), recall is far lower than 
when DAG parsing is used, and the tree parser 

has no mechanism for capturing some of the 

structures captured by the DAG parser.  
 

Parser Precision Recall F-score 

DAG-beam 89.0 88.5 88.7 

Tree only 89.8 84.3 87.0 
Sagae et al. 88.5 88.0 88.2 

Miyao & Tsujii 85.0 84.3 84.6 

 
Table 1: Results from experiments with HPSG 

predicate-argument dependencies (labeled preci-

sion, recall and F-score).  Our results are denoted 
by DAG-beam and tree only, and others are pre-

viously published results using the same data. 

3.3 Danish Dependency Treebank experi-

ments 

Our experiments with the Danish Dependency 
Treebank followed the same setup as described 

for the HPSG predicate-argument structures.  

The accuracy of pseudo-projective transforma-



tion and detransformation was higher, at 99.4% 

precision and 98.8% recall.  To divide the data 
into training, development and test sections, we 

followed the same procedure as McDonald et al. 

(2006), who used the same data, so our results 

could be compared directly (a small number of 
graphs that contained cycles was discarded, as 

done by McDonald et al.). 

Our results are shown in table 2 (unlabeled 
precision and recall are used, for comparison 

with previous work, in addition to labeled preci-

sion and recall), along with the results obtained 
by McDonald et al., who used an approximate 

inference strategy in a graph-based dependency 

parsing framework, where a dependency tree is 

computed first, and arcs that improve on the 
overall graph score are added one by one.  As in 

the previous section, we also include results ob-

tained with tree-only parsing.  Obtaining tree 
structures from the Danish Dependency Tree-

bank is straightforward, since anaphoric refer-

ence and long-distance dependency arcs are 
marked as such explicitly and can be easily re-

moved. 

In addition to overall results, we also meas-

ured the parser’s precision and recall on long-
distance dependencies and anaphoric reference.  

On long-distance dependencies the parser had 

83.2 precision and 82.0 recall.  On anaphoric 
reference links the parser has 84.9 precision and 

84.4 recall.  Although these are below the pars-

er’s overall accuracy figures, they are encourag-

ing results.  Finally, unlike with the HPSG predi-
cate-argument structures, using a beam width of 

1 reduces precision and recall by only about 1.5. 

 
Parser Precision Recall F-score 

DAG-beam 87.3 87.1 87.2 

Tree only 87.5 82.7 85.0 

McDonald et al. 86.2 84.9 85.6 

DAG-labeled 82.7 82.2 82.4 

 
Table 2: Results from experiments with the 

Danish Dependency Treebank.  Precision, recall 

and F-score for the first three rows are for unla-
beled dependencies. The last row, DAG-labeled, 

shows our results in labeled precision, recall and 

F-score (not directly comparable to other rows). 
 

4 Related work 

The work presented here builds on the dependen-
cy parsing work of Nivre (2004), as discussed in 

section 2, on the work of Nivre and Nilsson 

(2006) on pseudo-projective transformations, and 

on the work of Sagae and Tsujii (2007) in using a 
beam search in shift-reduce dependency parsing 

using maximum entropy classifiers.  As men-

tioned before, McDonald et al. (2006) presented 

an approach to DAG parsing (that could also eas-
ily be applied to cyclic structures) using approx-

imate inference in an edge-factored dependency 

model starting from dependency trees.  In their 
model, the addition of extra arcs to the tree was 

learned with the parameters to build the initial 

tree itself, which shows the power and flexibility 
of approximate inference in graph-based depen-

dency models. 

Other parsing approaches that produce depen-

dency graphs that are not limited to tree struc-
tures include those based on linguistically-

motivated lexicalized grammar formalisms, such 

as HPSG, CCG and LFG.  In particular, Clark et 
al. (2002) use a probabilistic model of dependen-

cy DAGs extracted from the CCGBank (Hock-

enmeier and Steedman, 2007) in a CCG parser 
that builds the CCG predicate-argument depen-

dency structures following the CCG derivation, 

not directly through DAG parsing.  Similarly, the 

HPSG parser of Miyao and Tsujii (2005) builds 
the HPSG predicate-argument dependency struc-

ture following unification operations during 

HPSG parsing.  Sagae et al. (2007) use a depen-
dency parsing combined with an HPSG parser to 

produce predicate-argument dependencies.  

However, the dependency parser is used only to 

produce a dependency tree backbone, which the 
HPSG parser then uses to produce the more gen-

eral dependency graph.  A similar strategy is 

used in the RASP parser (Briscoe et al., 2006), 
which builds a dependency graph through unifi-

cation operations performed during a phrase 

structure tree parsing process. 

5 Conclusion 

We have presented a framework for dependency 

DAG parsing, using a novel algorithm for projec-
tive DAGs that extends existing shift-reduce al-

gorithms for parsing with dependency trees, and 

pseudo-projective transformations applied to 
DAG structures. 

We have demonstrated that the parsing ap-

proach is effective in analysis of predicate-

argument structure in English using data from the 
HPSG Treebank (Miyao et al., 2004), and in 

parsing of Danish using a rich dependency repre-

sentation (Kromann, 2003). 
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