
J. Vis. Commun. Image R. 21 (2010) 200–209
Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i
Technologies and the development of the Automated Metadata Indexing
and Analysis (AMIA) system

Pei-Ying Chiang a,*, May-chen Kuo a, Jessy Lee a, C.-C. Jay Kuo a, Todd Richmond b, Milton Rosenberg b,
Jeff Lund b, Kip Haynes b, Lindsay Armstrong b

a Ming Hsieh Department of Electrical Engineering and Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2546, USA
b USC Institute for Creative Technologies, Marina Del Rey, CA 90292, USA

a r t i c l e i n f o
Article history:
Received 10 February 2009
Accepted 1 December 2009
Available online 21 December 2009

Keywords:
Text-based indexing
Multimedia search engine
Content-based retrieval
Multimedia databases
DAM
Digital asset management
Metadata extraction
Word segmentation
1047-3203/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jvcir.2009.12.001

* Corresponding author.
E-mail address: peiyingc@usc.edu (P.-Y. Chiang).
a b s t r a c t

The Automated Metadata Indexing and Analysis (AMIA) project aims to provide an effective digital asset
management (DAM) tool for large digital asset databases. We began with text-based indexing since it is
still the most reliable approach as compared with other content-based media features. AMIA not only
searches for the text of the file name, but also utilizes embedded information such as the metadata in
Maya files. The AMIA system builds a linked map between all dependency files. We present an approach
of preserving previously established metadata created by the old DAM tools, such as AlienBrain, and inte-
grating them into the new system. Findings indicate that AMIA has significantly improved search perfor-
mance comparing to previous DAM tools. Finally, the ongoing and future work in the AMIA project is
described.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Digital media has advanced rapidly in recent years. Due to the
demand for digital assets from various industries (e.g., education,
entertainment, manufacturing), digital files are being created daily
and continue to grow in order of magnitude. Because of rapid file
creation and editing, there are increased demands on systems to
store and retrieve such files. Users benefit tremendously from
effective reuse of existing resources.

The University of Southern California (USC) Institute for Crea-
tive Technologies (ICT) [1] currently holds over 400,000 files, rang-
ing from simple photographs to complex Maya scene files with a
multitude of referenced textures. Examples of typical assets used
in current ICT projects are shown in Fig. 1. It is important to be able
to set-up a customizable search system in order to quickly and
accurately locate an asset, such as a prop that was stored in the ar-
chive the previous year. Props, characters, animation sequences,
textures and other digital files are all housed in a central server,
along with back-up copies. Since a large simulation can typically
hold upwards of hundreds of characters, the ICT needed to discrim-
inate between many different fields to determine the correct char-
acter, vehicle, or other file to be used or manipulated. Differences
ll rights reserved.
in characters’ gender, ethnicity, job status, and other classifiable
attributes, would all need to be searchable.

The ICT demands a Digital Asset Management (DAM) system
that would utilize a structured database for effectively searching
within a large repository of digital assets while meeting certain
security requirements. This DAM system would also need a simple
user interface to integrate into the ICT’s gaming-studio style pro-
duction pipeline. With increasingly complex DAM systems com-
mercially available, the standard is constantly being revised. This,
coupled with the ICT’s unique needs for management software,
meant that not only would the DAM systems differ greatly from
one another, but that no single system would prove to be a perfect
solution without custom modifications. An accurate and efficient
method to index and retrieve these digital assets became a primary
challenge.

Automated Metadata Indexing and Analysis (AMIA) is an ongo-
ing project that includes a multimedia indexing/search system,
such as ‘‘2D image/3D mesh retrieval”, for a large art asset data-
base. We began with text-based indexing, since it is still the most
reliable approach compared to other content-based media fea-
tures. We have made several contributions along this line. First,
AMIA not only searches for the text of the file name, but also uti-
lizes the embedded information, such as the metadata preserved
in Maya files. The AMIA system builds a linked map among all
dependency files. Second, we present a practical approach that

http://dx.doi.org/10.1016/j.jvcir.2009.12.001
mailto:peiyingc@usc.edu
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci

Fig. 1. Digital assets developed by the ICT.

P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209 201
preserves established metadata from the existing DAM system
(e.g., AlienBrain) and integrates them into our proposed DAM sys-
tem. Third, most Digital Asset Management (DAM) systems require
human input to provide metadata manually, which is not practical
for a large database system. Automatic metadata extraction is
essential to the management of a real-world database system. This
practical issue is, however, rarely discussed in the literature.
Fourth, it has been demonstrated that the AMIA system’s search
performance is significantly improved.

The field of digital content management has developed rapidly
in the last 15 years and has reached a certain level of maturity.
Many traditional academic papers focus on a small test data set;
therefore, they do not address the practical issues as described in
our work. However, there is growing interest in the management
of large multimedia databases, since the properties of large dat-
abases may not be well reflected by those of small databases.
Our current work is a part of this new research trend. Here, we at-
tempt to share our experience and provide a detailed approach to
managing a large database by developing its indexing and search
system. This experience will be valuable to engineers and research-
ers who would like to design a practical management system for a
large multimedia database.

This paper consists of three parts. The first part, including Sec-
tions 1 and 2, provides an overview on the AMIA project. The sec-
ond part discusses text-based indexing and search in Section 3. The
third part, including Sections 4 and 5, outlines ongoing and future
research and development for the AMIA project.

2. Overview of the AMIA project

The AMIA project is being developing under an ICT contract
managed by the United States Army Research, Development, and
Engineering Command (RDECOM) Simulation and Training Tech-
nology Center (STTC).

In order to maximize the ICT’s research and development efforts
in game-based training and learning systems, various underlying
technologies have been employed. While this approach has proven
beneficial for individual projects, it has resulted in a myriad of file
formats and versions for the corpus of required digital assets. The
sheer number of files and diversity of applications involved creates
a massive asset management challenge. In response to this need,
the AMIA effort was tasked with designing a set of creative asset
development standards and tools, along with a repository of visual
and audio assets.

2.1. Project goal

Having conducted a decade of immersion research develop-
ment, the ICT has now developed 11 projects, creating a wealth
of raw art assets (e.g., images, audio, video, 3D models, etc.) with
inconsistent data management standards. Without an effective
digital asset management system, these valuable resources are dif-
ficult to find and retrieve. The ICT requires a great number of art
assets to create an immersive environment, and the amount of dig-
ital assets for any particular project will grow as the project devel-
ops. Therefore, it is important to provide guidelines, processes,
tools and support to ensure that future art assets will be reusable.
The AMIA project aims to develop a system capable of automati-
cally indexing existing multimedia databases for faster, efficient
retrieval. This system could also benefit users searching for
relevant assets for use in other applications. The research vectors
will concentrate on a specific set of deliverables. The first set of
deliverables concern outlining a method of approach and possible
software solutions (which could include computer scripts, data-
base query strings, applications, databases, etc.) focused on one
or more of the following capabilities:

I. Automatically extracting metadata.
II. Adding metadata to existing assets and repositories.

III. Automatically adding metadata as new assets are created.
IV. Organizing assets based on metadata.

The goals are to make current assets more accessible and to en-
sure that current and future assets have a higher degree of reus-
ability and organization. While any software solution will
initially target the existing database repositories, it will also be de-
signed with regard to portability and applicability in other sys-
tems. The second set of deliverables are reports that focus on the
current landscape of image and file analysis, along with various
pertinent research topics in the areas of metadata and digital asset
management and organization. In addition, there will be an effort
to take a multidisciplinary approach towards extending and
expanding current metadata standards relating to visual and ani-
mation assets.

2.2. Project resources

The ICT creates necessary 2D, 3D, and audio software applica-
tion files from military data. The ICT currently holds over
400,000 assets, including 3D scenes, 2D images, audio, video and
game engine exports. These types of assets include props (e.g.,
buildings, vehicles, weapons), characters (e.g., human models, rigs,
animations), environments (e.g., level layouts, skies, backgrounds)
and respective reference materials and textures. These raw 2D, 3D,
and audio files are the most useful and versatile files within the
Digital Backlot (DB).

To organize the large amount of digital assets, the ICT adopted
the commercial software AlienBrain [2] and Adobe Bridge [3] as
DAM tools. Parts of the assets have been manually linked to asso-
ciated metadata with AlienBrain and Adobe Bridge. These metada-
ta, which describe the attributes of these digital assets, are
valuable to preserve for indexing. In addition to the metadata edi-
ted with DAM tools, there are other useful text-based attributes of
assets embedded in various ways.

The following list shows the resources that contribute to AMIA’s
text-based indexing process:

I. AlienBrain metadata
The metadata that had been manually edited with Alien-
Brain was stored in the metadata files, separate from the

Multimedia
Repository

Multimedia Files Indexer

File Distributor

mayaList

Tag Auto-Populator

Maya Parser

Mel Script

Maya Tag
Extractor

melOut

mayaResult

AlienBrain Parser

AlienBrain
Tag

Extractor

ABResult

Filename Parser

Naming
Convention

Veri er

Filename
Tag

Extractor

FNResult

amdList lesList

202 P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209
assets. All metadata associated with the assets was stored
under the same root directory and was written into a single
‘‘.amd” file. The metadata may indicate the file type, such as
2D, 3D, the file attributes such as texture, and the security
label, such as ‘‘inherited_legal_academic_use.”

II. Maya embedded metadata
In a Maya file, some useful descriptions, such as the object
name (e.g., ‘‘student,” ‘‘wheel,” ‘‘ankle”), or object attributes,
were written as notes by the artist or automatically gener-
ated by the software. Maya objects may also be animated.
For these objects, metadata can be extracted from the
embedded metadata with our MEL scripts running on Maya.

III. Adobe Bridge metadata
The metadata previously edited at the ICT with Adobe Bridge
was embedded in the file itself. Some useful file attributes are
preserved along with the digital assets in Adobe Bridge
format.

IV. Filename follows naming convention
The ICT has set a standard naming convention to allow better
organization and sharing of assets. This naming convention
defines the file name format to describe a file and a list of
abbreviation to shorten the length. For example, the file name
‘‘ChrUsaCivTeenM Skater001 mesh.ma” can be parsed to the
tags: ‘‘Character,” ‘‘USA,” ‘‘Civilian,” ‘‘Teenager,” ‘‘Male,”
‘‘skater,” and ‘‘mesh.” Thus, all file names that follow the nam-
ing convention can be interpreted for further indexing.
Apache Lucene
Query Interface

Apache Lucene
Indexer

Indexed Data

Fig. 2. Flowchart: Overall system design.
2.3. System framework

The current system, we implement, is composed of two main
programs: an indexer that re-organizes the multimedia assets in
the designated folder, and a search interface that allows users to
retrieve the assets they need. The overall system diagram is pre-
sented in Fig. 2. The indexer contains three parsers to process the
multimedia assets, along with other related management files, to
populate relevant tags to associate with each asset.

The file distributor first went through the repository and as-
signed the .amd file and the Maya file to the AlienBrain parser
and Maya parser accordingly. Concurrently, each file name was as-
signed and interpreted by the filename parser as well. For example,
for an asset depicting a US Army scene, related reference terms,
such as ‘‘male,” ‘‘solider,” ‘‘USA,” ‘‘tank,” ‘‘Army,” and so on, will
be populated as tags associated with this asset. More implementa-
tion detail is described in Section 3.

The search interface allows users to type in keywords and re-
trieves the assets containing tags matching those keyword(s).
Apache Lucene [4] is used as the backbone of the search engine.
A Java program reads a list of tags and their associated files from
the Tag Auto-Populator module. Then, the data are entered into
the Apache Lucene engine for indexing. The more keywords an as-
set fits, the higher rank it will be assigned in the search result. The
web interface in Fig. 3 is implemented with PHP. Other program-
ming languages can be used to implement the search interface in
the future.
2.4. System requirement

Except for the MEL script, all the functionalities of the indexer
are written in Java. Therefore, running the indexer requires JDK
1.6.0 and Maya 7.0 (or higher) installed on the operating system.
On the other hand, the AMIA interface works like Google Search.
The system only requires a web-browser to operate the interface.
However, the server designated to provide this search service re-
quires the installation of ApacheWeb Server v2.2.4, JDK 1.6.0, and
PHP v5.2.3 or higher.
2.5. System performance

Security concerns restrict the use of some data; therefore, not
all of the assets are available for testing. Table 1 shows the pro-
cessing time for testing the data. Most of the processes in our sys-
tem can be conducted within one to 2 min, except for programs
written with MEL script. In order to extract the metadata embed-
ded in Maya files, the program must operate Maya. Thus, process-
ing time is based on Maya’s performance. Although this process is
time-consuming, it is complemented offline and will not affect
online search performance. The current search process takes less
than 1 s.
3. Text-based indexing and retrieval

Automating multimedia file tagging is a challenging task that
warrants further study. Current techniques that search for images,
videos, or audio, rely primarily on any textual information associ-
ated with the media. Such an approach often relies on human
interaction to provide textual annotations to facilitate media re-
trieval. Therefore, a more intelligent methodology for extracting
information associated with multimedia files, as well as a method-
ology for storing these files in a well-organized textual search
framework, is desirable. In this section, we first give a brief survey
of text-based information retrieval. Secondly, we will to discuss the

Fig. 3. Screenshot of the AMIA search interface.

Table 1
System performance.

Process Time

Open and extract metadata in Maya files with
MEL script – 1352 Maya files

30 min

Parse MEL output metadata into tags – 1352 metadata files 66 s
Parse filenames and paths into tags – 15,928 filenames 0.5 s
Parse AlienBrain metadata files into tags – seven amd files 15 s
Insert tags into Lucene – generate 14.7 MB of data 42 s
Search – within 15,928 assets 0.1 s

P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209 203
current progress of the AMIA project, including the implementa-
tion details and issues that we have encountered.

3.1. Survey of information retrieval

The study of text-based information retrieval inherently has a
longer history than other types of media. Foundational texts
[5–7] established the groundwork in information retrieval and
continue to inspire future research. In addition to these works, sev-
eral survey papers [8,9] also provide extensive reviews of the field.
Text-based information retrieval study can be divided into four
areas: indexing, clustering, storage, and search.
3.1.1. Indexing
Indexing parses through a collection of data and extracts infor-

mation for searching. In the earlier days of organizing information
for retrieval, human interactions were necessary in order to cate-
gorize information. Web-based search engines such as Yahoo!
(http://www.yahoo.com), Excite (http://www.excite.com), and Ly-
cos (http://www.lycos.com) provided submission forms for web
administrators to submit entries for indexing. These submissions
were sometimes unprocessed or delayed due to the limitations of
manual processing.

Manual indexing is not a practical solution because the
amount of data that needs to be indexed often grows rapidly

http://www.yahoo.com
http://www.excite.com
http://www.lycos.com

204 P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209
within a short period of time. In addition, the method is more er-
ror-prone and inconsistent due to differences in the indexers’
methods of listing a document [10]. Such limitations drive the
need to research intelligent methods of automatically classifying
text data [8,11–14]. Current web-based search engines utilize
web crawlers to automatically ‘‘crawl” through internet web
pages and index assorted content. These methods of gathering
information using web-based technologies are well documented
[15–18].
3.1.2. Clustering
After extracting texts from the collection of data, the informa-

tion needs to be organized into clusters so that data in the same
cluster will be returned together as relevant results. Organizing
texts into a data structure for search is a challenging task. In addi-
tion to returning results to search queries with exact document of
interest, listing similar documents is also a desirable task to further
enhance the search results. Various studies investigate the meth-
odology of clustering [19–23]. Clustering methods provide a top-
town approach that groups relevant documents and returns the
results together to the search query. Processing the clusters is
sometimes slow and may overlook some relevant results if the doc-
uments are placed in different clusters.

Rather than clustering documents with the exact same terms
together, an ontological approach takes an extra step to associate
related terms together [24–27]. Although ontology is able to group
more relevant documents together, the process is usually domain
specific.

Another approach is to store the documents by utilizing a list of
words, or tags. The list of words is extracted from the documents
and stored in an alphabetical order. Upon searching for a particular
text string, the keyword list is accessed directly and the associated
indicators to particular documents can be retrieved quickly [28–
31]. The studies of organizing the list of keywords includes B-trees,
or hashing [32,33].
3.1.3. Storage
There are two ways to store text data. The first method is to

provide a structured storage that adheres to a hierarchical sche-
ma. The second method is to preserve the text as one full-text
document. The nature of the structure refines the search range,
thus it is more efficient if the desired results exist in the refined
range. However, it is difficult to define the structure of the data-
base and to require the user to fully understand the structure in
order to pose the correct query. For example, ‘‘Army” can be cat-
egorized as a ‘‘profession,” a ‘‘character description,” or an ‘‘insti-
tution.” This method of categorization requires the user to have
sufficient knowledge of structure to perform a search (i.e., what
are the fields, and how are the structures applied). Although
users can employ complicated query commands to search for
‘‘Army” in all possibly related categories, this method signifi-
cantly diminishes search speed. In addition, most users do not
like to learn complicated query language to pose search
commands.

On the other hand, full-text search is more flexible. Full-text
storing methods usually contain far fewer fields. The search can
be programmed in a way that does not require specialized input
from the user. The search results can be ranked by their distance
from the query. The ‘‘distance,” or disparity between the logic of
the content creator and the person accessing the content, can be
adjusted to the needs of the users. This reflects the nature of data
management: it is difficult to constrain the manner in which users
employ tagging and data management, both as creators and con-
sumers of this information. As a result, full-text storage is more
inclusive [34].
3.1.4. Search
Lexical ambiguity is one of the fundamental problems in infor-

mation retrieval. Most indexers use a subset of the words con-
tained in the content to represent the asset, but ambiguity can
be an issue. The user is not as interested in retrieving files tagged
with an exact term, but in retrieving those containing words with
a similar meaning. For example, searching for the keyword ‘‘tank”
may indicate a tank vehicle, water tank, or a tank top. Retrieval
programs generally address these problems by expanding the
query words by related terms from a thesaurus. By using a sugges-
tion list of expanded queries, the user can identify what they are
looking for then target and retrieve the desired files. Chirita et al.
[35] propose a method to improve the inherent ambiguity of short
keyword queries by expanding them with terms collected from
each user’s Personal Information Repository, thus implicitly
personalizing the search output. They introduced five broad tech-
niques for generating the additional query keywords by analyzing
user data, and discussed factors, which help to add a flexible num-
ber of keywords to the user query.

Another approach to expand the search terms is the use of
ontology [36]. This technique looks up terms associated with the
search query and generates additional search terms to look for
other relevant search results. The approach is limited to domain
specific grouping of terms, which might only provide useful search
results in constrained contexts. In addition, multilingual text
search is another area that warrants further study. Although some
literature has been published on the subject [37–40]; this approach
cross-references documents written in different languages and
organizing the data structure remain challenging.

3.1.5. Practical systems
The most widely adopted application for text-based indexing

and retrieval are web-based search engines. Prominent commercial
services include Google (http://www.google.com), Yahoo! (http://
www.yahoo.com) and Ask.com (http://www.ask.com). These
applications utilize full-text search to index and store parsed tex-
tual information from web crawler technologies. Web documents
are organized as inverted keyword lists, which provide faster
search performance upon information retrieval. An open source
project, Apache Lucene (http://lucene.apache.org), provides similar
implementations to the commercial search engines to software
developers.

In addition to indexing general documents from the World
Wide Web, specialized search engines are also available for domain
specific information retrieval. Chemindustry.com (http://
www.chemindustry.com) hosts a search engine for chemical re-
lated searches. GovEngine.com (http://www.govengine.com/) lists
United States federal, state and local government and court sites.
Lastly, Search Engine Guide (http://www.searchengineguide.com)
and CustomSearchEngine.com are services that provide searching
on specialized search engines.

3.2. Implementation detail: three modules of our text-based indexer

As shown in Fig. 2, the indexer is composed of three modules:
File Distributor, Tag Auto-Populate and Apache Lucene Indexer.
We will describe the implementation issues and details of each
module.

3.2.1. File distributor
To preserve the metadata previously stored in Maya and Alien-

Brain files, we wrote two different parsers to process these files
according to their file formats. Within the multimedia repository,
Maya and AlienBrain files are handled separately from other types
of files. Thus, three lists will be generated from this module and
then distributed to different parsers in the module to populate

http://www.google.com
http://www.yahoo.com
http://www.yahoo.com
http://www.ask.com
http://lucene.apache.org
http://www.chemindustry.com
http://www.chemindustry.com
http://www.govengine.com/
http://www.searchengineguide.com

P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209 205
tags. The three lists are made automatically and stored in allMaya-
Files.txt, allAmdFiles.txt, and allFiles.txt by default configuration.

3.2.2. Tag Auto-Populator
This module is composed of three parsers, which manage the

three lists generated by the file distributor, respectively. The three
parsers process every file separate and respective lists and gener-
ate tags associated with the file. The following is the detail of these
three parsers, including filename parser, Maya parser and Alien-
Brain parser:

3.2.3. Filename parser
This parser is composed of three modules: Naming Convention

Verifier, String Segmentor and File Type Identifier.

I. Naming Convention Verifier
If the filename follows the naming convention, correspond-
ing word expansion, such as ‘‘Chr” to ‘‘character,” ‘‘C” to
‘‘Child” will be performed. In the mean while, a file name
such as ‘‘C_1.jpg” cannot be interpreted as ‘‘child” because
the letter ‘‘C” might be named randomly without meaning.
Thus, we need a verifier to check whether a file name prop-
erly follows the ICT’s naming convention before interpreting
keywords. Table 2. exemplifies this naming convention, as
well as the tags the associated tags interpreted from the file
name.

II. String Segmentor
Although most filenames created years ago do not follow the
naming convention, those filenames were named with
meaningful words. These words were concatenated with
delimiters or uppercase letter as a filename (e.g., anderson-
headMolly_white2.tif). The String Segmentator processes
each filename and separates the concatenated words into
several tags for further indexing. The delimiters including
symbols (such as ‘‘_”, ‘‘-”, ‘‘/”, and white space), uppercase
letters, and numbers were pre-defined for segmenting
words. For example, ‘‘andersonheadMolly_white2.tif” is
divided to ‘‘anderson,” ‘‘head,” ‘‘Molly,” ‘‘white2” and
‘‘white.” Words with numbers and consecutive uppercase
letters are treated differently because some meaningful
words contain numbers such as ‘‘AK47” or capitalized abbre-
viations such as ‘‘USA,” ‘‘RGB,” should remain the intact.Fur-
thermore, The directory names are also segmented and
output as tags since they are meaningful. For example, a
3D female model named ‘‘Amy.ma” under the ‘‘CharacterHu-
man” directory will be considered as a human character. In
addition, to avoid redundant tags, some common tags, such
as the name of the root directory, are discarded since all of
the files are under the same directory.There were various
issues that we encountered when implementing the String
Segmentator, which are outline in further detail in Section
3.3.1.

III. File Type Identifier
Most multimedia assets can be identified as such by their file
extension. Therefore, we wrote a File Type Identifier to gen-
erate tags based on the file extension. For example, assign
Table 2
A filename that follows the naming convention and the translated tags associated
with that file.

filename ChrUsaInfantryAdultM_Star001_Mesh.ma

Class Character
SubClass Usa, Infantry, Adult, Male
Descriptor Star001
Process Mesh
File type ma
the tag ‘‘2D” to the file type.jpg, .bmp, .tga, and assign a
tag ‘‘3D” to the file type.ma, .mb, .nif and assign a tag ‘‘ani-
mation” to the file type.kfm, .kf.
3.2.4. Maya parser
The Maya parser includes a MEL script and a keyword filter. The

MEL script running within a Maya environment is written to trans-
fer all of the embedded metadata of the Maya file to a separated
text file (here referred to as MelOut file). The parser is interested
in extracting all information concerning animation, character, skel-
eton, LOD, light, dynamics, and textures that may be embedded.
For example, a MEL script is written to check whether the Maya file
can be animated. A word ‘‘animated” outputs into MelOut as a key-
word for an animation-enabled Maya file. In addition, the file-
names of the reference textures have to be extracted and
preserved as one of the tags so that the reference will not be lost.
Furthermore, we observed that the filenames of the reference tex-
tures, such as ‘‘sky.jpg,” may provide useful information about the
content of the Maya file. Thus, the tags extracted from the filename
of the reference texture by the filename parser are also saved.

Except for the predefined keywords extracted by the MEL script,
there are other useful metadata and countless redundant data that
output to the MelOut file as well. Therefore, a keyword filter is re-
quired to discard the redundant data. The keywords are catego-
rized as keyword sets, non-keyword sets, and unknown-word
sets. The keyword sets contain meaningful words such as ‘‘female,”
‘‘student,” ‘‘skeleton,” and ‘‘animated.” The non-keyword set con-
tains useless words or words that are too common to have rele-
vancy (e.g., ‘‘group,” ‘‘translate,” ‘‘scale,” ‘‘rotate,” ‘‘visibility,” ‘‘x,”
‘‘y,” and ‘‘z”) when parsing the metadata, the word matches within
the keyword set is preserved as a tag and the word matches within
the non-keyword set is discarded. All other words which do not
match any of keyword and non-keyword are classified as unknown
words.

One way to determine whether metadata are useful or redun-
dant is to employ statistical analysis. To do this, we parse all words
in the MelOut file and count the frequency that each word appears.
Table 3 shows parts of the word counts.

This statistical result was not directly used for classifying
whether a word belongs to the keyword or the non-keyword set.
Since the appearing frequency is not as relevant to managing files
in our project, we use this statistical result to handle words from
the highest to the lowest frequency within the countless extracted
words from all Maya files. For example, words ‘‘rotate,” ‘‘translate,”
‘‘scale,” have the highest appearing frequency so that they are han-
dled first. If these words are useless, we can get rid of numerous
redundant tags in our search system by classifying them to the
non-keyword set.

Defining keyword/non-keyword is subjective and application-
specific. The set of application specific keywords can be trained
from the assets generated from a certain application. The set of
general keywords can be further divided into user-oriented do-
main-specific groups. In the AMIA project, the database contains
a large amount of military scenes and keywords used to describe
models (such as ‘‘F16”, ‘‘AK47”, or ‘‘M1A1”). Note that the keyword
list for the AMIA project may not be suitable for other DAMs. How-
ever, the list may serve as a starting point, which can be enhanced
Table 3
Statistical analysis of examplary words.

Word Rotate Translate Scale x
Count 27,977 25,981 24,049 23,421

Word y z Gamebryo Student
Count 23,230 22,425 895 287

206 P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209
through user-interaction. Thus, we leave this field editable for the
system administrator, who will also allow flexibility, so that the
end-user may define what is important to them.

The unknown keyword list serves as a candidate list for key-
words. Currently, we preserve these unknown words as we would
preserve keywords. However, a tag scoring method can be used to
differentiate priorities between tags. The system can define the
importance of each term in the unknown keyword list to fit users’
interests. This tuning can be done manually or automatically. For
example, we can tune the importance based on the query fre-
quency of a term.

3.2.5. AlienBrain parser
The AlienBrain Parser is written to extract the keywords and

values that are stored in the AlienBrain metadata file (*.amd).
These .amd files can be exported from AlienBrain, and stored in
the format (Filename—Keyword—Value). Each line shows a pair
of keyword and its value referring to a certain file. A sample data
of the .amd file is shown in Fig. 4.

3.2.6. Apache Lucene indexer
The tags previously generated by the Tag Auto-Populator mod-

ule are sorted in XML format files. Then, a list of tags and their
associated files are extracted from these XML files and entered into
the Apache Lucene engine for indexing. We worked on the Apache
Lucene’s scoring algorithms to adjust the order of returned results.
In Apache’s default, to evaluate the score for document ‘‘D,” given
query ‘‘Q,” is in the following equation:

coordðQ ;DÞ
X

qi

ðtf ðqi;DÞidf ðqiÞboostðqiÞnormðqi;DÞÞ; ð1Þ

where Q ¼ q1; q2; . . ., each qi is a tag used in the query. Thus the five
factors are:

(A) coord(Q, D): The number of terms in the query that are found
in the document D.

(B) tf(qi, D): The square root of the occurrence of the tag qi in
document D.

(C) idf(qi): The inverse document frequency of ‘‘qi”. The greater
the amount of documents that contain the tag qi, the less
important the tag is deemed.

(D) boost(qi): A user option to emphasize a tag during the search.
The user can type in ‘‘female^2 teacher” as the query to
emphasize the tag ‘‘female.”

(E) norm(qi, D): The product of three boosting functions com-
puted upon adding the document into the database.

The three functions are:

(i) The importance of the document:
The importance of a document is user-dependent. For exam-
ple, Maya documents are of higher weight than Photoshop
documents if a user is targeting 3D assets. On the other
hand, if the user is interested in the 2D design, Photoshop
documents may be deemed more relevant. The importance
of a document is embedded information, which is defined
Fig. 4. Sample data in AlienBrain.amd files.
when it is added to the Apache Lucene index. The impor-
tance value can be tuned upon request. In our implementa-
tion, we gave the same importance value to every document.

(ii) The importance of each field in the document:
This is also user-dependent as the importance of the
document.

(iii) The inverse of the number of tokens in each field:
This will be discussed below in Item II.

The order takes five factors into consideration. Factors A and B
are applicable to our search. Factors D, E(i) and E(ii) are user op-
tions, and therefore are not applicable. However, the default set-
ting of C and E(iii) is not very suitable for searching for files
associated with the queried tags. We analyzed the effect of each
factor, and here we modify them to better suit our needs.

I Omitting the factor of the inverse document frequency of qi.
In the default setting of C, the default value of idfðqiÞ is:

idf ðqiÞ ¼ 1þ log
of documents

of documents containing qi þ 1

The more documents that contain the tag qi, the less impor-
tant qi will be. However, in our application, this falsely penal-
ized the upper class words such as ‘‘Characters,” ‘‘Props,” and
the tags that characterize file extensions (since they appears
in more documents). Therefore, this factor was removed from
the scoring evaluation process.

II Omitting the factor of the inverse of the number of tokens in
each field

In the default setting of E(iii), the inverse of the number of
tokens in each field falsely penalized the files that were associ-
ated with more tags. A Maya file containing a larger set of scenes
will have more tags than another Maya file containing a simple
object; however, the same tag in both files should be of equal
importance. For example, file_1, which contains 100 buildings,
will have more tags than file_2, which contains only 1 building.
The tag ‘‘building” will appear in both file_1 and file_2, and
should be equally important in both files. As a result, we
removed this factor in the scoring evaluation process.

In addition, we made two more modifications to the Apache de-
fault indexer to meet the project’s requirements. One modification
was merging the tags of duplicated files in the system. Because the
tags generated from three different parsers can indicate the same
file, the default indexer keeps the file separate, which may slow
down search performance and search accuracy. The other modifi-
cation is that we disabled the function that uses numbers as the
delimiters. Because numbers have meaning to our users, the user
may search for ‘‘student03” as opposed to using ‘‘student,” which
is differs from ‘‘student01.”

3.3. Implementation detail and issues of text-based parsers

Extracting useful tags from metadata and filenames was a labo-
rious process. One of the main efforts attempted to segment the
words properly, another was to use Word Regulation. Here we dis-
cuss more detail about the String Segmentation and the Word Reg-
ulation process.

3.3.1. String segmentation
To provide as much information about an asset as possible, the

digital assets were named with concatenated words, akin to the
metadata embedded in Maya files. The search engine cannot find
the words that are concatenated with others. For example, ‘‘Happy-
Feet” cannot be found by searching for ‘‘Happy” or ‘‘Feet” or will be

P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209 207
assigned a relative low rank. Thus, we developed a String Segmen-
tator to extract the keywords and save them separately as tags.

The segmentation mechanism is built upon the following four
principles:

a. Segment strings at delimiters: all symbols, uppercase letter,
and numbers.For example, segment ‘‘femaleChild_Low” to
‘‘female,” ‘‘child,” and ‘‘low.”

b. Ignore connective words such as ‘‘and,” ‘‘to,” ‘‘from,” and
‘‘or.”For example, ‘‘fromCourseProject” would only generate
tags ‘‘course” and ‘‘project.”

c. Special handling of uppercase letters.For example, preserve
the capitalized abbreviations ‘‘USA”, by not dividing the
characters into ‘‘U,” ‘‘S,” and ‘‘A.”

d. Special handling of numbers.For example, we generate tags
‘‘student” and ‘‘student003” from ‘‘student003.”

The first two principles are straightforward and do not require
special explanation. On the other hand, principles c and d are more
complicated. There will always be an exception that does not fit
the segmentation rules. The following sections discuss the prob-
lems encountered with the special handling of uppercase and
numerical values.

I. Special handling of uppercase letters
Because we use uppercase letters as the delimiters, prob-

lems occur with capitalized abbreviation (in this case, CAP-
String stands for the string of capitalized abbreviations).
We observed that there are different combinations of CAP-
String and regular words shown in the filename list. For
example, AFLow stands for two abbreviation ‘‘Adult,”
‘‘Female,” and a regular word, ‘‘Low.” IA06project stands
for IA, year 06, and project. Dividing words with upper case
letters will not work perfectly in all cases. Certain words or
terms can be identified (such as: ICT, VW, LOD, US, etc.).
These consecutive uppercase letters on the list are preserved
to be recognized as a word. However, there are still various
unrecognized words (such as FO, GB, ES) which are difficult
to parse.In addition, sometimes CAPStrings are followed by a
word that begins with a lower case letter, such as ICTproject
and USArmy. The correct cut is either cutting before or after
the last uppercase letter. For example, correct segmentation
for USArmy is before the last uppercase letter (A in this
example) to generate ‘‘US” and ‘‘Army”; however, the correct
segmentation for ICTproject is after the last uppercase letter
(p in this example) to generate ‘‘ICT” and ‘‘project.”Thus, we
applied a free Java-based Dictionary, API Suggester [41] to
check whether a segmented word is a valid word recognized
by the dictionary. In our implementation, we also added the
list of ICT-defined acronyms (such as: ICT, USC) in the dictio-
nary to help uppercase letters segmentation. With this dic-
tionary, we check the following two conditions: (i) if the
lower case letters forms a valid word; (ii) if combining the
last uppercase letter and lower case letters forms a valid
word. The current segmentation decision is made according
to the following truth table illustrated by Table 4.Although
several methods of special handling are applied, it is difficult
Table 4
The truth table for deciding segmentation.

Case i Case ii SegmentAt

True True Before
False True Before
True False After
False False Before
to find a perfect solution that can accurately segment all file-
names which were not initially named in a standard format.
Some meaningful tags would still become meaningless after
word segmentation. For example: ‘‘noAccum” is divided into
two separate tags as ‘‘no,” and ‘‘accumulation.”

II. Special handling of numbers
The principle of handling numbers is to always associate

the numbers with the tags in front of the number. Although
numbers are used as delimiters in our parser, we do not
want to discard these numbers because they are part of
the information. Thus, if there are numbers within a file-
name, we generate an extra tag preserving the numbers,
by saving the number along with the word it concatenated
to. For example, the tags ‘‘student002” and ‘‘student” will
both be preserved. ‘‘skyDay512simple” would be divided to
‘‘sky,” ‘‘day,” ‘‘day512,” and ‘‘simple.” Saving just the num-
bers alone creates a long, meaningless tag. For example,
the tag 002 is meaningless if separated from stu-
dent002.There are also exceptions in the case of some
words; when 2D, 3D, or a single character, occur immedi-
ately after the numbers (e.g., final02b), the characters should
not be separated. Solving this issue proves to be demand-
ing.The preservation of the special number by generating
extra tags requires additional memory space. This is, how-
ever, needed to enhance the accuracy of the search perfor-
mance. During the system design phase, end-users at ICT
indicated a desire to search for a particular 3D model from
a set of selections that are differentiated numerically. For
example, a set of 3D buildings are named with the word
‘‘building” followed by sequentially increased numbers,
e.g., building01, building02, etc. When a user wants to
retrieval a specific building from the set, he/she may not
enter a query string with a number immediately after word
building. Thus, we designed our system accordingly.
3.3.2. Word regulation
To increase search power, a word regulator is being developed

to translate a tag into a consistent format. For example, both singu-
lar and plural forms of a noun can be saved, so it is necessary to
search both forms with a keyword in such a way that one form is
not excluded. In addition, many capitalized abbreviations are de-
fined, for shorten the length of the file name in the ICT’s naming
convention. For example, ‘‘M” stands for ‘‘male,” ‘‘A” stands for
‘‘Adult,” ‘‘Chr” stands for ‘‘character.” A word regulator is needed
to translate these abbreviations. However, this is not universally
true for filenames that do not follow the naming convention, or
the metadata embedded in the Maya files and the AlienBrain files.
These files should be handled carefully as part of semantic analy-
sis; hopefully, the correct translation can be constructed based
on the context. Ambiguous words are not presently being handled
with this methodology, and are left as they are.

3.4. System performance comparison

The ICT database contains over half a million (571,533) art as-
sets. Since most data have security restrictions, the evaluation gi-
ven below was conducted by ICT professionals with security
clearance. It aims to compare our system with the commercial
DAM tool currently employed by ICT. From all asset files, our sys-
tem generated 11.7 million (11,681,548) tags, including 11.1 mil-
lion (11,117,168) tags extracted by the filename parser, 0.2
million (193,541) tags extracted by the Maya parser, and 0.4 mil-
lion (370,839) tags extracted by the AlienBrain parser. In this eval-
uation, the 10 most common queries picked by the artists were
used as test queries. The returned result of our system is reported
in Table 5.

Table 5
System performance of the proposed AMIA search engine.

Search item Search time
(s)

Number of file
returned

Relevancy
(n out of 10)

Female civilian 1.16 10,812 9/10
Military truck 9.26 92,276 6/10
Military and truck 2.12 143 8/10
City building 2.79 28,575 8/10
Military tank 9.2 90,288 10/10
US soldier 2.89 33,791 9/10
Segment and star 0.11 51 9/10
50 cal 2.94 2757 9/10
Brick texture 1.8 22,611 10/10
Baghdad reference 7.45 78,809 7/10

208 P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209
The same set of statistics cannot be obtained with ICT’s com-
mercial DAM tool since the system repeatedly crashed when the
queries were performed. The benchmark system also limits queries
to be a single-word term. As a result, the system was not able to
handle test queries in our first round of testing. Thus, we set-up an-
other test set (i.e., a small database consisting of 19,422 files) and
different queries for the commercial DAM tool. The returned result
of the second test set is shown in Table 6.

In the test, ICT end users entered search queries in both systems
and recorded the search time and the number of files returned. In
addition, subjective scores of returned results’ relevance were col-
lected and averaged to obtain a relevancy score listed in the fourth
column of both tables. The relevancy score ranges from 1 (being
the lowest) to 10 (being the highest). Relevancy is an essential
evaluation criterion recommended by end users at ICT to vote
whether the first 10 returned results met their interest. For exam-
ple, in search for ‘‘military truck,” the user intended to find truck
models for the military purpose, rather than finding arbitrary mil-
itary scenes that contains a truck. The user can put in a more
descriptive query to further refine search results. For example, in
search for ‘‘military and truck,” fewer results were returned and
accuracy became higher.

By comparing results in Tables 5 and 6, we see that AMIA re-
turns more results than the commercial DAM tool and achieves
higher relevancy scores. Such performance improvement is attrib-
uted to additional tags generated automatically by our system as
compared with the commercial DAM tool. Being with a huge
amount of tags, the search time of our system is still bounded by
10 s and the average search time is about 4 s, which are compara-
ble with those of the commercial DAM tool.
4. Ongoing and future work

3D mesh and associated textures are an extremely valuable re-
source to the ICT, and therefore necessitate an effective manage-
ment tools for reuse. Our text-based indexing and retrieval tool
is capable of managing assets that were named properly, or that
have embedded attributes already linked to the file. However,
there are still many digital assets, many created years ago, which
lack suitable metadata or were named randomly (e.g., object1.ma,
Table 6
System performance of the commercial DAM tool.

Search item Search time
(s)

Number of file
returned

Relevancy
(n out of 10)

Iraqi woman 4 0 0/10
Woman 3 10 4/10
Truck 2 97 8/10
Civilian 5 156 9/10
Tank 3 18 6/10
Building 4 75 6/10
123.jpg). These assets are inaccessible using the text-based index-
ing tool, and a content-based indexing retrieval tool is still a goal to
access these assets.

As text-based indexing/search is nearly completed, content-
based retrieval for 3D Shapes is the next goal of this ongoing pro-
ject. The Princeton 3D search engine [42] provided a system frame-
work which meets our need, it appears proper to use it as a
reference for 3D assets search. However, unlike our goal to orga-
nize and reuse existing art assets, their system searches for avail-
able assets on the Internet.

For a large database holding over 400,000 assets, like ICT’s Dig-
ital Backlot (DB), developing an indexing data structure and shape
matching function with fast speed performance is important. Tang-
elder and Veltkamp [43] presented an overview on the 3D match
function. According to their comparison, the feature-based-spa-
tial-map approach [44,45] and the weighted point method devel-
oped by Funkhouser et al. [46] performed relatively better than
various other approaches in terms of efficiency, discriminative
power and robustness. The geometry-based approach [46] is eval-
uated as the first powerful tool for part-in-whole matching.

The AMIA project will start working towards content-based re-
trieval for 3D shapes by implementing methods proposed in [44–
46]. Then, by comparing their performance, an improved approach
will be proposed in the future. In addition to 3D shape digital as-
sets, the database contains many image, audio and video data as
well. After text and 3D mesh retrieval, an automatic content-based
approach for 2D image, audio and video retrieval are next priorities
in future development.
5. Conclusion

The public effort currently focused on the automated analysis
and indexing of art assets with an eye towards integration and re-
use of said assets via a searchable repository, especially targeted
towards game and simulation development in the fields of training
and education, is limited. Most research efforts are in the private
sector and are not freely available for military and/or government
use. The AMIA project strives to enhance the Digital Backlot (DB) so
it can continue to provide a wide range of Army training system
developers with a database of content for simulation environ-
ments, including everything from terrain to 3D models of build-
ings, to characters and props, to graphic textures. The research
results from AMIA, as well as DB content, will be made broadly
available to all Army training system developers, with respect for
security and license restrictions. The AMIA research group will
seek out for additional opportunities to collaborate with the US
Army Research, Development, and Engineering Command (RDE-
COM), TRADOC, STTC, Defense Advanced Research Projects Agency
(DARPA), and Universities that support this area of research.

Based on the current text-based search engine, we anticipate
extending our work with focus on the following tasks:

1. Provide recommendations and estimations for visual dictionar-
ies, and provide a document that chronicles collaborative work
on creating digital asset management standards (such as nam-
ing convention, Maya metadata standard) for describing anima-
tions and other visual assets used in game and simulation
environments.

2. Improve semantic search function. ‘‘Props” should bring up
Prop and Prp, ‘‘vehicle” should bring up car and automobile.
The word ‘‘Girl” should bring up results for Child and Female.

3. Research and develop a content-based retrieval indexer for
multimedia assets. We will continue our work starting from
3D shape retrieval, and then 2D image, and then audio to the
video content retrieval.

P.-Y. Chiang et al. / J. Vis. Commun. Image R. 21 (2010) 200–209 209
4. Providing a ‘‘shopping cart”-style system with the ability to pick
and choose multiple items to download from the search results.
All reference textures or scene files associated to a Maya file
must be able to automatically be downloaded as well when
the associated file is downloaded. In addition, the classifying
security will take precedence before the development of a shop-
ping cart system. Assets in the DB are restricted to different lev-
els of security. Assets restricted for governmental use should
and cannot be downloaded by general system users.

5. Developing a filename generalized parser. Ensure that all file-
name can be renamed following the naming convention
standard.

Advances made in the aforementioned tasks will be chronicled
in the future.

Acknowledgments

The effort depicted herein is sponsored by the US Army Re-
search, Development, and Engineering Command (RDECOM), and
the content of the information does not necessarily reflect the po-
sition or the policy of the Government, and no official endorsement
should be inferred.

References

[1] Institute for Creative Technologies. Available from: <http://ict.usc.edu/>.
[2] AlienBrain. Available from: <http://www.alienbrain.com/>.
[3] Adobe Bridge. Available from: <http://www.adobe.com/products/creativesu

ite/bridge/>.
[4] Apache Lucene. Available from: <http://lucene.apache.org/java/docs/>.
[5] D.A. Grossman, O. Frieder, Information Retrieval: Algorithms and Heuristics,

Kluwer Academic Publishers, Norwell, MA, 1998.
[6] I.H. Witten, A. Moffat, T.C. Bell, Managing gigabytes, in: Compressing and

Indexing Documents and Images, second ed., Morgan Kaufmann, San Francisco,
CA, 1999.

[7] R.A. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-
Wesley/Longman, Boston, MA/New York, 1999.

[8] T. Saracevic, P. Kantor, A.Y. Chamis, D. Trivison, A study of information seeking
and retrieving. I. Background and methodology (1997) 175–190.

[9] M. Kobayashi, K. Takeda, Information retrieval on the web, ACM Computing
Surveys 32 (2) (2000) 144–173. doi:http://doi.acm.org/10.1145/358923.358934.

[10] S.A. Macskassy, A. Banerjee, B.D. Davison, H. Hirsh, Human performance on
clustering web pages, Tech. Rep., 1998.

[11] D. Soergel, Organizing Information: Principles of Data Base and Retrieval
Systems, Academic Press, San Diego, CA, 1985.

[12] X. Lin, D. Soergel, G. Marchionini, A self-organizing semantic map for
information retrieval, in: SIGIR’91: Proceedings of the 14th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ACM, New York, NY, 1991, pp. 262–269. doi:http://
doi.acm.org/10.1145/122860.122887.

[13] S. Jones, G. Paynter, Topic-based browsing within a digital library using
keyphrases, in: DL’99: Proceedings of the Fourth ACM Conference on Digital
Libraries, ACM, New York, NY, 1999, pp. 114–121. doi:http://doi.acm.org/
10.1145/313238.313279.

[14] G.W. Paynter, I.H. Witten, S.J. Cunningham, G. Buchanan, Scalable browsing for
large collections: a case study, in: DL’00: Proceedings of the Fifth ACM
Conference on Digital Libraries, ACM, New York, NY, 2000, pp. 215–223.
doi:http://doi.acm.org/10.1145/336597.336666.

[15] A. Heydon, M. Najork, Mercator: a scalable, extensible web crawler, World
Wide Web 2 (4) (1999) 219–229. doi:http://dx.doi.org/10.1023/
A:1019213109274.

[16] R. Burke, Salticus: guided crawling for personal digital libraries, in: JCDL’01:
Proceedings of the First ACM/IEEE-CS Joint Conference on Digital Libraries,
ACM, New York, NY, 2001, pp. 88–89. doi:http://doi.acm.org/10.1145/
379437.379455.

[17] S. Raghavan, H. Garcia-Molina, Crawling the hidden web, in: VLDB’01:
Proceedings of the 27th International Conference on Very Large Data Bases,
Morgan Kaufmann, San Francisco, CA, 2001, pp. 129–138.

[18] J. Cho, H. Garcia-Molina, Parallel crawlers, in: WWW’02: Proceedings of the
11th International Conference on World Wide Web, ACM, New York, NY, 2002,
pp. 124–135. doi:http://doi.acm.org/10.1145/511446.511464.

[19] E. Rasmussen, Clustering Algorithms (1992) 419–442.
[20] M. Charikar, C. Chekuri, T. Feder, R. Motwani, Incremental clustering and

dynamic information retrieval, in: STOC’97: Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, ACM, New York, NY, 1997,
pp. 626–635. doi:http://doi.acm.org/10.1145/258533.258657.
[21] O. Zamir, O. Etzioni, Web document clustering: a feasibility demonstration, in:
SIGIR’98: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ACM, New York, NY,
1998, pp. 46–54. doi:http://doi.acm.org/10.1145/290941.290956.

[22] M. Perkowitz, O. Etzioni, Adaptive web sites: conceptual cluster mining, in:
IJCAI’99: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 1999, pp. 264–
269.

[23] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Computing
Surveys 31 (3) (1999) 264–323. doi:http://doi.acm.org/10.1145/331499.
331504.

[24] M. Uschold, M. Gruninger, M. Uschold, M. Gruninger, Ontologies: principles,
methods and applications, Knowledge Engineering Review 11 (1996) 93–136.

[25] M. Uschold, M. King, Towards a methodology for building ontologies, in: In
Workshop on Basic Ontological Issues in Knowledge Sharing, Held in
Conjunction With IJCAI-95, 1995.

[26] B. Chandrasekaran, J.R. Josephson, V.R. Benjamins, What are ontologies, and
why do we need them?, IEEE Intelligent Systems 14 (1) (1999) 20–26

[27] M. Gruninger, M.S. Fox, Methodology for the design and evaluation of
ontologies, 1995.

[28] G. Salton, M.J. McGill, Introduction to Modern Information Retrieval, McGraw-
Hill, New York, NY, 1986.

[29] A. Moffat, J. Zobel, Self-indexing inverted files for fast text retrieval, ACM
Transactions on Information System 14 (4) (1996) 349–379. doi:http://
doi.acm.org/10.1145/237496.237497.

[30] J. Zobel, A. Moffat, K. Ramamohanarao, Inverted files versus signature files for
text indexing, ACM Transactions on Database System 23 (4) (1998) 453–490.
doi:http://doi.acm.org/10.1145/296854.277632.

[31] M. Kaszkiel, J. Zobel, Term-ordered query evaluation versus document-ordered
query evaluation for large document databases, in: SIGIR’98: Proceedings of
the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM, New York, NY, 1998, pp. 343–
344. doi:http://doi.acm.org/10.1145/290941.291031.

[32] D. Cutting, J. Pedersen, Optimization for dynamic inverted index maintenance,
in: SIGIR’90: Proceedings of the 13th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, New
York, NY, 1990, pp. 405–411. doi:http://doi.acm.org/10.1145/96749.98245.

[33] R. Guo, X. Cheng, H. Xu, B. Wang, Efficient on-line index maintenance for
dynamic text collections by using dynamic balancing tree, in: CIKM’07:
Proceedings of the Sixteenth ACM Conference on Information and Knowledge
Management, ACM, New York, NY, 2007, pp. 751–760. doi:http://doi.acm.org/
10.1145/1321440.1321545.

[34] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine,
Computer Networks and ISDN Systems 30 (1–7) (1998) 107–117. doi:http://
dx.doi.org/10.1016/S0169-7552(98)00110-X.

[35] P.A. Chirita, C.S. Firan, W. Nejdl, Personalized query expansion for the web, in:
SIGIR’07: Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ACM, New York, NY,
2007, pp. 7–14. doi:http://doi.acm.org/10.1145/1277741.1277746.

[36] D. Fensel, Ontology-based knowledge management, Computer 35 (11) (2002)
56–59. doi:http://dx.doi.org/10.1109/MC.2002.1046975.

[37] L. Ballesteros, W.B. Croft, Resolving ambiguity for cross-language retrieval, in:
SIGIR’98: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ACM, New York, NY,
1998, pp. 64–71. doi:http://doi.acm.org/10.1145/290941.290958.

[38] J.-Y. Nie, M. Simard, P. Isabelle, R. Durand, Cross-language information
retrieval based on parallel texts and automatic mining of parallel texts from
the web, in: SIGIR’99: Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, New
York, NY, 1999, pp. 74–81. doi:http://doi.acm.org/10.1145/312624.312656.

[39] J.S. McCarley, Should we translate the documents or the queries in cross-
language information retrieval?, in: Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics on Computational Linguistics,
Association for Computational Linguistics, Morristown, NJ, USA, 1999, pp.
208–214. doi:http://dx.doi.org/10.3115/1034678.1034716.

[40] V. Lavrenko, M. Choquette, W.B. Croft, Cross-lingual relevance models, in:
SIGIR’02: Proceedings of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ACM, New York, NY,
2002, pp. 175–182. doi:http://doi.acm.org/10.1145/564376.564408.

[41] Java Suggester. Available from: <http://softcorporation.com/products/sug
gester/>.

[42] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, D.
Jacobsé, A search engine for 3D models, in: ACM Transactions on Graphics,
ACM, New York, NY, 2003, pp. 83–105.

[43] J.W. Tangelder, R.C. Veltkamp, A survey of content based 3D shape retrieval
methods, in: Multimedia Tools and Applications, Kluwer Academic Publishers,
Hingham, MA, 2008, pp. 441–471.

[44] M. Kazhdan, T. Funkhouser, S. Rusinkiewicz, Rotation invariant spherical
harmonic representation of 3D shape descriptors, in: Proceeding of
Symposium on Geometry Processing, 2003.

[45] M. Novotni, R. Klein, 3D zernike descriptors for content based shape retrieval,
in: Proceeding of Solid Modeling, 2003.

[46] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz,
D. Dobkin, Modeling by example, in: Proceeding of SIGGRAPH 2004, 2004.

http://ict.usc.edu/
http://www.alienbrain.com/
http://www.adobe.com/products/creativesuite/bridge/
http://www.adobe.com/products/creativesuite/bridge/
http://lucene.apache.org/java/docs/
http://doi.acm.org/10.1145/358923.358934
http://doi.acm.org/10.1145/122860.122887
http://doi.acm.org/10.1145/122860.122887
http://doi.acm.org/10.1145/313238.313279
http://doi.acm.org/10.1145/313238.313279
http://doi.acm.org/10.1145/336597.336666
http://dx.doi.org/10.1023/A:1019213109274
http://dx.doi.org/10.1023/A:1019213109274
http://doi.acm.org/10.1145/379437.379455
http://doi.acm.org/10.1145/379437.379455
http://doi.acm.org/10.1145/511446.511464
http://doi.acm.org/10.1145/258533.258657
http://doi.acm.org/10.1145/290941.290956
http://doi.acm.org/10.1145/331499.331504
http://doi.acm.org/10.1145/331499.331504
http://doi.acm.org/10.1145/237496.237497
http://doi.acm.org/10.1145/237496.237497
http://doi.acm.org/10.1145/296854.277632
http://doi.acm.org/10.1145/290941.291031
http://doi.acm.org/10.1145/96749.98245
http://doi.acm.org/10.1145/1321440.1321545
http://doi.acm.org/10.1145/1321440.1321545
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://doi.acm.org/10.1145/1277741.1277746
http://dx.doi.org/10.1109/MC.2002.1046975
http://doi.acm.org/10.1145/290941.290958
http://doi.acm.org/10.1145/312624.312656
http://dx.doi.org/10.3115/1034678.1034716
http://doi.acm.org/10.1145/564376.564408
http://softcorporation.com/products/suggester/
http://softcorporation.com/products/suggester/

	Technologies and the development of the Automated Metadata Indexing and Analysis (AMIA) system
	Introduction
	Overview of the AMIA project
	Project goal
	Project resources
	System framework
	System requirement
	System performance

	Text-based indexing and retrieval
	Survey of information retrieval
	Indexing
	Clustering
	Storage
	Search
	Practical systems

	Implementation detail: three modules of our text-based indexer
	File distributor
	Tag Auto-Populator
	Filename parser
	Maya parser
	AlienBrain parser
	Apache Lucene indexer

	Implementation detail and issues of text-based parsers
	String segmentation
	Word regulation

	System performance comparison

	Ongoing and future work
	Conclusion
	Acknowledgments
	References

