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Abstract 

 
For centuries artists have been exploring color to 

express emotions. Following this insight, the paper 
describes an approach to learn how to use color to 
influence the perception of emotions in virtual humans. 
First, a model of lighting and filters inspired on the 
visual arts is integrated with a virtual human platform 
to manipulate color. Next, an evolutionary model, based 
on genetic algorithms, is created to evolve mappings 
between emotions and lighting and filter parameters. A 
first study is, then, conducted where subjects evolve 
mappings for joy and sadness without being aware of 
the evolutionary model. In a second study, the features 
which characterize the mappings are analyzed. Results 
show that virtual human images of joy tend to be 
brighter, more saturated and have more colors than 
images of sadness. The paper discusses the relevance of 
the results for the fields of expression of emotions and 
virtual humans. 
 

1. Introduction 
�‘Works of art (�…) can be expressive of human 
qualities: one of the most characteristic and 
pervasive features of art is that percepts (lines, 
colors, progressions of musical tones) can be and are 
suffused with affect.�’ 

 
This passage by John Hospers [1] emphasizes that it 

is in the nature of art to express emotions and that this 
expression can be accomplished through the formal 
elements of art. According to the author, the reason it is 
possible to perceive emotions in these elements is that 
people find analogies to the internal and external 
manifestations of their bodies when experiencing such 
emotions. Effectively, artists have been exploring for 
centuries the idea that it is possible to perceive emotions 
in line, space, mass, light, color, texture, pattern, sound 
and motion [2]. This paper takes this insight and 
explores how the manipulation of properties of one such 
element - color - can accomplish expression of emotions 
in virtual humans.  

Color has been widely manipulated by artists in the 
visual arts to convey emotion [2, 3]. Color is the result 
of interpretation in the brain of the perception of light in 

the human eye [4]. Thus, the manipulation of light in the 
visual arts, called lighting, has always been a natural 
way of achieving specific effects with color [5, 6]. In the 
work presented in this paper, color is manipulated using 
a lighting model. Moreover, color can also be looked at 
as an abstract property of a scene and manipulated 
explicitly with no particular concern for the physics of 
light. This has been explored in abstract painting [2] 
and, more recently, in the visual media [7]. The work 
presented in this paper also explores this form of 
manipulation and uses filters to achieve such color 
effects. Filters do post-processing of pixels in a rendered 
image according to user-defined programs [8].  

Having defined the means by which color is to be 
manipulated, the following questions ensue: Can 
emotions be expressed using lighting and filters? How 
should emotions be mapped into these forms of 
expression? The emotions perceived in color are 
influenced by biological, individual and cultural factors 
[3]. It is, therefore, a hard challenge to find a mapping 
between emotions and color properties which is general. 
Looking at the literature on lighting, it is possible to find 
general principles on how to convey moods or 
atmosphere [5, 6, 9, 10] but, these aren�’t sufficient to 
differentiate between emotions and usually do not 
reflect the character�’s mood but the narrative (such as 
the climax, for instance). The literature on filters is far 
scarcer and tends to focus on technical aspects or typical 
uses rather than on the affective properties of filters [6, 
7, 11]. Therefore, this work pursues an approach which 
does not depend on the existent literature and tries, 
instead, to learn directly from people mappings from 
emotions into color.  

An evolutionary approach, which relies on genetic 
algorithms, is used to learn mappings between emotions 
and color. The focus is on joy and sadness and whether 
the approach is applicable to other emotions is a topic of 
future work. Genetic algorithms [12] are appropriate for 
several reasons. The clear separation between generation 
and evaluation of alternatives is convenient. Alternatives 
can be generated using biologically inspired operators �– 
mutation, crossover, etc. Evaluation, in turn, can rely on 
people. There are several advantages for this: (a) people 
can be used to fill in the gaps in the literature; (b) a 
mechanism is introduced to accommodate the 
biological, individual, and cultural values influencing 
the perception of emotion in color. Furthermore, the 
expression space defined by lighting and filters is very 
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large and genetic algorithms deal well with intractable 
search spaces. 

The paper describes two studies which were 
conducted to define and understand the mapping of joy 
and sadness into color. In the first study, subjects are 
asked to evaluate, as to how well they convey joy or 
sadness, several images of virtual humans under 
different configurations of the lighting and filters 
parameters. The images are presented in sets and each 
successive set is generated, according to the genetic 
algorithm, so as to reflect the subject�’s feedback on the 
previous set. Subjects are not aware that an evolutionary 
approach is being used. The purpose of a second study is 
to try to understand which features characterize the 
mappings. To accomplish this, images of the best 
configurations of lighting and filters for joy and sadness 
are classified according to features that represent color 
properties (such as average pixel saturation). Statistical 
tests are then performed to select which features best 
differentiate the mappings of joy and sadness.  

 The rest of the paper is organized as follows: Section 
2 describes background and related work; Section 3 
presents the lighting and filters expression model; 
Section 4 overviews the evolutionary model; Sections 5 
and 6 describe the two studies; and, Section 7 discusses 
the results and future work. 

2. Background 
It is widely agreed that the nature of the arts is related 

to the expression of emotions [1, 13, 14, 15]. In one of 
its simplest conceptions, art is seen as the expression of 
the artist�’s feelings [13, 14]. However, Hospers [1] 
refined this view by noting that the work of art need not 
reflect the emotions of its creator but can be said to 
possess emotional properties in its own right. Thus, first, 
the creator manipulates the formal elements of art (line, 
space, mass, light, color, texture, pattern, sound and 
motion) to convey felt or imagined emotions. Then, the 
audience relies on analogies with the internal and 
external manifestations of emotions they experienced in 
the past to interpret the work of art.  

This insight motivates going beyond the usual 
channels of expression in virtual humans, i.e., gesture, 
face and voice [13], and use the elements of art to 
express emotions. This insight has been explored in the 
work of de Melo and Paiva. In a first system [17], they 
define simple rules which manipulate the camera, lights 
and music to reflect the emotional state of characters in 
a story. The lighting rules, in particular, rely on simple 
associations of emotions to colors (e.g., yellow reflects 
joy) which are unlikely to generalize [3]. In a second 
system [18], they integrate filters and a sophisticated 
lighting model with a virtual human platform that 
supports the usual bodily channels of expression. The 
system also allows definition of rules mapping emotions 
into appropriate lighting and filters. However, no 
mapping for the expression of emotions is actually 
proposed. This paper picks up where they left off and 
proposes a method to learn such mappings and presents 

a concrete mapping for joy and sadness.  
The mappings associate emotions with color. Color, 

in turn, is controlled by manipulation of lighting and 
filters. Lighting is the deliberate control of light to 
express, among other things, emotions [5, 6, 9, 10]. To 
achieve these goals, the following parameters are 
usually manipulated: light type, direction, source color, 
intensity, softness, decay, throw pattern, shadow 
softness and shadow size. In this paper a genetic 
algorithm is going to be used to traverse a subset of this 
parameter space. However, several other approaches 
have been explored. In the inverse lighting approach 
[19] the artist defines partially the scene illumination 
and the system has to work backwards to establish the 
missing parameters. Representative is the system by 
Pellacini et al. [20] where the artist paints lighting into 
the scene using a typical painting program interface and 
the system calculates the lighting parameters. The 
approach in this paper differs in that it seeks to capture 
intuitions (about the expression of emotions using 
lights) from regular people, as opposed to lighting 
artists. The system is responsible for generating the 
alternatives, which a non-artist is unlikely to be 
proficient in doing, and the user is only responsible for 
evaluating them (as to how well they convey an 
emotion). Another line of research proposes lighting 
models for interactive virtual worlds based on film and 
theater literature [21, 22]. These models are constrained 
by the limitations of the existent literature which does 
not detail how can light express a particular emotion, 
nor how the interpretation of light varies with biology, 
individual and culture. The approach described in this 
paper differs in that lighting design is learned directly 
from people thus, providing an empirical method which 
addresses the limitations in the literature. This approach 
is particularly useful in understanding the affective 
interpretation of filters, of which little has been written. 
Filters manipulate the virtual human pixels themselves 
to express, among other things, emotions [6, 7, 11].  A 
filter is a user-defined program which post-processes the 
pixels in a rendered image [8]. Filters have many 
advantages: they are efficient as they are independent of 
the scene geometry; they are very expressive due to the 
variety of available filters [23]; and, they can be 
concatenated to create compound effects. 

An evolutionary approach is proposed to learn how to 
map emotions into color. To the best of our knowledge, 
there is no prior attempt to use evolutionary algorithms 
to express emotions in virtual humans. Nevertheless, 
they have been widely explored in other areas. Karl 
Sims [24] explores a genetic programming approach 
using symbolic lisp expressions to generate images, 
solid textures and animations. The artist Steven Rooke 
[25] uses a set of low and high-level primitives to guide 
his genetic programming approach to generate images 
within his own style. Contrasting to the previous 
approaches, genetic algorithms have been used to evolve 
shaders [26], fractals [27] and complex three-
dimensional objects [28]. In all these systems the 



 

human, assuming the role of a critic, interactively guides 
the evolution process.  

3. The Expression Model 
The lighting model defines local pixel-level 

illumination of the virtual human. Among the supported 
parameters, the following are used in this work: (a) type, 
defines whether the light source is directional, point or 
spotlight; (b) direction, defines the illumination angle; 
(c) ambient, diffuse and specular colors, define the light 
color for each component. Color can be defined in either 
RGB (red, green, blue) or HSB (hue, saturation, 
brightness) spaces [4]; ambient, diffuse and specular 
intensity, define a value which is multiplied with the 
respective component color. Setting the value to 0 
disables the component. 

Filters are used to post-process the pixels of the 
illuminated rendered image of the virtual human. 
Several filters are available in the literature [23] and this 
work uses the following subset: the color filter, Fig.1-
(b) and (c), sets the virtual human�’s color to convey a 
stylized look such as black & white, sepia or inverted 
colors; the HSB filter, Fig.1-(d) and (e), manipulates the 
virtual human�’s hue, saturation or brightness. Filters can 
also be concatenated to create compound effects.  

4. The Evolutionary Model 
Building on the expression model, the evolutionary 

model uses genetic algorithms to evolve, for a certain 
emotion, a population of hypotheses, which define 
specific configurations of lighting and filters parameters. 
Evolution is guided by feedback from the user as to how 
well each hypothesis conveys the intended emotion. The 
fitness function, in this case, is the subjective criteria of 
the user. 

At the core lies a standard implementation of the 
genetic algorithm [12]. The algorithm is characterized 
by the following parameters: (a) stopping criteria to end 
the algorithm, i.e., the maximum number of iterations; 
(b) the size of the population, p, to be maintained; (e) 
the selection method, sm, to select probabilistically 
among the hypotheses in a population when applying 
the genetic operations. Two methods are supported: 

roulette wheel, which selects a hypothesis according to 
the ratio of its fitness to the sum of all hypotheses�’ 
fitness; tournament selection, which selects with 
probability p�’ the most fit among two hypotheses 
selected using roulette wheel; (e) the crossover rate, r, 
which defines the percentage of the population subjected 
to crossover; (f) the mutation rate, m, which defines the 
percentage of the population subjected to mutation; (g) 
the elitism rate, e, which defines the percentage of the 
population which propagates unchanged to the next 
generation. The rationale behind elitism is to avoid 
losing the best hypotheses from the previous population 
in the new population [12]. 

The algorithm begins by setting up the initial 
population with random hypotheses. Thereafter, the 
algorithm enters a loop, evolving populations, until the 
stopping criterion is met. In each iteration, first, (1-r)p 
percent of the population is selected for the next 
generation; second, r*p/2 pairs of hypotheses are 
selected for crossover and the offspring are added to the 
next generation; third, m percent of the population is 
randomly mutated; fourth, e percent of the hypotheses is 
carried over unchanged to the next generation. 
Evaluation is based on feedback from the user. 

The hypothesis is structured according to the lighting 
and filter parameters. Lighting uses the common three-
point configuration [5, 6] which defines a primary key 
light and a secondary fill light. The backlight is not used 
in this work. Both lights are modeled as directional 
lights and are characterized by the following parameters: 
(a) direction, corresponds to a bi-dimensional floating-
point vector defining angles about the x and y axis with 
respect to the camera-character direction. The angles are 
kept in the range [-75.0º, 75.0º] as these correspond to 
good illumination angles [5]; (b) diffuse color, 
corresponds to a RGB vector; (c) Kd, defines the diffuse 
color intensity in the range [0.0, 5.0]; (d) Ks, defines the 
specular color intensity in the range [0.0, 3.0]. The HSB 
and color filters are also applied to the virtual human. 
Thus, four more parameters are defined: (a) HSB.hue, 
HSB.saturation and HSB.brightness, define the HSB 
filter�’s hue (in the range [0.0, 10.0]), saturation (in the 
range [0.0, 5.0]) and brightness (in the range [0.5, 3.0]); 
(b) color.style, which defines whether to apply the black 

Figure 1: Filters used to post-process the rendered image of the illuminated virtual human. No filter is applied in (a). The color filter 
is used to invert the colors in (b) and create the sepia look in (c).The HSB filter is used to reduce saturation in (d) and to increase the 
saturation and brightness in (e). Both virtual humans used in this work are shown.



 

& white, sepia or inverted colors style for the color 
filter. Both filters can be applied simultaneously. 

5. Study 1: Evolving a Mapping for Joy and 
Sadness 

In a first study, subjects evolve mappings for joy and 
sadness. The experiment is designed so that subjects are 
unaware that genetic algorithms are being used. They 
are asked to classify five �‘sets�’ (i.e., populations) of 
�‘alternatives�’ (i.e., hypotheses) for the expression of 
each emotion. Classification of alternatives goes from 
0.0 (�’the image does not express the emotion at all�’ or 
low fitness) to 1.0 (�’the image perfectly expresses the 
emotion�’ or high fitness). The sets are presented in 
succession, being the first generated randomly and the 
succeeding ones evolved by the genetic algorithm.  

The experiment is automated in software. The user 
can save the session and continue at any time. A random 
name is given to the session so as to preserve 
anonymity. The parameters for the genetic algorithm 
are: p = 30, sm = tournament selection, r = 0.70, m = 
0.15 and e = 0.10. Two virtual humans are used: a male 
and a female. The rationale for using multiple virtual 
humans is to minimize geometry effects in the analysis 
of the results (e.g., the illusion of a smile under certain 
lighting conditions even though no smile is generated). 
Participants are evenly distributed among virtual 
humans. The virtual human assumes the anatomical 
position and Perlin noise and blinking is applied. No 
gesture, facial or vocal expression is used throughout the 
whole experiment. Transition between hypotheses is 
instantaneous. The camera is fixed and frames the upper 
body of the virtual human.  

The study was mostly conducted in person at the 
University of Southern California campus and related 
institutions but, the software was also published in the 
web. Thirty subjects were recruited. Average age was 
26.7 years, 46.7% were male, mostly having superior 
education (93.3% college level or above) in diverse 
fields. All subjects were recruited in the United States, 
even though having diverse origins (North America: 
50.0%; Asia: 20%; Europe: 20%; South America: 
6.7%). Average survey time was around 20 minutes. 

The evolution of the average population fitness for 
joy and sadness is shown, respectively in Tables 1 and 
2. Fourteen (out of possible thirty) of the highest fit 
hypotheses, one per subject, for joy and sadness are 
shown in Figures 2 and 3, respectively. 

 
Table 1: Average fitness per set for joy.  
 

AVG STD L U 
Set 1 0.226 0.101 0.190 0.262 
Set 2 0.278 0.123 0.233 0.322 
Set 3 0.318 0.144 0.266 0.369 
Set 4 0.326 0.152 0.271 0.380 
Set 5 0.347 0.140 0.296 0.397 

AVG - average classification; STD - standard deviation; L and 

U - lower and upper bounds for the 95% confidence interval. 
 
Table 2: Average fitness per set for sadness.  
 

AVG STD L U 
Set 1 0.315 0.193 0.246 0.384 
Set 2 0.397 0.171 0.335 0.458 
Set 3 0.433 0.185 0.367 0.499 
Set 4 0.467 0.191 0.399 0.536 
Set 5 0.470 0.200 0.399 0.542 

AVG - average classification; STD - standard deviation; L and 
U - lower and upper bounds for the 95% confidence interval. 

6. Study 2: What are the Features in the 
Mappings?  

The goal of a second study is to understand what 
features characterize the mappings evolved in the first 
study. Features refer to characteristics in the image 
generated by the respective hypothesis. The idea, then, 
is to differentiate the best images for joy and sadness 
using these features. These images are the union of, for 
each emotion, for each subject in the first study, the one 
with the highest classification. Thus, in total, there are 
60 images: the 30 best for joy, one per subject; the 30 
best for sadness, one per subject.  

From visual inspection of the best images for joy and 
sadness, four features that measure properties of the 
pixels are considered: brightness, saturation, 
temperature and number of colors. The brightness of an 
image is defined, in the range [0.0, 1.0], as the average 
brightness of the pixels. The brightness of a pixel is the 
subjective perception of luminance in the pixel�’s color 
[4]. The feature is calculated as follows [4]: 
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Where: Pixels is the set of all pixels in the image; 
(Rp,Gp,Bp) is the color of pixel p and each component is 
in the range [0.0, 1.0].  
 The saturation of an image is defined, in the range 
[0.0, 1.0], as the average saturation of the pixels. 
Saturation of a pixel refers to the intensity of the pixel�’s 
color [4]. The feature is calculated as follows [4]: 
 

∈ ++
−

=
Pixelsp ppp

ppp

BGR
BGRMin

Pixels
Saturation

3/)(
),,(11  

 
(2) 

 



 

Where: Pixels is the set of all pixels in the image; 
(Rp,Gp,Bp) is the color of pixel p and each component is 
in the range [0.0, 1.0]. 
 The temperature of an image is defined, in the range 
[1666.7K, ], as the average temperature of the pixels. 
The temperature of a pixel�’s color refers to the color of a 
black-body radiator when subjected to a certain 
temperature and, counter-intuitively, maps lower 
temperatures to warm colors (yellow-red) and higher 
temperatures to cool colors (green-blue) [4].  This work 
uses Robertson�’s method to compute the temperature of 
a color [29]. The feature is, then, calculated as follows: 
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Where: Pixels is the set of all pixels in the image. 
 The number of colors of an image is defined to be the 
number of different colors in the pixels. However, the 
maximum number of colors is limited to 
11x11x11=1,331 by rounding the RGB components to 
one decimal place. Intuitively, this means the feature is 
only interested in relatively large differences in color.  
 Having calculated the feature values, the dependent t 
test was used to compare means between joy and 
sadness hypotheses with respect to each feature. The 

Figure 2: Fourteen of the highest fit hypotheses for joy. Each hypothesis is from a different subject.  

Figure 3: Fourteen of the highest fit hypotheses for sadness. Each hypothesis is from a different subject.  



 

results are shown in Table 3.  
 
Table 3: Dependent t test statistics (df=29) for difference in 
means between the joy and sadness images with respect to 
brightness (BRIG), saturation (SAT), temperature (TEMP) and 
number of colors (NCOL). 
 

BRIG* SAT* TEMP NCOL* 

Mean Diff. 0.12 0.25 -102.39 199.23 

Std. Deviation 0.15 0.29 3443.12 326.14 

Std. Err. Mean 0.03 0.05 628.63 59.55 

95% CI Lower 0.06 0.14 -1388.07 77.45 

95% CI Upper 0.17 0.35 1183.30 321.02 

t 4.26 4.70 -0.16 3.35 

Sig. (2-tailed) 0.00 0.00 0.87 0.00 
* Significant difference, p<0.05 
 

The results in Table 3 show that: 
• The average brightness in joy images (M=0.36, 

SE=0.02) is higher than in sadness (M=0.24, 
SE=0.02, t(29)=0.00, p<0.05, r=0.62); 

• The average saturation in joy images (M=0.44, 
SE=0.04) is higher than in sadness (M=0.19, 
SE=0.04, t(29)=0.00, p<0.05, r=0.66); 

• The average temperature in joy images (M=3500.31, 
SE=374.46) is lower than in sadness (M=3602.70, 
SE=443.11). But, this difference is not significant 
(t(29)=0.87, p>0.05, r=0.03); 

• The average number of colors in joy images 
(M=302.20, SE=374.46) is higher than in sadness 
(M=102.97, SE=29.93, t(29)=0.00, p<0.05, r=0.53). 

Finally, decision trees [30] were used to classify the 
60 images with respect to the four features. The J48 
implementation of decision trees in Weka [31] was used 
with default parameters and 10-fold cross-validation. 
The resulting tree correctly classifies 47 (78.3%) of the 
images and is shown in Fig.4. 
 
NCOLORS <= 26: sadness (23.0/3.0) 
NCOL ORS> 26 
|   BRIGHTNESS<= 0.302 
|   |   SATURATION <= 0.413: sadness (7.0) 
|   |   SATURATION > 0.413: joy (10.0/2.0) 
|   BRIGHTNESS > 0.302: joy (20.0/1.0) 
Figure 4: Decision tree for best joy and sadness images. 

7. Discussion 
This paper argues that color can be used to influence 

the perception of joy and sadness in virtual humans. To 
manipulate color, a sophisticated lighting model and 
filters are integrated with a virtual human platform. 
Then, an evolutionary model is developed to learn 
configurations of the lighting and filters parameters 
which express certain emotions. The model starts with a 
random set of hypotheses - i.e. configurations of lighting 
and filters - and, then, uses genetic algorithms to evolve 
new populations of hypotheses according to feedback 
provided by people.  

In a first study, subjects are asked to evolve mappings 
for joy and sadness using the evolutionary model. 
Subjects successively classify five sets of hypotheses, 
for each emotion, without being informed that a genetic 
algorithm is being used to generate the sets. The results 
show that the average set fitness for both emotions is 
monotonically increasing with each succeeding set 
(Tables 1 and 2). This suggests that the genetic 
algorithm is succeeding in providing hypotheses which 
better express the emotion, according to the subjects�’ 
criteria. The fact that subjects are unaware that an 
evolutionary approach is being used allows us to 
exclude the possibility that they are classifying latter 
hypotheses better just because that is what is expected of 
them in an evolutionary approach. However, the results 
also show that the average fitness of the fifth and final 
set is well below the perfect score of 1.0. This might be 
explained for two reasons: (a) too few sets are being 
asked to be evolved. This, then, would have been an 
experimental constraint which existed to limited survey 
time and not a fundamental limit on the expressiveness 
of color; (b) no gesture, facial or vocal expression is 
used. Effectively, these channels have already been 
shown to play an important role on the expression of 
emotions in virtual humans [16] and this paper is not 
arguing otherwise.  

A second study analyzes which features characterize 
the mappings for joy and sadness. Four features are 
considered: brightness, saturation, temperature and 
number of colors. The results show that images of joy 
tend to be brighter, more saturated and have more colors 
than images of sadness (Table 3 and Fig.4). However, 
we�’ve only began to explore the collected data and 
further features reflecting more color properties (e.g., 
which hues are being used) and the interaction of color 
with the virtual human�’s geometry (e.g., the percentage 
of the face in shadow) should be explored. Our 
experience also suggests that the focus should be on 
features reflecting characteristics of the image - i.e., the 
phenome - rather than on parameters of the hypothesis - 
i.e., the genome. There are several reasons for this: (a) 
subjects are unlikely to be classifying phenomes based 
on genome features. For instance, a subject is unlikely to 
be classifying according to the diffuse color or the 
specular color but, according to the combined effect of 
the two; (b) similar phenomes can result from different 
genomes. For instance, a phenome with high brightness 
can result from high intensity diffuse light as well as 
from dim diffuse and fill lights plus inversion of colors 
(with the color filter); (c) preliminary results using 
decision trees to try to differentiate the best phenomes 
using only genome features were not promising. 

Altogether, these studies suggest that it is possible to 
express emotions in virtual humans beyond the usual 
bodily channels - gesture, face and voice. Oatley [32] 
emphasizes the role the arts play on expression of 
emotions in humans. The results presented here suggest 
that the formal elements of art can also play a role on 
the perception of emotion in virtual humans. Effectively, 



 

if one of the initial motivations for embodied agents was 
to have more natural interactions with humans [16], 
what this work suggests is that it is still natural for 
humans to interact with virtual humans which, aside 
from the body, use other elements, such as color, to 
express themselves. The reason this is so still needs 
further research but one possibility is Hosper�’s insight 
that humans perceive emotions in the elements of art 
because they find analogies to internal and external 
manifestations of their bodies when experiencing such 
emotions [1]. 

Regarding future work, we need to understand how 
general are the mappings evolved in the first study. The 
second study already provides some insight on this, in 
that it suggests features people might be using to 
differentiate joy and sadness. Moreover, the successful 
application of a decision tree model, with cross-
validation, also suggests that the results might 
generalize beyond the joy and sadness examples used to 
generate it. However, ultimately, the mappings need to 
be validated with people. To do this, it is necessary to 
setup a careful study where subjects compare images of 
virtual humans under neutral and emotional conditions. 
It would also be interesting to explore whether the 
evolutionary approach generalizes to more emotions. 
From our experience and the feedback from subjects, we 
believe this might be so for some, but not all, emotions. 
Finally, it should be worth exploring whether an 
approach similar to the one this work takes on color also 
applies to other formal elements in the visual arts [2]. 
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