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Abstract. The dynamic use of voice qualities in spoken language can

reveal useful information on a speaker’s attitude, mood and affective

states. This information may be desirable for a range of speech technology

applications. However, annotation of voice quality may frequently be

inconsistent across raters. But whom should one trust or is the truth

somewhere in between? The current study looks first to describe a voice

quality feature set that is suitable for differentiating voice qualities on

a tense to breathy dimension. These features are used as inputs to a

fuzzy-input fuzzy-output support vector machine (F
2
SVM) algorithm,

to automatically classify the voice qualities. The F
2
SVM is compared

to standard approaches and shows promising results. Performances for

cross validation, leave one speaker out, and cross corpus experiments of

around 90% are achieved.

1 Introduction

The term voice quality (henceforth VQ) refers to the timbre or coloring of a
speaker’s voice. For an individual speaker their VQ is composed of longer term
settings of the vocal system combined with dynamic shifts in the system for com-
municative purposes [1]. A speaker’s VQ is an important feature of paralinguistic
signaling in speech and can provide the listener with information pertaining to
the speaker’s affective state [2]. For instance, breathy voice has been generally
observed in association with intimacy and familiarity [1]. Tense voice on the
other hand has been reported in more active affective states, e.g., anger and
happiness [3].

It has been widely observed that VQ can provide useful insights into the in-
tentions and mood of the speaker, and indeed VQ features have also been utilized
in order to improve emotion classification [4]. It follows that robust character-
ization of voice qualities may be desirable for both input (i.e. recognition) and
output (i.e. synthesis) ends of speech applications.

The purpose of this study is to put forward a framework for identifying
voice qualities on a tense to breathy continuum. Few studies have focused on
automatic classification of voice qualities using combinations of features. The
main work in this area has been done in the domain of pathological voice types
[5]. Hidden Markov models (HMMs) and a regression approach were employed



to categorize speech signals, that were generally of a longer duration than the
signals in this study. The task was to match the annotated degree (form 0 to
4) on three VQ scales, namely breathiness, roughness and deviance. Accuracies
of about 50% within each of the three scales could be achieved in the study.
However, the speech material used was mainly pathological voices which weakens
its comparability with the present study. In this study we investigate fuzzy-input
fuzzy-output support vector machine (F2SVM) introduced in [6] for the task at
hand and compare their performance to standard approaches, that do not make
use of the fuzzy membership assignments provided by human experts.

The remainder of the paper is organized as follows: In Sec. 2 the utilized VQ
features for the classification experiments are introduced. Along with the intro-
duction of the speech dataset used, Sec. 3 introduces the annotations by experts,
which are later used as training targets for the fuzzy classification experiments.
Section 4 then briefly introduces the utilized F2SVM, which compete against
two standard non-fuzzy approaches. In Sec. 5 the results for the experiments
are reported and discussed in Sec. 6. Finally, Sect. 7 concludes the paper and
provides an outlook.

2 Voice quality features

The VQ features used in the current study were selected on the basis of being
stated to be able to characterize voice qualities across the breathy to tense
dimension. The features described in Sects. 2.1 - 2.5 describe aspects of the
glottal source signal, which is derived using automatic inverse filtering. This is
done using the pitch synchronous automatic inverse filtering (PSIAIF) method
described in [7], with f0 extracted using ESPS/waves+ software package. The
features described in Sects. 2.1 to 2.5 can then be measured on the output signal
from this method. However, as the output of this method can sometimes contain
uncancelled formant oscillations, which can negatively impact the features, we
use one further feature which is measured without the use of inverse filtering
(see Sec. 2.6).

2.1 Time based LF model parameters (Ra,Rk,Rg,EE)

The most commonly used glottal source model is the Liljencrants-Fant (LF)
model [8]. It is a five parameter (including f0) model of differentiated glottal
flow (i.e. the residual signal after inverse filtering if lip radiation has not been
compensated for). The model has two components. The first component, the
open phase, is a sinusoid function that increases exponentially and the second
component is an exponential function which models the return phase.

U �
g(t) =






E0eαtsinωgt for to ≤ t ≤ te
−EE
�Ta

(e−�(t−te) − e−�Tb) for te < t < tc
0 for tc ≤ t ≤ T0

(1)

The model is generated using the time-points shown in Fig. 1, along with
the parameters E0, α and � which are solved implicitly to ensure area balance



above and below the zero-line (see [8] for full details of the model). The model
can be fit to an inverse filtered speech signal in the time domain using the
method described in [9]. From the given model configuration, one can obtain
four parameters: the amplitude parameter EE (shown in Fig. 1) and three shape
parameters; Rg, Rk and Ra (see Eqs. 2). These parameters have been shown to
be suitable for characterizing a range of voice qualities including breathiness and
tenseness [10]
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Fig. 1. Example LF model pulse for the glottal flow (above) and the differentiated

glottal flow (below)

Rg =
1

2Tp · f0
; Rk =

Te − Tp

Tp
; Ra = Ta · f0 (2)

2.2 LF parameters frequency domain (Raf ,Rkf ,Rgf ,EEf)

An alternative approach for deriving LF model parameters in the frequency
domain was initially described in [11] and has since been further developed.
The method involves using the amplitudes of the first eight harmonics from the
glottal source spectrum as inputs to a feed forward neural network, previously
trained on a large volume of LF model configurations and their spectral informa-
tion, in order to derive the four parameters stated above. Harmonic amplitudes
are measured from the narrowband spectrum, obtained by taking a three pulse
length segment of the glottal source signal, centered on a GCI, and windowed
using a Hamming window. This approach was developed in order to improve
the robustness of the extracted parameters to the presence of noise and phase
distortion.

2.3 Normalized amplitude quotient (NAQ)

The normalized amplitude quotient (NAQ) parameter was introduced as a global
glottal source parameter capable of differentiating breathy to tense voice qualities
[12]. NAQ was shown to be more robust to noise disturbances than time based
parameters and has, as a result, been used widely in applied work on VQ.

2.4 ∆H1,2

The difference in amplitude levels (in dB) between the first two harmonics of the
narrowband glottal source spectrum (∆H1,2) is thought to be a rough correlate of



the open quotient parameter and hence useful at discriminating breathy to tense
voice qualities [13]. The narrowband spectrum is obtained by using three-pulse
length sections, centered on a GCI and using a Hamming window.

2.5 Voice quality spectral gradients (OQG, GOG, SKG, RCG)

Lugger and Yang [14] described a set of spectral gradient parameters for charac-
terizing voice qualities from glottal source signals. The parameters, comprising
Open Quotient Gradient (OQG), Glottal Opening Gradient (GOG), Skewness
Gradient (SKG), and Rate of Closure Gradient (RCG), were stated by the au-
thors to be strongly correlated with typical glottal pulse shape parameters. They
have been shown to be useful in the classification of voice qualities, gender and
emotion, as well as relatively robust [14].

2.6 PeakSlope

A final feature is included which has recently been shown [15] to be able to
separate breathy to tense voice qualities without the use of inverse filtering.

g(t) = − cos(2πfnt) · exp(−
t2

2τ2
) (3)

The speech segment s(t) is convolved with g( t
si
), where si = 2i and i =

0,1,2,....,5. This essentially is the application of an octave-band filter bank with
the centre frequencies being: 8 kHz, 4 kHz, 2 kHz, 1 kHz, 500 Hz and 250 Hz.
Then the local maximum is measured at each of the signals and a regression line
is fit to these peaks and the extracted parameter is simply the slope coefficient
of this regression line [15].

3 Speech data

There is a distinctive lack of available speech data with VQ annotation. Further,
as VQ annotation schemes differ and as the annotator’s interpretation of VQ
labels may not be consistent, this makes large scale data collection difficult. The
speech data for this study comes from the recordings used in [13]. The original
data were speech recordings of 6 female and 5 male speakers aged between 18 and
48 years (with a mean of 30). The speakers were asked to produce eight Finnish
vowels /A e i o u y æ ø/ using breathy, normal and tense phonation types.
Participants were trained with producing the voice qualities before recording.
While conducting the recording speakers were asked to repeat the utterance
with stronger emphasis on the VQ when it was necessary. Each utterance was
repeated three times resulting in 792 speech segments.

The speech was recorded using a unidirectional Sennheiser electret micro-
phone with a preamp (LD MPA10e Dual Channel Microphone Preamplifier)
and a digital audio recorder (iRiver iHP-140). Audio was digitized at 44.1 kHz.

In order to describe three independent sets of voice qualities we carried out
listening test with three expert judges. All participants were experienced in VQ



research and were also familiar with Laver’s labeling framework [1]. The partic-
ipants rated the speech samples on a five point Likert scale from breathy (1)
to tense (5). Samples were presented to the participants in a randomized order,
with an inter-rater agreement of κ = 0.526. For the present study we excluded
all recordings for which the maximal membership assignment did not coincide
with the intended class. 478 vowel recordings were left for analysis (with an
inter-rater agreement κ = 0.717).

Also, included in the current study were 10 sonorant-only (all voiced) sen-
tences, produced in three voice qualities (breathy, modal and tense) by one male
speaker (i.e. 30 sentences in total). The utterances were produced in a semi-
anechoic room and audio was captured using a B&K 4191 free-field microphone
and a B&K 7749 pre-amplifier.

4 Fuzzy-input Fuzzy-output Support Vector Machines

Support vector machines (SVM) have become one of the most popular classi-
fiers in many different machine learning or pattern recognition applications [16].
Extended architectures like one-against-one SVM, one-against-all SVMs or tree
structured SVM [17] have been developed for the classification of crisp or hard
labeled data in the more recent past.

While dealing with naturalistic data, like voice qualities or user states in
natural recordings, however, labels or categories might not be clear or crisp at
all, but rather subjective to the perception of the annotator. Since the ground
truth or the correct class might be unknown or fuzzy, the so called fuzzy SVMs
(FSVM) assigning memberships to several classes to single observations have
been developed by [18]. Though, the output of those FSVMs is still crisp and no
fuzzy output is generated. Therefore, so called fuzzy-input fuzzy-output SVMs
(F2SVM) capable of receiving soft labeled data and producing soft outputs with
memberships assigned over multiple classes have been developed [6]. The fuzzy
output of the F2SVM is required, as in the case of a multi-class one-against-
one SVM (three classes in the present study) a fuzzy output is required for the
proper combination of the decisions of the single SVM. Consider, for instance,
that all three one-against-one SVM (i.e. in this study: breathy vs. modal; tense
vs. modal; breathy vs. tense) would have different crisp opinions. Then, it would
not be possible to find a sound solution for the given input. If, however, the
output were fuzzy such a stalemate is unlikely.

5 Experiments and Results

In the following we have listed the results of the recognition experiments that
we conducted. The standard methods of choice for comparison were naive Bayes
classifier (NB), giving a rough baseline, and standard crisp SVM utilizing the
same radial basis function (RBF) kernel as the F2SVM. The approaches were
compared using a standard ten fold cross validation (X-VAL; 90% training /10%
test data split) as well as leave one speaker out (LOSO; for each fold one of the



Table 1. Error (in %) comparison of NB, standard SVM and crisp F
2
SVM

outputs for X-VAL and LOSO experiments. The error (Err.) and standard deviation

(Std.) are calculated. Significant results are marked with * or **.

X-VAL LOSO

Err. (%) Std. Err. (%) Std.

NB 21.54** 6.58 23.94** 10.35

SVM 16.09* 4.59 18.33* 6.99

F
2
SVM 12.14 3.11 13.88 3.89

eleven speakers was left out of the training set and was solely used for testing)
paradigms. Additionally, the generalization ability of all three methods, i.e. NB,
SVM, and F2SVM, is compared in a cross corpus experiment using the sentence
dataset (see Sec. 3).

For the F2SVM experiments it was necessary to generate fuzzy targets resem-
bling the degree of membership of each sample towards all of the three classes.
For each of the recordings these membership values were calculated using the
labels (i.e. five point Likert scale), as indicated by all the experts. These newly
calculated values were then used as the target signal for the F2SVM in the ex-
periments. If no clear VQ was perceived by the annotator (i.e. mixed labels 2
and 4) the same amount of membership was assigned to both voice qualities.
After normalization to the number of annotators the sum of all memberships of
each sample adds up to 1.

In Tab. 1 the error rates of all of the crisp classification experiments are listed.
The F2SVM outperforms the other baseline approaches in all experiments sig-
nificantly. For the X-VAL experiments using all the available speakers 12.14%
error (standard deviation σ = 3.11) was achieved, and only a slight decrease was
observed while leaving one speaker out (13.88% error; σ = 3.89). In contrast
to these results the standard SVM receiving the actual label as target in train-
ing resulted in 16.09% error (σ = 4.59) in the X-VAL and 18.33% (σ = 6.99)
in LOSO. Both times the F2SVM outperforms the standard SVM statistically
significant in paired t-tests (X-VAL p = 0.02; LOSO p = 0.04). The baseline
performance of the NB results in errors slightly over 20% for both the X-VAL
and the LOSO experiment. Both times the NB is strongly outperformed by the
F2SVM with significant differences (X-VAL p < 0.001; LOSO p = 0.008). No
statistically significant difference between the standard SVM and the NB was
found.

The confusion matrices of these experiments can be seen in Tab. 2 (X-VAL ex-
periment and LOSO experiment). All approaches result in very similar confusion
matrices where almost no confusion between breathy and tense voice qualities
are present. For the F2SVM and the NB these errors are not reported in the
X-VAL experiments, further, in the LOSO experiment they do not exceed 1%.
In the standard SVM case breathy is confused with tense in 6% of the cases for
the LOSO experiment (only 3% in the X-VAL experiment). The errors of the
NB between neighboring voice qualities are, however, more frequent as in the
other approaches.



Table 2. Comparison of confusion matrices using NB, standard SVM and F
2
SVM

approaches for X-VAL and for LOSO experiments with all speakers (eleven speak-

ers). Numbers are hit rates and lines sum up to one for each confusion matrix modulo

rounding errors.

NB SVM F
2
SVM

Breathy Modal Tense Breathy Modal Tense Breathy Modal Tense

X
-

V
A
L

Breathy 0.87 0.13 0.00 0.89 0.10 0.01 0.90 0.10 0.00

Modal 0.19 0.65 0.16 0.13 0.78 0.09 0.08 0.85 0.06

Tense 0.01 0.14 0.85 0.03 0.12 0.85 0.00 0.12 0.88

L
O
S
O Breathy 0.86 0.14 0.00 0.85 0.13 0.02 0.88 0.11 0.01

Modal 0.20 0.62 0.18 0.13 0.78 0.09 0.09 0.83 0.08

Tense 0.01 0.14 0.84 0.06 0.13 0.81 0.01 0.11 0.88

Table 3. Error (in %) comparison of NB, standard SVM and F
2
SVM outputs for

cross corpus experiments with frame-wise error rates as well as temporally integrated

errors over full sentence length. The classifiers are trained on the Finnish vowel set and

tested on the sentence data (compare Sec. 3). The error is calculated by comparing to

the true label.

Frame-wise Temporally integrated

NB 29.53 30.00

SVM 33.33 30.00

F
2
SVM 17.66 3.33

In order to further check the generalization ability of the approach a cross
corpus experiment was conducted. All the mentioned methods, i.e. NB, standard
SVM, and F2SVM, were trained on the Finnish vowel set data and tested on the
sentence dataset. The errors in % are listed in Tab. 3 comprising the errors on a
frame-wise basis including vowels and consonants and the errors achieved after
integrating the decisions of the approaches over the whole sentences, which were
recorded in a constant VQ. It is seen, that the F2SVM approach (frame-wise
error 17.66%; sentence level 3.33%) again outperforms the other two reference
approaches clearly. The two perform around 30% error for all cases. In the case
of the sentence level integration of the decision the F2SVM only mistakes one
breathy sentence as a modal sentence.

6 Discussion of statistical evaluation

The most striking result from the experiments is the capability of the F2SVM
to classify the voice qualities more accurately than a standard SVM with the
same features as input and kernel function (RBF kernel), in the classification
experiments shown in Tab. 1. Therefore, it seems quite obvious that there is rel-
evant information present in the fuzzy targets during training that improves the
generalization capabilities of the classifier. As these experiments were conducted
on the reduced dataset with an inter-rater agreement of κ = 0.717 the training
of all approaches was conducted on a set for which the maximum of the annota-
tors’ membership assignments always coincides with the actual target label, in
order to render a fair comparison. Furthermore, the underlying model employed



during expert annotation, described in Sec. 3, allowing the annotator to assign
a label between breathy and modal (the value 2 in the Likert scale) and a value
between modal and tense (the value 4 in the Likert scale) seems proven by the
classification results shown in Sec. 5. This conclusion can be drawn since all
the classifiers, comprising NB, standard SVM, and F2SVM, confuse neighboring
classes more often than the two extreme classes, breathy and tense.

Overall, the approach is sufficiently stable over untrained speakers and gen-
eralizes well. This, however, is not only the case for the fuzzy approach but also
for the two baseline approaches, indicating that the features are representing
the voice qualities quite well and are quite independent of the speakers (com-
pare leave one speaker out results in Tab. 1).

The generalization capabilities of the approaches were further compared in
a cross corpus experiment. The classifiers were trained using the features ex-
tracted from the Finnish vowel set data and tested on the features of the sen-
tence data, including features corresponding to voiced-consonants and vowels
alike. The F2SVM clearly outperformed the reference approaches, with an accu-
racy of around 82% for the frame-wise decisions. Further, after integrating the
decisions over the whole sentences the accuracy rose to more than 95%, meaning
that one of the thirty sentences was confused.

7 Conclusion

In the present study we investigated the capability of F2SVM to classify VQ
samples from a vowel corpus, as well as in a cross corpus study using data taken
from full sentences. The results in Sec. 5 show high accuracy rates including cross
validation and leave one speaker out validation conditions. Additionally, we have
shown strong generalization capabilities in cross corpus analysis and leave one
speaker out experiments. The proposed method outperformed its competitors
(standard SVM, and NB) in crisp classification experiments clearly, by only
utilizing the information present in fuzzy labels during training. This is a very
encouraging result supporting the value of fuzzy interpretations of VQ data
and annotations. The results are very promising for future work including the
extension of the approach to running speech and more naturalistic data.

One of the shortcomings of the present study is, that we only considered
acted VQ samples. However, we believe the findings here help pave the way
to improved VQ analysis in realistic speech data. The analysis of the sentence
corpus is a first step into that direction and it seemingly worked very well.
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