
** To Appear in AISBQ, 2013 ***

 1

The Sigma Cognitive Architecture and System
Paul S. Rosenbloom

University of Southern California

Sigma (Σ) is a nascent cognitive system – an integrated computational model of intelligent
behavior, whether natural and/or artificial – that is based on a novel cognitive architecture: a
model of the fixed structure underlying a cognitive system [1]. The core idea behind Sigma is to
leverage graphical models [2, 3] – with their ability to yield state-of-the-art algorithms across the
processing of signals, probabilities and symbols from a single representation and inference
algorithm – in constructing a cognitive architecture/system that meets three general desiderata:
grand unification, functional elegance and sufficient efficiency.

A unified cognitive architecture traditionally attempts to integrate together the
complementary cognitive capabilities required for human(-level) intelligent behavior, with
appropriate sharing of knowledge, skills and uncertainty among them. A grand unified
architecture goes beyond this, in analogy to a grand unified theory in physics, to include the
crucial pieces missing from a purely cognitive theory, such as perception, motor control, and
emotion. This shifts issues of embodiment, grounding and interaction into the foreground, to
converge with work on robot and virtual human architectures, but without then relegating
traditional cognitive concerns to the background. Sigma approaches grand unification via a
hybrid (discrete + continuous) mixed (symbolic + probabilistic) combination of: (1) graphical
models, in particular factor graphs with the summary product algorithm [4]; plus (2) piecewise-
continuous functions [5].

Functional elegance implies combining broad functionality – grand unification in this case –
with simplicity and theoretical elegance. The goal is something like a set of cognitive Newton’s
laws that yield the required diversity of behavior from interactions among a small set of general
primitives. If the primitives are combinable in a flexible enough manner, new capabilities
continue to flower without the need for new modules; and integration occurs naturally through
shared primitives. The Soar architecture, many of whose strengths and weaknesses have inspired
choices in Sigma, took a similar approach in its early years [6], while AIXI can be seen as
striving for an extreme version of it [7]. Although doubts remain as to whether natural cognitive
systems are elegant in this manner – as opposed to mere evolutionary patchworks – and whether
such elegance is even computationally feasible in artificial cognitive systems, developments such
as rational analysis on the natural side [8] and graphical models on the artificial side provide
continued promise. Despite the questions, functional elegance maintains its allure because, if it
is in fact achievable, it should yield deeper and more elegant theories with broader scientific
reach [9] that are ultimately easier to understand and apply.

Sufficient efficiency implies cognitive systems that execute quickly enough to support their
anticipated uses. On the artificial side, the primary issue is speed of execution, but joined at

 2

times with boundedness. Graphical models potentially play a key role here, as they not only
yield broad functionality in an elegant manner, but also state-of-the-art performance across this
breadth. On the natural side, the primary issue is whether behavior is modeled at appropriate
human time scales, independent of how much real time is required. Yet speed is also an
important secondary consideration here, particularly as experiments and models scale up.

The remainder of this article summarizes progress to date in achieving a functionally elegant
grand unification in Sigma. First, the currently implemented architecture/system is described at
a high level. Then results are summarized across memory and learning, perception and mental
imagery, decisions and problem solving, multiagent systems and theory of mind, and natural
language. Sufficient efficiency is not a major focus in these results, other than indirectly through
the pervasive use of graphical models; although significant progress has been made on aspects of
it [10], more is required before Sigma will be ready to support complex real-time virtual humans
and robots.

Sigma

The term cognitive architecture derives from an analogy with computer architecture, the fixed
structure of a computer that provides a programmable system (that is, a machine language). In a
cognitive architecture the concern is with the fixed structure that provides a (machine) language
for expressing the knowledge and skills that comprise the learnable content of the cognitive
system. But a computer system isn’t just an architecture plus content, and nor necessarily is a
cognitive system. Sigma is presently composed of three main layers: (1) the cognitive
architecture; (2) knowledge and skills included on top of the cognitive architecture; and (3) the
analogue of a firmware (or microcode) architecture that sits beneath the cognitive architecture.
The cognitive architecture provides a language of predicates and conditionals that blend ideas
from rule-based systems and probabilistic networks. It directly supports the layer of knowledge
and skills on top of it. A firmware architecture traditionally provides a programmable level in
between what is directly supported by hardware and what is desired in the computer architecture.
Sigma’s firmware architecture bridges its underlying implementation language (Lisp) and its
cognitive architecture via a language of factor graphs and piecewise continuous functions (into
which predicates and conditionals are compiled for execution). In this section, we first explore
Sigma’s firmware architecture and then its cognitive architecture. Its present knowledge and
skills are implicit in the results discussed in the next section.

Factor graphs, in common with other forms of graphical models – such as Bayesian and
Markov networks, and Markov and conditional random fields – provide an efficient means of
computing with complex multivariate functions by decomposing them into products of simpler
functions and then translating them into graphs for solution. From such graphs, the marginals of
the individual variables – i.e., the function’s values when all other variables are summarized out
– can be computed efficiently, as can the function’s global mode; for example, yielding
maximum a posterior probability (MAP) estimation. Factor graphs in particular are undirected

 3

bipartite graphs that combine variable nodes for the variables in the function with factor nodes
for the factors into which the function decomposes (Figure 1). Each factor node embodies a
function, and connects to all variable nodes used in the function. Each variable node connects to
the factor nodes that use it. Unlike Bayesian networks, factor graphs can be applied to arbitrary
multivariate functions, not just to probabilistic ones.

The representation used for factor
functions in the graph is a critical
determinant of the expressibility of the
resulting system. Sigma supports a hybrid
mixed approach via a core representation
based on piecewise continuous functions,
which at present are limited to piecewise
linear. The domain of each factor function
is the cross product of its variables,
implying an n-dimensional function when
there are n variables. The overall function is specified in a piecewise linear manner over an array
of rectilinear regions (Figure 2). This representation is general enough to approximate arbitrary
continuous functions as closely as desired. Furthermore, restrictions on these functions – for
example, to unit intervals with constant functions – can yield both discrete and symbolic
functions. Functions can also be hybrids if they comprise multiple variables of different types.

The processing cycle in Sigma’s firmware
architecture consists of a graph-solution phase followed
by a graph-modification phase. Solving a factor graph
requires applying one of the many inference algorithms
available for computing the values of variables in
graphical models. Such a solution typically involves
providing evidence for some of the variables – for
example, by fixing their values via functions in
peripheral factor nodes – and then either computing the
marginal distributions over the other variables
individually or the modal value jointly over all of them.

A message passing approach based on the summary product algorithm is used in Sigma to
compute both marginals and modes (Figure 3). Messages are sent in both directions along links,
from variable nodes to neighboring factor nodes and from factor nodes to neighboring variable
nodes. This overall representation and processing is supported in Sigma’s firmware architecture
via four memories, for factor nodes, variable nodes, links, and messages (caching the last
message sent in each direction along each link).

Figure 2: Bivariate function as a 2D
array of regions with linear functions.

Figure 1: Factor graph for the algebraic function
f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = f1(x,y)f2(y,z).

 4

A message along
a link always
represents a
distribution over the
variable node’s
variables irrespective
of its direction.
When such a
message is received
at a variable node a
new outgoing
message is generated
along each of its

other links as the pointwise product of the incoming messages. This is the product aspect of the
summary product algorithm. If the node is a factor node, the same pointwise product is
computed, but included in the product is also the node’s own function. Unlike at variable nodes,
where the outgoing message is simply this product, further processing is required to compute the
outgoing message here. Because the product includes all of the factor node’s variables, not just
those corresponding to the variable node on the outgoing link, all other variables must be
summarized out before the message is sent. When computing marginals, Sigma uses integration
for summarization. When computing modes it uses maximum instead.

The natural stopping criterion for the graph-solution phase – and thus the trigger for the start
of the graph-modification phase – is quiescence; that is, when no significantly different messages
remain to be sent. Sigma’s message memory is modified dynamically during the graph-solution
phase, but the graph-modification phase is ultimately responsible for altering the other three
memories. At present, the graph-modification phase can alter functions maintained within factor
nodes, in support of updating the cognitive architecture’s working memory and some forms of
learning, but it does not yet yield structural learning. Working memory modification and
gradient-descent learning both modify factor functions in Sigma’s graphs based on messages
arriving at the factor nodes. The latter was inspired by work on local learning in Bayesian
networks that showed results similar to backpropagation in neural networks, but with no need for
an additional backpropagation mechanism [11]. Episodic learning, in contrast, updates
temporally organized factor functions in Sigma based on changes over time in corresponding
working-memory factor functions.

At the center of Sigma’s cognitive architecture are two memories, working memory and
long-term memory, each of which grounds out in the four firmware memories. The core of
Sigma’s cognitive cycle consists, à la Soar’s, of accessing long-term memory until quiescence
followed by decisions and learning, but with a generalized notion of what can be in long-term
memory. Memory access is implemented by the graph-solution phase within the firmware cycle,

Figure 3: Summary product computation over the algebraic function in figure 1 of
the marginal on y given evidence for x and z.

 5

while decisions and learning map onto the graph-modification phase. In addition, Sigma’s
cognitive cycle includes a perceptual phase prior to the graph-solution phase and a motor phase
after the graph-modification phase. Sigma’s cognitive cycle is intended to map onto the 50 msec
cycle found in humans and many other cognitive architectures [10].

Working memory in Sigma is based on predicates, while long-term memory is based on
conditionals. A predicate specifies a class of piecewise continuous functions via a name and a
set of typed arguments – such as Board(x:dimension y:dimension tile:tile) for
an Eight Puzzle board with continuous x and y dimensions and a discrete tile dimension –
providing a cognitive data structure for storage of short-term information. Working memory
embodies the evidence that drives processing in the long-term memory graph. Predicates can be
either closed world or open world, depending on what is assumed when initializing working
memory about values not in evidence. Predicates can also be mixed and/or hybrid, and in
combination can enable richly structured representations [5].

A conditional in long-term memory specifies a knowledge fragment in terms of predicate
patterns plus an optional conditional function (Figure 4). A pattern includes the predicate’s
name plus a constant or a variable for each specified argument. In the firmware architecture, a
constant is matched to a message by a
factor node containing a piecewise-
constant function that is 1 in regions
corresponding to the constant and 0
everywhere else. It took some time to
realize, but was obvious in retrospect, that
such a constant test is merely one special
case of a general piecewise-linear filter in
which each region may specify an
arbitrary linear function, and that the
firmware architecture already supports the full generality of such filters. The conditional
language has therefore also been generalized to support the use of such filters in patterns. A
second generalization has likewise been introduced for variables in support of affine transforms;
that is, combinations of linear transforms and translations that together can yield object
translation, rotation, scaling and reflection. These transforms are central to work on mental
imagery in Sigma [12, 13], as well as playing significant roles in other capabilities of interest,
such as episodic memory, reflection, and reinforcement learning. In essence, all numeric
variables in Sigma – whether discrete or continuous and whether visual, temporal or other – are
fragments of mental images to which affine transforms can be applied.

When used in conditionals, predicate patterns can function as conditions, actions, and
condacts. Conditions and actions are akin to the like-named patterns in rules, and their
functionality is comparable. Conditions match to evidence in working memory, passing on the
successful results for further use. Actions propose changes to working memory. Condacts, a

CONDITIONAL Transition
 Conditions: Location(state:s x:x)
 Selected(state:s operator:o)
 Condacts: Location*Next(state:s x:nx)
 Function: .2<Right(0)=0> .8<Right(0)=1>
 .2<Right(1)=1> .8<Right(1)=2>
 …
 .8<Left(5)=4> .2<Left(5)=5>

Figure 4: Example conditional for a probabilistic action
model (or transition function) in a 1D grid task in which
the actions don’t always behave as requested.

 6

neologism for conditions and actions, fuse the effects of these two, both matching to working
memory and suggesting changes to it. They combine local constraint from the predicate’s own
portion of working memory with global constraint from the rest of memory to support, for
example, partial matching in declarative memory, constraint satisfaction, signal processing, and
general probabilistic reasoning.

Conditionals compile down to factor graphs in the firmware layer in a manner that is
inspired by how the Rete match algorithm [14] handles conditions in rules, but extended to
handle actions and condacts. The main difference between conditions and actions versus
condacts is that messages pass in only one direction for the former two – away from working
memory for conditions and towards it for actions – while messages pass bidirectionally for the
latter. Conditional functions are also linked to this graph, extending the basic Rete idea for them
as well. Although the term conditional is intended to evoke the conditionality found in both
rules and (conditional) probability distributions, this should not be taken to imply that rules are
the only structural form of knowledge available, nor that conditional probabilities are the only
functions representable via conditional functions. The blending enabled by the firmware
architecture is at a deep enough level and a small enough granularity that a substantially larger
space of possibilities emerges.

Decisions in Sigma, in the classical sense of choosing one among the best operators to
execute next, are mediated through the introduction of an architecturally defined selection
predicate. Operator decisions occur just as do selections of new working memory values for any
other predicates, except that Soar-like impasses may occur during operator selection. An
impasse occurs when there is insufficient knowledge available for making a decision, such as
when there are no eligible operators for selection, or there are multiple candidates and
insufficient knowledge to select among them. Impasses lead to reflective processing across a
hierarchy of metalevel states, where the goal is to resolve the corresponding impasses by
providing knowledge that, for example, determines which operator to select.

Implementation of multiagent systems in Sigma involves the addition of an agent argument
to the selection and impasse predicates, and to any user-defined predicate whose contents can
vary by agent. This enables decisions and impasses to occur on an agent-by-agent basis, but with
sharing of knowledge structures across them when appropriate.

Results to Date

The results generated so far via Sigma span memory and learning, perception and mental
imagery, decisions and problem solving, multiagent systems and theory of mind, and natural
language. Memory results include demonstrating how both procedural and declarative memories
can be defined idiomatically via conditionals and predicates [15]. A rule-based procedural
memory is based on conditions and actions over closed-world predicates. Declarative memory is
based on condacts over open-world predicates plus functions. Both semantic memory and

 7

episodic memory can in this way support retrieval from long-term memory based on partial
matches to evidence in working memory. Semantic memory is based on a Bayesian classifier
that retrieves/predicts both object categories and features not in evidence via marginals that are
computed from learned regularities over many examples. Episodic memory stores a temporally
organized history of working memory, enabling the best matching past episode to be retrieved as
a distinct individual via MAP.

All of the learning results to date involve modifying conditional functions. Episodic
learning maintains the history of changes to working-memory predicates in functions specified
within automatically generated episodic conditionals. Gradient-descent learning modifies
conditional functions based on messages that arrive at their factor nodes. With gradient-descent
learning over appropriate conditionals in Sigma, it is has been possible to demonstrate forms of
supervised learning, unsupervised learning – in a manner akin to expectation maximization –
learning of action models (i.e., transition functions) and maps (relating perceived objects to their
locations), and reinforcement learning (RL) [16, 17]. Supervised, unsupervised and map
learning, plus model-based RL, all proved possible with no other change to the architecture than
the addition of gradient-descent learning. However, to support both model-free RL and the
learning of action models, an additional enhancement to the architecture was required to make
pairs of successive states available for learning within single cognitive cycles.

Perception has been demonstrated in Sigma via a conditional random field (CRF) that
computes distributions over perceived objects from noisy feature data, and via a localization
graph that yields distributions over (current and past) locations from distributions over (present
and past) objects and a map [18]. These two independent graphs can be combined into a single
larger graph that yields distributions over locations based on noisy feature information.

Mental imagery leverages conditionals along with piecewise-linear functions that can be
continuous, discrete or hybrid depending on the kind of imagery involved [12, 13]. As described
earlier, the Eight Puzzle board can be represented, for example, as a 3D hybrid function, with
continuous x and y dimensions plus a discrete tile dimension. Results in mental imagery have
spanned object composition and deletion; object translation, scaling, inversion, and rotation (at
multiples of 90°); and extraction of features from composite objects, such as overlaps, edges, and
directional relationships.

Decision making and problem solving have been demonstrated in a Soar-like manner, with
preferences encoded via functional values that combine to determine what operator is chosen on
each cycle [19], and impasses occurring when decisions cannot be made. Problem solving can
occur either via a sequence of steps within the base level, or across meta-levels as impasses
occur. Un-Soar-like decision-theoretic decision making has also been demonstrated, with a
multi-step POMDP implemented via conditionals that generate preferences for operator selection
based on probabilistic projection [18]. Such a POMDP has been combined with the joint
perception+localization graph described above to yield a single system in which object
perception feeds localization, and localization feeds decision making, all within a single decision

 8

[18]. Initial work on theory of mind in Sigma has built on its multiagent capabilities plus
POMDPs to demonstrate both the derivation of Nash equilibria for two-person, one-shot games,
and intertwined multistep, multiagent POMDPs.

Early work on natural language (NL) has demonstrated a form of statistical response
selection that is modeled after (part of the) approach taken in the NPCEditor [20]. Given the
words in an input sentence and appropriate statistical background knowledge, a choice is made
of an output sentence from a set of prespecified candidates. We have also scaled up semantic
memory and learning in support of particular NL classification tasks, such as word sense
disambiguation and part of speech tagging [16].

Conclusion

Although Sigma is still in a fairly early stage of development, and is not yet ready for large-scale
real-time tasks, demonstrations to date indicate some of what is possible when graphical models
are at the heart of a cognitive architecture/system. The beginnings of grand unification have
been demonstrated via hybrid representations, and via combinations of perception and imagery
with cognitive decision making and problem solving. Functional elegance has been
demonstrated via a range of memory, learning, and decision making capabilities supported on a
uniform base. The demonstration via factor graphs of state-of-the-art algorithms such as Rete for
rule match and conditional random fields for vision also foreshadows sufficient efficiency.
Much more of course remains to be done, but the path and its promise should be evident.

Acknowledgement

This effort has been sponsored by the U.S. Army, the Air Force Office of Scientific Research
and the Office of Naval Research. Statements and opinions expressed do not necessarily reflect
the position or the policy of the United States Government, and no official endorsement should
be inferred. The work on Sigma described here has involved Junda Chen, Abram Demski,
Teawon Han, Anton Leuski, Stacy Marsella, Louis-Philippe Morency, David Pynadath, Nicole
Rafidi, Sanjay Raveendran, Kenji Sagae and Volkan Ustun.

References

1. Langley, P. Laird, J. E. & Rogers, S. (2009). Cognitive architectures: Research issues and
challenges. Cognitive Systems Research, 10, 141-160.

2. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Francisco, CA: Morgan Kaufman.

 9

3. Koller, D. & Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. Cambridge, MA: MIT Press.

4. Kschischang, F. R., Frey, B. J. & Loeliger, H. (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47, 498-519.

5. Rosenbloom, P.S. (2011). Bridging dichotomies in cognitive architectures for virtual humans.
Proceedings of the AAAI Fall Symposium on Advances in Cognitive Systems.

6. Laird, J. E., Newell, A. & Rosenbloom, P. S. (1987). Soar: An architecture for general
intelligence. Artificial Intelligence, 33, 1-64.

7. Hutter, M. (2005). Universal Artificial Intelligence: Sequential Decisions Based on
Algorithmic Probability. Berlin: Springer-Verlag.

8. Anderson, J. R. (1990). The Adaptive Character of Thought. Mahwah, NJ: Lawrence Erlbaum
Associates.

9. Deutsch, D. (2011). The Beginning of Infinity: Explanations that Transform the World.
London, UK: Penguin Books.

10. Rosenbloom, P. S. (2012). Towards a 50 msec cognitive cycle in a graphical architecture.
Proceedings of the 11th International Conference on Cognitive Modeling.

11. Russell, S., Binder, J., Koller, D. Kanazawa, K. (1995). Local learning in probabilistic
networks with hidden variables. Proceedings of the 14th International Joint Conference on AI.

12. Rosenbloom, P. S. (2011). Mental imagery in a graphical cognitive architecture.
Proceedings of the 2nd International Conference on Biologically Inspired Cognitive
Architectures (pp. 314-323). Arlington, VA: IOS Press.

13. Rosenbloom, P. S. (2012). Extending mental imagery in Sigma. Proceedings of the 5th
Conference on Artificial General Intelligence (pp. 272-281). Oxford, UK: Springer.

14. Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19, 17-37.

15. Rosenbloom, P. S. (2010). Combining procedural and declarative knowledge in a graphical
architecture. In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of the 10th International
Conference on Cognitive Modeling (pp. 205-210).

16. Rosenbloom, P. S., Demski, A., Han, T. & Ustun, V. (in preparation). Gradient-descent
learning in the Sigma cognitive architecture/system.

17. Rosenbloom, P. S. (2012). Deconstructing reinforcement learning in Sigma. Proceedings of
the 5th Conference on Artificial General Intelligence (pp. 262-271). Oxford, UK: Springer.

18. Chen, J., Demski, A., Han, T., Morency, L-P., Pynadath, D., Rafidi, N. & Rosenbloom, P. S.
(2011). Fusing symbolic and decision-theoretic problem solving + perception in a graphical

 10

cognitive architecture. Proceedings of the 2nd International Conference on Biologically Inspired
Cognitive Architectures (pp. 64-72). Arlington, VA: IOS Press.

19. Rosenbloom, P. S. (2011). From memory to problem solving: Mechanism reuse in a
graphical cognitive architecture. Proceedings of the 4th Conference on Artificial General
Intelligence (pp. 143-152). Berlin: Springer.

20. Leuski, A., & Traum, D. (2010). NPCEditor: A tool for building question-answering
characters. Proceedings of The 7th International Conference on Language Resources and
Evaluation.

