
Toward Question Answering for Simulations

Mark G. Core, H. Chad Lane, Michael van Lent, Steve Solomon, Dave Gomboc, Paul Carpenter
The Institute for Creative Technologies, The University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292 USA
core,lane,vanlent,solomon,gomboc,carpenter@ict.usc.edu

Abstract
The new research area of explainable artificial in-
telligence (XAI) allows users to question simulated
entities whose motivations would otherwise be hid-
den. Here, we focus on the knowledge representa-
tion issues involved in building such systems.

1 Introduction
As artificial intelligence (AI) systems in military simulations
become increasingly complex, it has been difficult for users
to understand the activities of computer-controlled entities.
Because military simulations are often used for their predic-
tive power, the AI systems that drive them must be validated
as behaving realistically and according to doctrine. Detailed
specifications are drafted for these AI systems and the result-
ing behaviors are put under heavy scrutiny. In most cases,
because the observer has no way to question AI-controlled
entities, the observer’s only recourse is watching numerous
simulation runs looking for cases where faulty reasoning re-
sults in an incorrect action.
Military simulations are also used for training, replacing

some or all of the soldiers in a live training exercise. Live
training exercises often use after action reviews (AARs), typ-
ically led by a senior officer, to identity soldier and unit
strengths and weaknesses. US Army Field Manual 25-101,
“Battle Focused Training”, states that “The OPFOR [op-
posing force] can provide valuable feedback on the train-
ing based on observations from their perspectives...the OP-
FOR can provide healthy insights on OPFOR doctrine and
plans, the unit’s action, OPFOR reactions to what the unit
did.” [Army, 1990][AppendixG] If the OPFOR are simulated
entities, these entities must be able to answer questions to
improve the student’s understanding of their actions (human
OPFORs in live exercises are available during AARs). The
simulated friendly forces also need to participate in the AAR
because otherwise human commanders may not see how their
orders translate into the behavior of units and entities.
Figure 1 (a screenshot of our system’s user interface) in-

troduces the concept of an explanation system for simulated
entities; following [van Lent et al., 2004] we use the term,
explainable artificial intelligence (XAI) system. Users select
a time point to discuss, an entity to be questioned, and the

question itself. Some of the questions are specific to the par-
ticular entity (e.g., what is your health?) while others concern
a larger group (e.g., what is your unit’s task?).
In this paper, we first discuss the challenges involved

in building such a system and then present our new mod-
ular architecture for this task and our implementation of
this architecture for the military simulation, the One Semi-
Automated Forces Objective System (OOS) [Courtemanche
and Wittman, 2002]. We highlight the central database of the
architecture as it allows us to link abstract plans to actions
recorded in the log files, meaning simulated entities can ex-
plain how they are attempting to achieve their goals.

2 XAI Challenge
Explanation systems for simulated entities have been built
previously [Johnson, 1994; van Lent et al., 2004] but were
specific to the AI systems controlling the simulated entities
in those applications, and not directly applicable to other AI
systems. If those systems do not represent the information
necessary for explanation then the user will be limited in the
questions he can ask. Consider the example of sending a fire
team to clear a room. Once the fire team is in position outside
the room, the grenadier throws a grenade before the team en-
ters the room. This could be encoded as a procedure (the step
before entering the room is always throwing the grenade) in
which case, the system cannot explain why the grenade was
thrown.
This problem is not new; the literature review in [Swartout

and Moore, 1993] points out that researchers studying expla-
nation for expert systems fairly quickly agreed that the data
structures of the expert system had to be designed with ex-
planation in mind. Swartout and Moore advocated building
a high-level knowledge base containing facts about the do-
main and problem-solving strategies, and using an automatic
program writer to build an expert system from this specifica-
tion. The problem is more complicated for XAI because the
executable code must interface with an external simulation (a
technical challenge) and be adopted by users of the result-
ing package (a social challenge). Military users must be con-
vinced that the resulting AI controlled entities are as realistic
as the AI systems built by more traditional approaches. An-
other issue is the extra effort needed to create such a knowl-
edge base, but it may be the case that such effort is offset by



Figure 1: Interface to XAI for OOS

Figure 2: Domain Independent XAI Architecture



the increased usability of the system (e.g., the testing process
may be quicker).
Swartout and Moore went on to discuss a plan-based ap-

proach to generating explanations, an architecture designed
explicitly to facilitate:
• handling requests for clarification and elaboration
• customization based on a user model
• explanations at varying levels of detail
• natural explanations (e.g., human explanations often use
pronouns and discourse markers)

We follow this advice in proposing a decoupled approach
where the AI systems of a simulation are not changed but in-
stead a declarative representation of the domain is translated
into the knowledge representation used by the AI system; dur-
ing explanation, the entity’s actions can be reconnected to the
original data structures. This domain representation would
contain facts about the domain, definitions of terminology,
and detailed representations of actions and problem solving
strategies.
Consider the previous example of a procedure for clearing

a room always having the “throw grenade” action before “en-
ter room”. The idea behind the procedure is that the grenade
will suppress the enemy forces inside the room. System de-
signers may not encode suppression as a precondition, but in
the declarative domain model, we can define the concept sup-
pression and include it as the goal of the throw grenade action
in the context of clearing the room. The AI system will not
use this information but it will be available during explana-
tion to answer the question “Why was a grenade thrown into
the room?”
Figure 2 shows how the declarative domain model aug-

ments the representations of an AI system. Each action type
in the log file has a unique identifier linking it to its declar-
ative representation and allowing the XAI database to recon-
struct declarative representations of all the actions logged by
the AI system. To answer user questions, the explainer selects
information from the database and presents it via natural lan-
guage and graphics displayed in the user interface.

3 XAI for OOS
Our first instantiation of the XAI architecture connects to the
One Semi-Automated Forces Objective System (OOS), an
entity based simulation system being developed by the U.S.
Army [Courtemanche andWittman, 2002]. XAI for OOS was
a challenging project because of a short development time
(2 months) and the fact that the target simulation was still a
work-in-progress (the official release is in 2006). Interfacing
early with a simulation or training aid is important because
decisions by the developers of such programs can deeply im-
pact the ability of an XAI system to explain entity actions and
we plan to work with the OOS team to overcome the limita-
tions discussed below.
The OOS team’s approach to entity simulation is to encode

declarative action representations in XML and use Java code
to actually implement the described action. Our version of
OOS only had the Java code (the XML descriptions were not

ready) and we had to enter action descriptions by hand into
the XAI database (a relational database).
An additional source of information is the simulation sce-

nario which contains the static information associated with
the simulated world, and the mission table. The static in-
formation defines all the entities including their rank, unit,
and weapons carried. The mission table contains a series
of unit tasks and their parameters (e.g., unit task = clear
room(agent,room), agent = fireteam 1, room = east room of
the warehouse). During the simulation, entities perform indi-
vidual tasks in service of these unit tasks, and log files record
the states of these entities (e.g., when they start and end tasks)
and information about any weapon fire events. After the sim-
ulation is complete, XAI loads the log files into its relational
database and the query generator searches for “interesting”
time points. The time menu on XAI’s interface is sensitive to
the current entity (i.e., it displays the interesting time points
for that entity). For each entity, the query generator identifies
interesting times, defined as when the entity fired its weapon
and the start, end, and mid points of entity tasks. This defini-
tion of interesting times is a placeholder; when deploying an
XAI system, feedback from subject matter experts is vital for
defining what questions the system should answer and what
events are interesting.
After this initialization process is complete, the user can

investigate the results of the simulation using the interface
shown in figure 1. The screenshot shows 12 of the 16 ques-
tions supported by the system and includes questions about
the entities’ state (e.g., “What is your health/damage status”),
questions about the scenario (e.g., “Who are the other mem-
bers of your unit”), and questions about tasks. The user can
ask for descriptions of the current individual (primitive) task,
the current group task, parameters of the task, or how, in gen-
eral, to perform the task.
Although this list of questions reflects our research into

questions asked during military after action reviews, they are
limited to information directly encoded in the log files. In our
current architecture, the query manager executes queries to
retrieve answers to questions. In future work, we will replace
this component with a general purpose XAI reasoner capable
of answering the more complicated questions necessary for
military training purposes. Another influence on what ques-
tions can be answered is the completeness of the simulator’s
log files. In [Gomboc et al., 2005] we discuss requirements
for such log files and how the requirements impact what ques-
tions can be answered.
The question list is context sensitive, and all 16 questions

are not always available. If the query generator determines
that there was no weapon fire event at the current time, then
weapon fire questions (13-15) will be removed from the list.
The question list is also sensitive to the dialogue history as
the request, “Can you give me more detail?”, can only be
made when the previous turn described the current unit task,
or described how to perform a unit task; currently our system
is only able to elaborate on these two answers.
The interface to XAI for OOS is controlled by a servlet en-

gine that communicates via XML with the explainer. Users
select an entity and a time point from the menus on the bot-
tom of the screen, and then select a question from the same



menu area. The middle frame of the page contains a dialogue
history (all the questions asked by the user and the system
responses).
Currently, the system starts by talking to the first entity of

the first unit (in our test scenario, this is “Private Morphy”) as
shown in the screenshot. 2:16 is the first significant time for
Morphy as he starts his task of clearing the east room of the
post office. The first time a user talks to an entity, the dialogue
manager creates an introduction (such as the one shown in the
first line of the dialogue). Since the user has never spoken to
Morphy, he introduces himself by giving his unit role, and
since the user has not spoken to any other members of Blue
Fireteam 1, Morphy describes the unit’s task.
The process to create this introduction is the same process

as answering the questions “what is your unit role?” and
“what is your unit’s task”. The dialogue manager uses the
query generator to retrieve the relevant information from
the database and sends it to the natural language genera-
tion (NLG) module. Because of development time con-
straints, NLG was implemented with natural language tem-
plates (written in XSLT); slots in the templates are filled
with information from the database. NLG formats names and
times so that they appear as links in the user interface (click-
ing on them changes the current entity or time). We plan to
use this facility in future work to encode formatting such as
bulleted lists.

4 Discussion
Rather than simply writing an XAI module that only worked
for its target AI system and simulator, we used our generic
and modular architecture for XAI systems in building XAI
for OOS. In a short time, with this new architecture, we
have been able to exceed the capabilities of our predecessor
system, XAI for Full Spectrum Command [van Lent et al.,
2004]. Because task information is linked to individual ac-
tions recorded in the log files, XAI for OOS can explain the
generic method for achieving its current task as well as dis-
cussing the current parameters of this task.
The modularity of the system is important to allow interop-

erability with different AI systems and different simulators.
As a portability test, we modified our system to accept log
files from Full SpectrumCommand (FSC). The OOS scenario
that we have been using (light infantry) is very similar to the
domain of FSC and we focused on supporting the questions
that made sense in both domains. The major changes needed
were changing the database schema to match the new format,
updating the query manager so it could find the needed infor-
mation in this new format, and changes to NLG to support
new actions and objects.
The modularity of the system will make it easier to im-

prove. For example, we plan to extend the dialogue manager
to maintain a more extensive dialogue history. This code can
be rewritten or replaced by a dialogue management toolkit
without disturbing the other parts of the system. Even the user
interface is simply a module of the system, and another inter-
face supporting the explainer’s XML communication format
could replace our current interface with no changes to the rest
of the system.

The modularity of our XAI architecture will also enable it
to integrate with external software. Currently, with respect to
training, XAI is best classified as a discovery system where
users investigate the events of the simulation with no external
direction (i.e., learning is left entirely up to the student). We
are currently designing an intelligent tutoring module to pro-
vide the pedagogical presence necessary for effective train-
ing. The tutor could use the XAI system to illustrate an im-
portant lesson, or direct the student to use XAI to investigate
an interesting time point, among other strategies.
A topic for future work is defining the general relationship

between question answering systems and tutoring. One possi-
bility is to teach the students about the QA system itself (how
to use it). We are developing an investigation model that en-
codes the detective skills that an expert XAI user would pos-
sess. This model will be similar to troubleshooting guides
for electronics (e.g., try to isolate the component causing the
problem, then investigate the component in detail searching
for faults). We can imagine developing investigation models
for other QA tasks such as finding relevant research papers,
or bargain shopping for airfares.

Acknowledgments
Thanks to Milton Rosenberg, William Swartout, and David
Traum for their guidance and support. Note, the project
described here has been sponsored by the U.S. Army Re-
search, Development, and Engineering Command (RDE-
COM). Statements and opinions expressed do not necessarily
reflect the position or the policy of the U.S. Government, and
no official endorsement should be inferred.

References
[Army, 1990] FM 25-101: Battle Focused Training. Head-
quarters Department of the Army.Washington D.C., 1990.

[Courtemanche and Wittman, 2002] A. Courtemanche and
R. Wittman. OneSAF: A product-line approach for a next-
generation CGF. In Proc. of the Eleventh SIW Conference
on Computer-Generated Forces and Behavioral Represen-
tations, pages 349–361, 2002.

[Gomboc et al., 2005] D. Gomboc, S. Solomon, M. G. Core,
H. C. Lane, and M. van Lent. Augmenting behavior mod-
els to support automated explanation and tutoring. In Proc.
of the Fourteenth Conference on Behavior Representation
in Modeling and Simulation, 2005.

[Johnson, 1994] W. L. Johnson. Agents that explain their
own actions. In Proc. of the Fourth Conference on Com-
puter Generated Forces and Behavioral Representation,
Orlando, FL, 1994.

[Swartout and Moore, 1993] W. R. Swartout and J. D.
Moore. Explanation in second generation expert systems.
In J.M. David, J. P. Krivine, and R. Simmons, editors, Sec-
ond Generation Expert Systems. Springer-Verlag, 1993.

[van Lent et al., 2004] M. van Lent, W. Fisher, and M. Man-
cuso. An explainable artificial intelligence system for
small-unit tactical behavior. In Proc. of the Sixteenth
Conference on Innovative Applications of Artificial Intel-
ligence Conference, Menlo Park, CA, 2004. AAAI Press.


