
Proceedings of the AAAI Fall Symposium on Multi-Representational Architectures for Human-Level Intelligence, 2009.  

Towards Uniform Implementation of Architectural Diversity 

Paul S. Rosenbloom 
Department of Computer Science & Institute for Creative Technologies 

University of Southern California 
13274 Fiji Way, Marina del Rey, CA 90292 

rosenbloom@usc.edu 
 
 
 

Abstract 
Multi-representational architectures exploit diversity to 

yield the breadth of capabilities required for intelligent 
behavior in the world, but in so doing can sacrifice too 
much of the complementary benefits of architectural 
uniformity.  The proposal here is to couple the benefits of 
diversity and uniformity through establishment of a uniform 
graph-based implementation level for diverse architectures. 
 

Architectures for human level intelligence (HLI) seek to 
provide a coherent integration of capabilities sufficient for 
intelligent behavior in the world, whether as part of a 
detailed model of human cognition or a system more 
loosely tied to the specifics of human behavior.  They 
require the integration of a wide range of cognitive 
capabilities for, among other things: memory and 
reasoning, problem solving and planning, reactivity, 
learning, reflection, interaction (including perception and 
motor control, use of language, etc), and the social aspects 
of cognition (such as emotion, collaboration, etc.). 

A key issue with such architectures is what can be called 
the diversity dilemma: they need to be both diverse and 
simple.  Diversity of capability is required to support 
intelligent behavior in a complex and uncertain world.  
Simplicity is critical for architectural elegance, 
integrability, extensibility, and maintainability.  In 
Rosenbloom (2009a), a resolution to this dilemma was 
proposed based on analogy to Deering’s (1998) Internet 
Hourglass and Domingos’s (In press) call for an interface 
layer for AI.  The idea is to seek a simple, uniform, 
mesoscale level in the cognitive hierarchy (Newell 1990) 
that can support increasing diversity above (for supporting 
intelligent behaviors) and below (for grounding in 
biological and computational technologies). 

To be more specific, the proposal is to search beneath 
the architecture for a uniform implementation level based 
on graphical models (Jordan 2004).  Traditionally, 
architectural implementation has been considered mere 
“implementation details”, of pragmatic importance for 
efficiency and robustness, but of little theoretical interest.  
The one notable exception has been when a symbolic 
architecture is implemented via neural networks, as in 
Neuro-Soar (Cho et al. 1991) and SAL (Jilk et al. 2008).  

Neural networks are graphical models of a sort, but they 
are far from the only such models.   Bayesian networks 
[Pearl, 1988] are directed graphical models over random 
variables that have revolutionized probabilistic reasoning.  
Markov networks are undirected analogues of Bayesian 

networks.   Factor graphs (Kschischang et al. 2001) are 
undirected, like Markov networks, but represent general 
multivariate functions, and add factor nodes in the graph 
rather than using separate clique potentials. 

One of the most intriguing aspects of graphical models 
is their ability to uniformly process symbols, probabilities 
and signals via variants of the same graph structure and 
inference algorithm (the summary-product algorithm).  
This approach is not only uniform, but it subsumes state-
of-the-art algorithms spanning these areas, such as arc 
consistency and production match algorithms (symbol 
processing), loopy belief propagation (probability 
processing), and Kalman filters and the forward-backward 
algorithm in HMMs (signal processing). 

Although the roots of many HLI architectures are in 
symbol processing, both probabilities and signals are 
required to cope with the real world.  When signal 
processing is implemented at all in existing architectures, it 
tends to be relegated to external modules having limited 
interaction with cognition.  Neural networks do directly 
capture aspects of both probability and signal processing, 
but in turn have difficulty with symbol processing unless 
hybridized with an explicit symbolic component, such as in 
Clarion (Sun 2006) or SAL.   Employing a more inclusive 
graphical implementation level should enable the uniform 
blending of all three representations into more elegant, 
integrable and extensible architectures.  When conjoined 
with the mapping of neural networks onto graphical 
models (Jordan and Sejnowski 2001), it may also help 
bridge the gap between symbolic and neural processing. 

To explore the notion of a graphical implementation 
level, a reimplementation and extension of the Soar 
architecture (Rosenbloom et al. 1993) has been initiated.  
Soar is particularly useful as a starting point because it: (1) 
is one of the most well developed and broadly applied HLI 
architectures; (2) has been explored as both a unified 
theory of human cognition and as an architecture for 
intelligent agents; and (3) exists in both uniform (versions 
1-8) and diverse forms (version 9, which adds multiple 
forms of representation, memory and learning (Laird 
2008)), enabling a strategy of starting reimplementation 
with the initial uniformity while seeking opportunities for a 
more uniform integration of the later diversity.   

Initial experiments have proceeded from the bottom up, 
with reimplementations of Soar’s elaboration and decision 
cycles (Rosenbloom 2009a; 2009b).  The elaboration cycle 
uses parallel rule match and firing to retrieve information 
from long-term memory about the current situation.  
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Reimplementation of the elaboration cycle was via factor 
graphs.  Each rule became a graph, structured à la junction 
trees, while working memory (WM) became a 3D array, 
structured as an octree, that provided the messages passed 
in the graphs.  The overall result was a new graph-based 
rule-match algorithm with worst-case cost exponential in 
the treewidth rather than in the number of conditions. 

Soar’s decision cycle executes elaboration cycles until 
quiescence and, based on retrieved preferences, then 
chooses what to do next or generates an impasse if it can’t 
decide.  The decision cycle was reimplemented via Markov 
logic – a combination of first-order logic and Markov 
networks – and its associated Alchemy language 
(Domingos et al. 2006).  The result was an enhanced 
decision cycle, combining both symbolic and probabilistic 
reasoning, and enabling the addition of both a simple 
semantic memory and the kinds of trellis structures 
implicated in sequential signal processing (such as speech). 

Many outstanding issues remain with these fragmentary 
initial reimplementations, but they start to reveal the 
potential of a uniform, graphical implementation level to 
support diverse HLI architectures.  Current work is focused 
on completing a uniform implementation of a multi-
representational decision cycle capable of integrated 
symbol, probability and signal processing to support 
combining procedural knowledge, declarative knowledge 
(such as Soar 9’s semantic and episodic memories) and 
perceptual knowledge.  Future work will include 
reimplementing the remainder of Soar, while enhancing it 
with further capabilities, such as perception, decision-
theoretic planning, Markov decision processes, and theory 
of mind.  Beyond Soar, it will also be essential to explore 
reimplementations of other leading architectures, and 
hybrids among them, as well as new multi-representational 
architectures that are more directly inspired by the uniform 
multipotency of a graphical implementation level. 
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