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Abstract
In this paper, the sparse representation computed by l1-
minimization with quadratic constraints is employed to model
the i-vectors in the low dimensional total variability space af-
ter performing the Within-Class Covariance Normalization and
Linear Discriminate Analysis channel compensation. First, we
propose the background normalized l2 residual as a scoring cri-
terion. Second, we demonstrate that the Tnorm can be effi-
ciently achieved by using the Tnorm data as the non-target sam-
ples in the over-complete dictionary. Finally, by fusing with the
conventional i-vector based support vector machine (SVM) and
cosine distance scoring system, we demonstrate overall system
performance improvement. Experimental results show that the
proposed fusion system achieved 4.05% (male) and 5.25% (fe-
male) equal error rate (EER) after Tnorm on the single-single
multi-language handheld telephone task of NIST SRE 2008 and
outperformed the SVM baseline by yielding 7.1% and 4.9% rel-
ative EER reduction for the male and female tasks, respectively.
Index Terms: speaker verification, sparse representation
i-vector modeling

1. Introduction
The use of joint factor analysis (JFA) [1, 2, 3] has contributed to
state of the art performance in text independent speaker verifica-
tion and hence is being widely used. It is a powerful technique
for compensating the variability caused by different channels
and sessions.

Recently, total variability i-vector modeling has gained sig-
nificant attention due to its excellent performance, low com-
plexity and small model size [4]. In this modeling, first, a sin-
gle factor analysis is used as a front end to generate a low di-
mensional total variability space which models both the speaker
and channel variabilities [4]. Then, within this total variabil-
ity space, channel variability compensation methods, such as
Within-Class Covariance Normalization (WCCN) [5], Linear
Discriminative analysis (LDA) and Nuisance Attribute Projec-
tion (NAP) [6], are performed to reduce the channel variability.
Finally, two classification approaches, namely support vector
machine (SVM) and cosine distance scoring (CDS), are pro-
posed for the verification task [4]. It is also shown in [4] that
LDA followed by WCCN achieved the best performance. In this
paper, we follow this framework and focus on further enhanc-
ing the performance of the total variability i-vector modeling,
notably by exploring the sparse representations of the i-vectors.

More recently, a sparse representation computed by l1-
minimization (to approximate the l0-minimization) with equal-

ity constraints was proposed to replace the SVM in the GMM
mean supervector modeling and has been demonstrated to be ef-
fective in the closed set speaker identification task on the clean
TIMIT database [7]. This approach was extended in our previ-
ous work [8] to handle the robust verification task (with mul-
tiple enrollment samples) against large session variabilities. In
this approach [8], first, the sparse representation is computed
by l1-minimization with quadratic constraints rather than equal-
ity constraints. Second, by adding a redundant identity ma-
trix at the end of the original over-complete dictionary, the
sparse representation is made more robust to variability and
noise [8, 9]. Third, the difference between the UBM and the
MAP adapted model is mapped into the GMM mean shifted su-
pervector, which not only preserves the distance of the associ-
ated GMM but also makes the supervector sparse, and therefore
helps to achieve a robust sparse representation [8]. However,
sparse representation on large dimension supervectors not only
requires a large training data set (the number of samples must be
greater than the supervector dimension [9]) but also consumes
a large amount of memory space due to the over-complete dic-
tionary which can limit the training sample numbers and slow
down the recognition process. Thus, in this work, we adopt the
i-vectors in the total variability space due to its excellent dis-
criminative capability and small dimensionality.

Specifically, we first construct an over-complete dictionary
using the background i-vector samples, and then calculate the
sparsest linear representation via l1-minimization for each test
i-vector sample. The membership of the sparse representation
in the over-complete dictionary itself captures the discrimina-
tive information given sufficient training samples [9, 8]. If the
trial is true, the test sample should have a sparse representation
whose nonzero entries concentrate mostly on the target samples
whereas the test sample from a false trial should have sparse
coefficients spread widely among multiple speakers [9]. In our
speaker verification task, the number of non-target background
speakers are naturally considerably larger than the number of
target speakers. Thus the chance nonzero entries on the target
training samples for a test sample from a false trial should be
arbitrarily small and close to zero. Based on the overwhelming
unbalanced non-target negative training samples and the very
limited target positive training samples, in contrast to the SVM
system which tunes the SVM cost values each time, the pro-
posed framework utilizes the highly unbalanced nature of the
training samples to form a sparse representation problem.

In addition, we propose three methods to enhance the ro-
bustness and the performance of our speaker verification task.



First, the background normalized (BNorm) L2 residual is pro-
posed as a score measuring criterion. Second, by directly using
the Tnorm i-vectors as the non-target background samples in
the over-complete dictionary, the result of the sparse represen-
tation system with Tnorm is efficiently achieved by only one
sparse representation computation. Finally, the results of these
i-vector modeling systems are fused to further improve the over-
all verification performance.

The paper organization is as follows: Section 2 describes
the proposed methods, Section 3 provides the experimental re-
sults and Section 4 summarizes the conclusions.

2. Methods
In this section, we first introduce the total variability i-vectors in
section 2.1 and then present the details of our proposed sparse
representation modeling in section 2.2. Finally, the description
of our proposed sparse representation system with Tnorm score
normalization is provided in section 2.3.

2.1. Total variability i-vectors and baseline modeling

In the total variability space, there is no distinction between the
speaker effects and the channel effects. Rather than using the
eigenvoice matrix V and the eigenchannel matrix U [1], the to-
tal variability space contains the speaker and channel variabil-
ities simultaneously [4]. Given an utterance, the speaker and
channel dependent GMM mean supervector can be written as
follows:

M = m+ Tw, (1)
where m is the UBM mean supervector, T is a rectangular total
variability matrix of low rank and w is the so-called i-vector
[4]. Considering a C-components GMM and F dimensional
acoustic features, the total variability matrix T is a CF × L
matrix which can be estimated the same way as learning the
eigenvoice matrix V in [10] except that here we consider every
utterance is produced by a new speaker [4].

In this total variability space, two channel compensa-
tion methods, namely Within Class Covariance Normalization
(WCCN) [5] and Linear Discriminant Analysis (LDA) are ap-
plied to reduce the variabilities. WCCN uses the inverse of
the within-class covariance to normalize the cosine kernel while
LDA attempts to transform the axes to minimize the intra-class
variance due to the channel effects and maximize the variance
between speakers. After WCCN and LDA steps, SVMs with co-
sine kernel or cosine distance scoring is used for i-vector mod-
eling. The cosine kernel between two i-vectors w1 and w2 is
defined as follows:

k(w1,w2) =
< w1,w2 >
�w1�2�w2�2

(2)

These two systems serve as our baseline systems.

2.2. Sparse representation for modeling

Given N1 (N1 = 1 in our case because only one recording for
each target speaker and one target speaker per trial) target train-
ing samples A1 and N2 non-target background training sam-
ples A2 , we construct the over-complete dictionary A:

A = [A1A2] = [s11, s12, · · · , s1N1 , s21, s22, · · · , s2N2 ].
(3)

Each sample sij is an L dimensional i-vector and is normal-
ized to unit l2 norm. This matches the length normalization in
the SVM cosine kernel. Throughout the entire testing progress,

the background samples A2 are fixed; and only the target sam-
ples A1 are replaced according to the claimed target identity in
the test trial. Let us denote N = N1 + N2, then N1 � N2

and L < N need to be satisfied for sparse representation. In
our case, the dimensionality L of the i-vectors is significantly
smaller than the number of training samples N . For any test
sample y ∈ RL with unit l2 norm, we want to use the over-
complete dictionary A to linearly represent y in a sparse way.
If y is from the target, then y will approximately lie in the linear
span of training samples in A1 [9]. Since the equality constraint
Ax = y is not robust against large session variabilities [9], we
constrain the Euclidian distance between the test sample and
the linear combination of training samples to be smaller than �
which resulted in a standard convex optimization problem (l1-
minimization with quadratic constraints):

Problem A : min�x�1 subject to�Ax− y�2 ≤ � (4)

Since N1 = 1 in our case, for each sample in the over-complete
dictionary i, (i = 1, · · · , N ), let δi : RN → RN be the char-
acteristic function which selects the coefficient only associated
with the ith sample. For x ∈ RN , δ1(x) ∈ RN is a new vector
whose nonzero entries are the only entries in the first element
of x. Now based on the sparse representation x, in addition
to the l1 norm ratio and l2 residual ratio introduced in [8], we
propose the new Background Normalized (BNorm) l2 residual
criterion for verification purposes. It uses the scores from the
background data to perform a kind of Tnorm on the target score.
Given a solved sparse representation, we can also consider ev-
ery background sample as the target sample and calculate its
minus l2 residual as a similarity score. Without any additional
sparse representation computation, just by rotating the role of
each sample in this over-complete dictionary, we can instantly
generate the similarity measure scores (φ) for all the samples.

l1norm ratio = �δ1(x)�1/�x�1 (5)

l2residual ratio =
�y −A(ΣN

i=2δi(x))�2
�y −Aδ1(x)�2

(6)

Bnorm l2residual =
−�y −Aδ1(x)�2 −mean(φ)

std(φ)

φj,j=2:N = −�y −Aδj(x)�2 (7)

A larger score represents a higher likelihood for the testing sam-
ple being from the target subject.

Due to large session variabilities, the test sample y can be
partially corrupted. Thus an error vector e is introduced to ex-
plain the variability [9]:

y = y0 + e = Ax0 + e (8)

So the original optimization problem takes the following form:

Problem B : min�z�1 subject to�Bz − y�2 ≤ � (9)

B = [A I] ∈ RL×(N+L), z = [xt et]t ∈ R(N+L) (10)

If the error vector e is sparse and has no more than (L+N1)/2
nonzero entries, the new sparse solution z is the true genera-
tor according to (8) [9]. Finally, we redefine the three decision
criteria based on the new sparse solution ẑ = [x̂t êt]t.
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Figure 1: The sparse solution of a true trial with problem B (9)
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Figure 2: The sparse solution of a false trial with problem B (9)

Table 1: The two configurations (S1 and S2) and the corre-
sponding complexity of sparse representation with Tnorm.

Trail Score Tnorm Score (N3 samples) SR
A1 A2 A1 A2 Times

S1 Target Background ith Tnorm Background 1+N3

S2 Target Tnorm None None 1

l1norm ratio = �δ1(x̂)�1/�x̂�1 (11)

l2residual ratio =
�y − ê−A(ΣN

i=2δi(x̂))�2
�y − ê−Aδ1(x̂)�2

(12)

Bnorml2residual =
−�y − ê−Aδ1(x̂)�2 −mean(φ)

std(φ)

φj,j=2:N = −�y − ê−Aδj(x̂)�2 (13)

Fig.1 and 2 demonstrate the sparse solutions of two trials in the
evaluation using problem B (9) before Tnorm.

2.3. Sparse representation with Tnorm

Test normalization (Tnorm) is an important technique for nor-
malizing the variance of the testing score based on a set of co-
hort models and hence is widely adopted in verification tasks.
Calculating the similarity scores between the testing sample and
all the cohort models can be computationally expensive for the
sparse representation system. Thus, as shown in Table 1, we
propose a new setup for the sparse representation system to ef-
ficiently perform Tnorm score normalization. Compared to the
straightforward configuration S1, the new setting S2 only re-
quires a single sparse representation calculation which reduces
the computational complexity significantly. In the configura-
tion S2, we directly employ the Tnorm data as the non-target

Table 2: Corpora used to estimate the UBM, total variability
matrix (T ), WCCN, LDA ,SVM imposter and the Tnorm data.

Switchboard NIST04 NIST05 NIST06
UBM

√

T
√ √ √ √

WCCN
√ √ √

LDA
√ √ √

SVM-Imposter
√ √

Tnorm
√

background samples in the over-complete dictionary and use
the score distribution of the Tnorm data to normalize the target
sample’s score using eq (13). Note that in problem B setting, the
number of samples in the over-complete dictionary (L+1+N3)
is always bigger than the i-vector dimensionality L. Therefore,
the condition of sparse representation is still satisfied.

3. Experimental results
3.1. Corpus and i-vector generation

We performed experiments on the NIST 2008 speaker recog-
nition evaluation (SRE) corpus [11]. Our focus is the single-
side 1 conversation train, single-side 1 conversation test, and
the multi-language handheld telephone task, which is one part
of the core test condition. This setup resulted in 3832 true tri-
als and 33218 false trials. We used equal error rate (EER) and
the minimum decision cost value (minDCF) as the metrics for
evaluation [11].

For cepstral feature extraction, a 25ms Hamming window
with 10ms shifts was adopted. Each utterance was converted
into a sequence of 36-dimensional feature vectors, each con-
sisting of 18 MFCC coefficients and their first derivatives. An
energy-based speech detector was applied to discard low-energy
frames. Feature warping is applied to mitigate channel effects.

The training data included Switchboard II part2 and part3,
Switchboard Cellular, NIST SRE 2004, 2005, and 2006 cor-
pora. The description of the dataset used in each step is pro-
vided in Table 2. The gender-dependent GMM UBMs consist of
1024 mixture components, which were trained using EM with
the data from NIST SRE 04 corpus. The background data was
the same as UBM. We used all of the training data for estimat-
ing the total variability space. The NIST SRE 2004, 2005 and
2006 datasets were used for training WCCN and the the LDA
matrix, and a data set chosen from NIST SRE 2006 corpus was
used for Tnorm score normalization, including 367 male utter-
ances and 340 female utterances. The SVMLight toolkit [12]
was used for SVM modeling.

3.2. Results and discussion

The performance of sparse representation using S1 configura-
tion and problem B setting with different score measuring cri-
teria is shown in Table 3 and Table 4. It is demonstrated in [8]
that l1 norm ratio is better than l2 residual ratio for verification
tasks. This matches with our experimental results here. Fur-
thermore, the proposed BNorm l2 residual criterion achieved
the best performance among all three score measurement with
0.0226 and 0.0293 minDCF value after Tnorm for the male and
female tasks, respectively. It is shown in both Table 5 and Ta-
ble 6 that S1 configuration based sparse representation system
performed better than the S2 configuration in terms of minDCF
value. This might be because in S2 setting, each Tnorm tar-
get sample was not scored on test sample independently and the



Table 3: Performance of the sparse representation system on the
Male part of the NIST 08 test with configuration S1.

System Without Tnorm With Tnorm
EER minDCF EER minDCF

l1 norm ratio 5.68% 0.0243 5.13% 0.0235
l2 residual ratio 6.25% 0.0247 5.13% 0.0240

Bnorm -(l2 residual) 5.35% 0.0236 4.94% 0.0226

Table 4: Performance of the sparse representation system on the
Female part of the NIST 08 test with configuration S1.

System Without Tnorm With Tnorm
EER minDCF EER minDCF

l1 norm ratio 7.21% 0.0327 6.95% 0.0317
l2 residual ratio 7.26% 0.0325 6.86% 0.0307

Bnorm -(l2 residual) 6.76% 0.0310 6.19% 0.0293

Tnorm set is smaller than the background data set. However, the
S2 setting is significantly more efficient. Moreover, by fusing
the sparse representation systems with the SVM and CDS base-
lines, the S2 based system demonstrates superior performance
over S1 setting in terms of EER for both male and female tasks.

In Table 5, we see a significant improvement was achieved
by fusing the proposed S2 sparse representation system with ei-
ther the SVM baseline or the CDS baseline in terms of minDCF
value. The fusion system (ID 8) achieved the best result on
male task with 4.05% EER and 0.0204 minDCF value. Sim-
ilar results are demonstrated in Table 6 for female data task.
The minDCF value of the cosine distance baseline system was
improved from 0.0302 to 0.0272 by the fusion with the sparse
representation system (fusion system ID 9). The overall system
performance was improved to 5.25% EER and 0.0262 minDCF
value by the fusion system ID 8.

It is shown in Table 5 and 6 that, after T-norm, sparse rep-
resentation did not achieve superior performance compared to
SVM or CDS baseline in terms of single system performance
in this task. This might be because only one enrollment (posi-
tive) sample in the over-complete dictionary. Furthermore, we
can see that the improvements of Tnorm score normalization on
sparse representing systems are less significant than the SVM
and CDS baselines. It might be due to the fact that score distri-
bution being not gaussian (majority of the l1 norm ratio scores
concentrate on 0 value), suggesting that we need to investigate
other distribution based score normalization. Future work also
includes investigating the usage of sparse representation on the
language identification task and the potential way to represent
the speaker/language/channel information in the sparse manner.

4. Conclusions
A robust speaker verification approach using a sparse represen-
tation on the total variability i-vectors is proposed. The main
contributions are as follows. First, we propose the background
normalized l2 residual as a score measuring criterion. Second,
we demonstrate that the Tnorm can be efficiently achieved by
using the Tnorm data as the non-target samples in the over-
complete dictionary. Finally, by fusing with the conventional
i-vector based SVM system and cosine similarity system, we
show that the overall system performance is improved, and
achieves state of the art results. Future work includes investi-
gating the non-gaussian distribution based score normalization
and the usage of sparse representation for the language identifi-
cation task and information representation in the sparse manner.

Table 5: Performance on the Male part of the NIST 08 test
ID System Without Tnorm With Tnorm

EER minDCF EER minDCF
1 SVM-base 4.75% 0.0231 4.36% 0.0216
2 CDS-base 4.76% 0.0256 4.43% 0.0221
3 SR S1 5.35% 0.0236 4.94% 0.0226
4 SR S2 4.82% 0.0235
6 Fusion1+3 4.18% 0.0202
7 Fusion2+3 4.30% 0.0205
8 Fusion1+4 4.05% 0.0204
9 Fusion2+4 4.22% 0.0204

Table 6: Performance on the Female part of the NIST 08 test
ID System Without Tnorm With Tnorm

EER minDCF EER minDCF
1 SVM-base 5.86% 0.0278 5.52% 0.0268
2 CDS-base 6.87% 0.0326 5.93% 0.0302
3 SR S1 6.76% 0.0310 6.19% 0.0293
4 SR S2 6.40% 0.0314
6 Fusion1+3 5.40% 0.0263
7 Fusion2+3 5.55% 0.0272
8 Fusion1+4 5.25% 0.0262
9 Fusion2+4 5.53% 0.0272

5. References
[1] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint

factor analysis versus eigenchannels in speaker recognition,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 4, pp. 1435–1447, 2007.

[2] P. Kenny, G. Boulianne, P. Dumouchel, and P. Ouellet, “Speaker
and Session Variability in GMM-Based Speaker Verification,”
IEEE Transactions on Audio, Speech and Language Processing,
vol. 15, no. 4, pp. 1448–1460, 2007.

[3] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A
study of interspeaker variability in speaker verification,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 16,
no. 5, pp. 980–988, 2008.

[4] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, no. 99, pp.
1–1, 2010.

[5] A. Hatch, S. Kajarekar, and A. Stolcke, “Within-class covariance
normalization for SVM-based speaker recognition,” in Proc. In-
terspeech, vol. 4, no. 2.2, 2006.

[6] W. Campbell, D. Sturim, D. Reynolds, and A. Solomonoff, “SVM
based speaker verification using a GMM supervector kernel and
NAP variability compensation,” in Proc. ICASSP, vol. 1, 2006,
pp. 97–100.

[7] I. Naseem, R. Togneri, and M. Bennamoun, “Sparse Representa-
tion for Speaker Identification,” in Proc. ICPR, 2010, p. 4460.

[8] M. Li and S. Narayanan, “Robust talking face video verification
using joint factor analysis and sparse representation on GMM
mean shifted supervectors,” in Proc. ICASSP, 2011, paper avail-
able at http://www-scf.usc.edu/ mingli/publication.htm.

[9] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal
Mach Intell, vol. 31, no. 2, pp. 210–227, 2008.

[10] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling
with sparse training data,” Speech and Audio Processing, IEEE
Transactions on, vol. 13, no. 3, pp. 345–354, 2005.

[11] “The NIST Year 2008 Speaker Recognition Evaluation Plan,”
http://www.nist.gov/speech/tests/spk/2008/index.html, 2008.

[12] T. Joachims, “SVMLight: Support Vector Machine,” SVM-Light
Support Vector Machine http://svmlight. joachims. org/, Univer-
sity of Dortmund, 1999.


