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ABSTRACT
We are interested in the problem of understanding the con-
nections between human activities and the content of textual
information generated in regard to those activities. Massive
online collaborative environments, specifically online virtual
worlds, where people meet, exchange messages, and perform
actions can be a rich source for such an analysis. In this pa-
per we study one of such virtual worlds and the activities
of its inhabitants. We explore the existing dependencies be-
tween the activities and the content of the chat messages the
world’s inhabitants exchange with each other. We outline
three experimental tasks and show how language modeling
and text clustering techniques allow us to explore those de-
pendencies successfully.

1. INTRODUCTION
Information Retrieval, specifically, search deals with re-

trieving documents that are topically-similar to a user query
from relatively static collections. Topic Detection and Track-
ing (TDT) focuses on locating and following interesting top-
ics in a continuous and constantly changing stream of stories.
Data Mining (DM) and Information Extraction (IE) focus
on extracting well-defined properties or features of entities
from static collections. In this paper we explore another re-
search area that deals with analyzing a continuous stream
of textual information that is linked to a parallel and also
continuous stream of data (see Table 1). For example, con-
sider a stream of news stories coming from a newswire and
consider a stream of data from the financial market such
as stock prices and trading volumes of individual compa-
nies. Both the news stories and the changes in financial
market are influenced by the same world events and there-
fore linked. Exploring the existing dependencies between
the streams opens fascinating opportunities [9].

Another relevant example would be a stream of data col-
lected from a seismograph and the text that contains anno-
tations, research articles, and news publications that deal
with the recorded earthshakes. However, we are interested
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in cases when both the text and the data are the result of
human conversations and activities. In this paper we talk
about them as streams of words and actions.

static dynamic
text vs. text search TDT
text vs. data DM/IE

Table 1: A comparative classification of text-related
research fields. The problems we discuss in this pa-
per occupy the bottom right corner of the table.

In the domain of Language Grounding researchers study
how language understanding and language learning is con-
nected to every day activities and human ability to perceive
and explore the world [11]. For example, they observe tod-
dlers recording streams of everything a child hears, sees,
and does. Then they attempt to reconstruct how the hu-
mans acquire language knowledge. The knowledge of how
the words and actions link together makes possible devel-
opment of successful language training systems. Johnson
and his colleagues [8] created an interactive virtual environ-
ment that simulates student’s presence in a foreign country.
The students hear and read new words together with both
observing and performing actions in the simulations. On
the other hand, computers also can benefit from a clearly
defined link between words and actions. For example, Fleis-
chman and Hovy [7] studied a virtual environment where
users converse with computer-generated characters. They
demonstrated that taking into account the situational con-
text – predicting what kind of language the system should
expect from the user based on the current state of the virtual
world, the user’s task, and her progress through the task, –
may significantly improve system’s natural language under-
standing. In other words, the system predicts the content
of the text stream from the content of the action stream.

Most of the current research deals primarily with one-on-
one interactions where either two humans talk to each other
or a human converses with a character in a virtual world.
We are interested in analyzing word and action dependencies
in large collaborative environments where multiple people
organize, perform actions together, and exchange informa-
tion regarding those actions. Note a bi-directional nature
of these dependencies: we may focus on detecting, tracking,
and predicting activities from the text messages; or detect
and track text messages relevant to a specific activity.

2. VIRTUALWORLDS



A MMORPG (Massively Multiplayer Online Role-Playing
Game) is an online computer role-playing game in which a
large number of players can interact together or against one
another in the same game at the same time. An MMORPG
follows a client-server model in which players, running the
client software, are represented in the game world by an
avatar – this is usually a graphical representation of the
character they play. Providers, usually the game’s publisher,
host the persistent worlds these players inhabit. This inter-
action between a virtual world, always available for play,
and an ever-changing, potentially worldwide stream of play-
ers characterizes the MMORPG genre [12].

Once a player enters the game world he or she can engage
in a variety of activities with other players ranging from
chat with their friends or guild members to teaming up in
order to kill large enemies or to complete complex tasks or
quests that are not achievable alone. Killing these enemies
(typically referred to as mobs by gamers) yield the players
experience points and equipment or loot such as armor and
weapons. Both the experience points (used to “upgrade”
the character or his abilities) and the loot gained from slay-
ing mobs, help to improve the character so he can handle
fighting in more adverse situations.

Players interact with each other using both the textual
chat and through the avatar actions. Some more advance
games have elaborate avatars that may represent a wide
variety of gestures and emotions.

MMORPGs (sometimes the term Virtual Worlds is also
used) are immensely popular, with several commercial games
reporting millions of subscribers. Some analysis suggests
that there are at least 35-40 million MMORPG subscribers
around the world [13]. The demographics analysis con-
ducted by Lee [14] shows that 40% of the subscribers are
spending more than 20 hours per week on-line.

Most of the MMORPGs have well-developed economy rules.
Players collect or purchase resources, produce items such
as swords or magic potions and sell those items to other
players. Castronova [4] did a thorough economic analysis
of the game called EverQuest and concluded that the vir-
tual goods (items, loot, experience points, etc) produced
by the players have a noticeable monetary value and can
be exchanged for real-life money at places such as eBay
(http://www.ebay.com/), ige (http://www.ige.com/), etc.
His analysis showed that the players generated quite signif-
icant $2,266 per capita yearly. The currency exchange rates
for the most popular games can be found on the web [6].

We give such an extended introduction into the domain
of MMORPGs to highlight two important points: The first,
massive multiplayer online games are a very serious human
activity. This activity is primarily recreational, but it does
not make it less serious. A significant number of people
spending a significant amount of time playing and poten-
tially accumulate a noticeable amount of wealth doing so.
We expect that as technology develops, these games are go-
ing to attract more and more participants. We also observe
the appearance of non-recreational virtual worlds, e.g., –
games oriented towards learning. Making sense of the things
that are happening in these environments is becoming a very
important task.

The second point is that these on-line games are a very
good model of social processes existing in the real world. We
have a massive record of what people were saying, who said
what, where they said it, when, and what they were doing

at that moment. Statistical analysis of this data creates
exciting opportunities and novel challenges to the field of
Information Retrieval.

We continue the paper by introducing a collection of logs
from one of the small MMORPGs. We define three questions
that we investigate on that collection: we study how well
we can detect a presence of a particular player activity from
the content of their conversations; we establish who of the
players participated in the activity; and we consider how
players’ conversation depends on their geographic location
in the virtual world. We describe our experiments, present
the results of our analysis and conclude the paper with an
extensive outline of possible direction for future work.

Our experimental data comes from BladeMistress, a small
non-profit low-bandwidth fantasy-oriented MMORPG1 [1].
As in much larger virtual worlds, this game has players col-
lecting resources, exploring the world, killing dragons and
other monsters, practicing magic, trading items and stories.
The player avatars move around in a 3D virtual world which
is divided into squares. Our data includes both chat and
game logs from September 2002 to August 2003.

The chat log is the record of all chat messages exchanged
in the game. Each message is tagged with the time of the
message (with one second resolution), the grid coordinates
of the speaker, the speaker name and the message addressee.
There are several different modes of messaging that deter-
mine who is going to see it: a player can broadcast the
message to the whole world, limit its scope to players in the
same square, direct the message to a specific player or to a
group of players.

The game log records a single game activity – players
killing monsters. Each activity is tagged with its time (with
one minute resolution), the name of the monster and the
names of the people present at the same square at the mo-
ment of the kill.

3. PROBLEM FORMULATION
As we discussed in the introduction, the goal of this work

is to understand the connections between collaborative ac-
tivities of players in a social environment and messages they
exchange in relation to these activities. In this section we
will attempt to turn this informal description into a mathe-
matical formalism which will ultimately guide us towards a
solution.

We start by describing the observable variables. Our data
consists of a set of messages {Mi : i=1. . .NM} and a set of
activities {Aj : j=1. . .NA}. Each message M is represented
as a tuple {W, X, Y, T, S, R}. Here S and R represent the
sender and recipient of the message; both are discrete ran-
dom variables taking values in Vπ, the list of known players.
Vπ may also include special values representing groups of
players, such as ’everyone’. X, Y and T are integer-valued
variables representing the location and the time when the
message was produced by the sender S. Finally, W is a
sequence of words representing message content, each word
being a discrete random variables drawn from the vocabu-
lary Vw. An activity A is a tuple {A, X, Y, T, Π}, where A

represents activity type (e.g. a ’monster kill’ ), taking val-
ues in a discrete set Va. As before, X, Y and T represent
the time and location of the activity. When the activity is

1The authors deny any first-hand knowledge of the game
beyond the access to its logs and website.



stretched is space and time, we assume that X, Y, T marks
an important event, such as the moment when the monster
died. Π represents players directly involved in the activity,
it is a set of discrete random variables drawn from Vπ. Note
that it is possible to extend the framework to model the role

of each participant in the activity. While straightforward,
such extension is beyond the scope of this paper.

The aim of our research is to discover hidden “connec-
tions” between the messages Mi and observed activities Aj .
We will attempt to capture these connections by construct-
ing statistical language models for the various activity types.
We can then use these language models to tackle a wide ar-
ray of mining and discovery problems. We are particularly
interested in addressing the following tasks:

(A) Activity detection. Suppose we cannot observe ac-
tivities directly. Given a collection of messages M1..m,
try to predict times and locations of a specific type of
activity (e.g. ‘monster kills’).

(B) Player forensics. Suppose we know the time when
a specific activity happened, but do not know location
or the participants. Can we find the likely participants
by analyzing the messages M1..m? We call this task
forensics because we can view message content W as
traces of evidence hinting to potential involvement of
a given player in an activity.

(C) Investigative search. Given an instance of activ-
ity, find all messages directly relevant to that activity.
Note that this task is not as simple as it may seem.
Some very relevant messages may have been generated
by players who did not directly participate in the ac-
tivity (e.g. messages inciting other players to join a
monster kill). Conversely, players who did participate
in the activity in question may send and receive mes-
sages completely unrelated to that activity and there-
fore non-relevant.

(D) World mapping. Given all messages from all play-
ers we explore if there is a correlation between what
players saying and their location in the world, e.g., is
the message content different for the area where mon-
sters live from the conversations occurring in the other
parts of the world.

Beyond the four tasks suggested above, one could certainly
define other problems that would become feasible if we had
an accurate model of what type of language is likely to be
associated with specific activities. The scope of this paper
will be limited to tasks (A), (B), and (D). While we are very
interested in addressing (C), the absence of relevance judg-
ments makes this task difficult to evaluate quantitatively
and we leave this task for future work. In the following
two sections we will describe our approach to constructing
activity-specific language models and will discuss their per-
formance on tasks (A) and (B).

4. EXPERIMENTAL DATA
We processed the chat log by removing non-ASCII charac-

ters and empty messages, and normalizing the time stamps
of the messages and the log format – the original log for-
mat showed some variations over the collection time period.

We have a chat log of 5,514,173 messages that take approx-
imately 310MB of disk space. There are 284,728 unique
terms in the vocabulary and 19,144 unique login names.

In the game log we normalized the timing of the activ-
ities to synchronize it with the chat log. We do not have
up-to-a second accurate information from the game log, so
we assume that each kill happens at the last second of the
recorded minute. We also tag each record with an approx-
imate location of the activity. We consider the recent lo-
cations of each player present at the kill from the chat log,
– locations of all the messages from the players in the pre-
ceding minute, – and average those coordinates. There are
447,874 monster kills recorded. Some monsters are stronger
than others and require more people getting together to suc-
ceed at the task. Such activities are more interesting to us
because they potentially require a more elaborate and in-
tense discussion among the players. Figure 1 shows the plot
of the number of individual activities as a function of the
number players involved. We focus our attention only on
the activities with at least three players involved that makes
it 16,337 recorded kills.

Figure 1: Shows the distribution of number of kill
activities as a function of the number of people
present. The plot is drawn on logarithmic scale.

We divided the data into training and testing sets at mid-
night of June 1st, 2003. We completely excluded a day full of
data (May 31) to avoid contaminating the test set. Table 2
shows the size of the testing and training sets.

Dataset Training Testing
message count 4,230,126 1,264,586

# of kills with at least 3 people 12,129 4,174
— ” — 5 1691 540
— ” — 7 588 130

Table 2: The size of the training and testing subsets.
We show the number of kills with at least 3, 5, and
7 players present.

5. ACTIVITY DETECTION
In the activity detection task, we are given a testing col-

lection of messages {M} and asked to guess the time t and
location x, y of all activities of a given type a. We do not



have to predict the participants of each activity, and further-
more we will assume that the training set will not include
any information about the participants. This is done in-
tentionally, because in many non-virtual domains we will
not know who participated in the activity of interest. How-
ever, our training data will include a set of training messages
M1..m and a set of activities A1..n with known times and
locations.

We approach the problem of activity detection as follows.
First, we cluster the training and testing messages into a
set of groups Gxyt by their proximity in space and time.
The exact grouping procedure is described below. Then we
use the training groups to estimate language models Pa(·)
specific to each activity a. Finally, for each testing group
we determine whether it is more likely to be a sample from
activity-specific language model Pa(·), or from its opposite
P¬a(·). We evaluate the quality of our models using the
standard signal detection methodology.

5.1 Activity-specific language models
We are given a set of training messages M1..m and a set

of training activities A1..n. Our goal is to construct a model
of language associated with all activities of a given type, e.g.
a monster kill. The difficulty comes from the fact that even
when messages and activities are fully observable, we do not
know which messages are related to which activities. To re-
solve this problem, we are going to consider spatio-temporal
proximity of messages and activities. We are going to as-
sume that all messages Mi that are generated in a small
radius around the activity Ai and around the same time
are relevant to that activity. Upon close examination of the
data we must admit that the assumption is false. There
will always be bystanders – players that happen to be in the
immediate vicinity of the activity without participating in
it. Even more frequently, activity participants will exchange
messages on topics that are not directly related to the ac-
tivity. Occasionally there may also be remote participants –
players who incite or coordinate the activity without being
physically present at the site. Nevertheless, assuming that
all nearby messages are relevant to the activity is not en-
tirely unreasonable. First, from a brief analysis of our data
a large proportion of nearby messages do appear to be rel-
evant. Second, when we estimate activity-specific language
models we will average word probabilities over a large num-
ber of activities of the same type. We hope that words that
come from genuinely relevant messages will occur time after
time, whereas words that come from unrelated messages will
be different every time and their statistics will “wash out”.

For a given activity type a, we estimate the corresponding
language model in the following fashion. First, we aggregate
the messages M1..m into a set of groups G indexed by time
and location:

Gxyt = {Mi : g(Xi)=x, g(Yi)=y, g(Ti)=t} (1)

Where the function g(x)=x·�x/δ� quantizes its argument to
a given granularity δ. We use separate δ for space and time
dimensions. The groups are arranged in such a way that
they overlap by half along each dimension, so every mes-
sage falls into 23=8 distinct groups. Forcing the groups to
overlap helps us to avoid boundary effects where an activ-
ity and a nearby message fall into different (neighboring)
groups. After constructing the groups, we label them with
activities that happen within the time-space region corre-

sponding to the group, so that a∈Lxyt if and only if there is
an activity Aj of type a such that q(Xj)=x, q(Yj)=y and
q(Tj)=t. Once all the groups are labeled, we construct
activity-specific word counts as follows:

Na(w) =
X

k:a∈Lk

X

i:Mi∈Gk

N(Wi; a) (2)

Here the first summation goes over all groups k labeled with
activity a, and the second summation computes the total
number of times the word w occurred in all messages falling
into group k. After we have word counts for all activity
types, we estimate the activity-specific probability of ob-
serving the word w as:

Pa(w) = λ
2 Na(w)
ΣvNa(v)

+ λ(1−λ)
N¬a(w)

ΣvN¬a(v)
+

(1−λ)
|Vw|

(3)

Here λ is the smoothing parameter, which was set to 0.9 in
our experiments. N¬a(w) represents the overall count of w

in groups not labeled by a, and |Vw| is the vocabulary size.
The last term in equation (3) is necessary because we need
to allocate non-zero probability mass to words that do not
appear in any training messages.

5.2 Detecting activity from text
In this section we describe how we can predict the times

and locations of activity a using the activity-specific lan-
guage model Pa(·) derived in the previous section. Our pre-
dictions will be based on the time, location and content of
testing messages. First, we aggregate the individual test-
ing messages Mi into groups Gxyt employing exactly the
same procedure that we used to cluster the training mes-
sages (equation 1). Then, for each testing group Gxyt we
perform the likelihood ratio test:

Pa(Gxyt)
P¬a(Gxyt)

=

Q
Mi∈Gxyt

Q
w∈Wi

Pa(w)
Q
Mi∈Gxyt

Q
w∈Wi

P¬a(w)
(4)

The numerator in equation (4) represents the likelihood that
all messages in group Gxyt are i.i.d. random samples from
the activity-specific language model Pa(·). Similarly, the
denominator gives the likelihood of observing Gxyt as a ran-
dom sample from P¬a(·), the language model not associated
with activity of type a. Large values of equation (4) indicate
that the language of messages around time t and location
x, y closely resembles word statistics associated with activ-
ity a, and allows us to hypothesize that activity a took place
around this time and location. Conversely, small values of
the likelihood ratio indicate that most likely activity a did
not take place around x, y, t.

5.3 Evaluation
If we set a decision threshold θ over the likelihood ratio

and take all tuples x, y, t that scored above θ as positive,
we will get a fixed set of hypotheses ({Hθ}). We can then
compare {Hθ} against the ground truth – the set {A} of
activities that are known to have occurred in the testing
set. Comparison can be carried out with many different
metrics, for example average distance to the true activity,
binary accuracy, etc. We are going to adapt signal detection
methodology and use True Positive and False Positive rates
as our evaluation measures. True positive rate (TP) is the
proportion of real activities that were correctly identified
in our list of hypotheses. False positive rate (FP) is the
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Figure 2: ROC curves for detecting a monster kill
by analyzing message content. The system is more
accurate on kills involving more players, achieving
90% recall with a 10% false positive rate.

proportion of non-activity locations that were erroneously
included among the hypotheses. Formally the measures are
defined as:

TPθ=
|{Hθ}∪{A}|

|{A}| FPθ=
|{Hθ}−{A}|
|¬{A}| (5)

Different settings of the decision threshold θ will lead to
different true positive and false positive rates. In general,
different users exhibit different tolerance to false alarms, and
consequently prefer different thresholds. A common way
to evaluate performance for all users is through a Receiver
Operating Characteristic (ROC) curve, which graphically
shows a tradeoff between true positive and false positive
rates for all possible settings of the decision threshold θ.

Figure 2 shows ROC curves for the task of detecting signif-
icant activities from the message content. In this case the ac-
tivities we are detecting represent monster kills involving at
least 3, 5 or 7 participants. Kills involving many participants
are rare, but also more interesting because of the extensive
collaboration required for success. Messages and kills were
aggregated into regions covering 6x6 squares on the map
and spanning 10 minutes. From looking at the ROC curves
we immediately see that the system is substantially more
accurate in detecting larger kills (7 participants), achieving
an impressive 90% true positives with a false alarm rate of
10%. For users requiring higher levels of recall, the system
would be able to cut the monitoring costs in half (50% false
positives) while retaining 98% of true positives. Detection
accuracy is somewhat lower for kills involving fewer partic-
ipants, yielding 60% and 80% true positives at 10% false
alarm rate for kills with 3 and 5 participants respectively.

An attentive reader may wonder how sensitive the sys-
tem is to the way we aggregated messages into groups. Us-
ing a resolution of 6x6 squares and 10-minute intervals may
not provide sufficient resolution for some applications. We
address these questions in table 3, where we show how de-
tection accuracy varies with the square size and time span.
The numbers reported in table 3 represent the area under

square size 3-person kill 5-person kill 7-person kill
4x4 0.7929 0.9049 0.9443
6x6 0.7822 0.8984 0.9430
8x8 0.7672 0.8863 0.9428

16x16 0.7509 0.8686 0.9216
40x40 0.7064 0.8342 0.8751

time span
3 min. 0.7597 0.8708 0.9099

10 min. 0.7634 0.8839 0.9396
30 min. 0.7672 0.8863 0.9428

5 hrs. 0.7841 0.8948 0.9206

Table 3: Accuracy of the detection system for differ-
ent square sizes and time spans. Numbers represent
the area under the corresponding ROC curve. The
system is generally more accurate for small square
sizes and longer time spans. However, detection
on short (3-minute) time spans is not significantly
worse.
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Player Forensics: finding players involved in a monster kill

Random performance
involved in a kill with 3 or more people
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Figure 3: ROC curves for detecting the players in-
volved in a monster kill. The system achieves simi-
lar performance detecting participants of 3-, 5-, and
7-person kills.

ROC, which is a single-number measure commonly used to
evaluate the quality of an ROC curve. The table suggests
that our system is more accurate on smaller square sizes
and longer time ranges. This means that the system will be
able to pinpoint the location of a hypothesized activity, but
may not be very accurate about the time when that activ-
ity will take place. However, detection accuracy is still very
respectable on shorter time intervals, particularly if we are
concerned with detecting larger kills.

6. PLAYER FORENSICS
We now turn our attention to the second task defined in

section 3. This time, we are given a time and location of a
particular activity of interest, but we do not know the play-
ers who were involved. We are also given a set of all messages
observed within the same time span when the activity was
recorded. We know the sender of each message, but do not



time span 3-person kill 5-person kill 7-person kill
20 sec. 0.6739 0.6355 0.6210
1 min. 0.6892 0.6616 0.6208
3 min. 0.6967 0.6726 0.6354

10 min. 0.6963 0.6896 0.6400
30 min. 0.7158 0.6923 0.6371
1.5 hr. 0.727 0.7077 0.6629

Table 4: Accuracy of participant detection for differ-
ent time spans. Numbers represent the area under
the corresponding ROC curve. The system is gen-
erally more accurate when provided with a longed
stretch of messages from a particular player.

know the location where the message was sent from. Our
goal is to figure out which players participated in the activ-
ity by analyzing the content of their messages. We approach
this problem in the same manner as activity detection. The
main difference is that this time we are not provided with
message coordinates (if we were, the problem would become
trivial). We aggregate all messages from a given player in
a given time span, then label as positive the groups that
correspond to activity participants. We use labeled training
groups to estimate activity-specific language models as de-
scribed in section 5.1. After the models are computed, we
compute the likelihood ration (equation 4) for every player
group in the testing set. We evaluate the detection accuracy
using ROC curves as described in section 5.3.

Figure 3 shows performance of the system in identifying
participants in 3-, 5-, and 7- person kills with the time span
of 10 minutes. The results are pool-averaged over all players
and all time spans containing a target kill. The overall per-
formance is noticeably lower than what the system achieved
on the activity detection task. However, performance is
still substantially above the random baseline, and the higher
false alarm rates may be tolerable due to a smaller overall
number of negatives in this task. Another interesting obser-
vation is that detection accuracy appears to be insensitive
to the size of a kill in question – the ROC curves for identi-
fying participants in 3-person and 7-person kills are almost
the same. Table 4 shows how much performance is affected
by varying the time span around the activity. The num-
bers represent the area under the corresponding ROC curve
and suggest that the system identifies participants most ac-
curately when given longer spans of messages from a user.
However, performance is reasonable for time spans as short
as 20 seconds.

The task of finding activity participants can also be thought
of as a ranked retrieval task – in some settings the goal
may be to quickly find a few obvious participants, and then
use additional information gained from them (e.g. alliances,
guild membership, friend lists) to identify the remaining par-
ticipants. In such precision-oriented setting, it would be
appropriate to rank the hypothesized participants by the
likelihood of their involvement and evaluate using precision
at different ranks. Table 5 shows precision at ranks 5-100
for ranking hypothesized participants of 3-,5- and 7-person
kills. We observe very high accuracies for 5- and 7-person
kills: out of the top 100 hypotheses over 75 times the player
in question was actually involved in a kill. The precision is
somewhat lower for 3-person kills, especially at the very top
of the ranked list. Overall, table 5 suggests that our system

rank 3-person kill 5-person kill 7-person kill
5 0.4000 1.0000 1.0000

10 0.3000 0.8000 0.9000
15 0.4667 0.8667 0.9333
20 0.4000 0.8500 0.8500
30 0.5000 0.7333 0.7333

100 0.5900 0.7700 0.7500

Table 5: Precision at different ranks in a sorted list
of hypothesized activity participants.

may be used to rapidly identify a few players involved in an
activity of interest.

7. WORLD MAPPING
In the last set of experiments for this paper we explored

dependencies between the content of the chat messages and
the speaker location in the virtual world. We segmented
the locations into half-overlapping squares of size 2× 2. For
each segment square we aggregated all chat messages from
all players that originated from that location. We then con-
structed a feature vector for each message group using In-
query adjusted tf × idf score [2]. Finally, we computed
pair-wise inter-vector similarities as cosine of the angle be-
tween the vectors and clustered the vectors using the Ward
algorithm [10].

Each term vector corresponds to a square on the world
map. The resulting clusters can be visualized as shaded re-
gions on a grid. Figure 5 shows the grid corresponding to
the map of the virtual world with clusters for messages col-
lected from a 3-day period starting at midnight on August
1st, 2003. There were 83,129 messages at 5,474 different lo-
cations, and 237 monster killings occurred during that time.
We terminated the algorithm when 100 clusters were pro-
duced, selected four largest clusters, and merged the rest
into the fifth miscellaneous group. The clusters are labeled
with numbers from 0 to 4 and each cluster is assigned a
unique shade of gray starting with black for the largest clus-
ter (“0”) to a very light gray for the miscellaneous one (“4”).
The color legend is at the top right corner of the picture. We
also show the locations of the towns (squares) and the mon-
ster killings (circles) that occurred during that time period.
The reader may compare the cluster grid to the actual map
of the virtual world on Figure 42.

The first thing to notice is that the players’ discussions
concentrate in the center of the map and the top right cor-
ner. From the descriptions on the web site we found out that
the town in the center of the map is where a player normally
starts in the game. The world’s top right corner is where
most of the guilds3 have their towers or headquarters. The
coordinates of that area are also mapped to what we believe
is an underground realm where the most of the monsters
live. There are also conversations in the town areas and few
other locations on the map.

Second, we observe a good correlation between the circles
(the monster killings) and the cluster labeled “1” – the cir-
cles occur near or on top of the squares colored with that

2This is the map of the BladeMistress world during the time
period of our experimental collection. The present version
of the world (January 2006) is noticeably different.
3A guild is a persistent group of players with well-defined
membership and internal rules.



Figure 4: Map of the virtual world.

shade of gray. We analyzed the content of the clusters by
looking at the top best terms from the cluster selected using
word contribution to the clarity score [5]:

Sc(w) = P (w|Ci) log
P (w|Ci)
P (w|C)

=
NCi(w)
|Ci|

log
NCi(w)|C|
NC(w)|Ci|

where P (w|Ci) is the probability of the word w occurring in
cluster Ci, P (w|C) is the probability of w occurring in the
whole collection, and NCi(w) and NC(w) represent the over-
all count of w in cluster Ci and collection C. We processed
the resulting list of terms to remove all words shorter than
4 characters, standard stopwords, adverbs and adjectives.

Table 6 shows the top best terms from the three largest
clusters “0”, “1”, and “2”. What is interesting to note is that
the words like “kill”, “dragon”, and some monster names
(e.g. “dokk”) appear in cluster “0”, while the cluster “1” is
characterized by the words “village”, “dungeon”, “help”. It
looks like the players do not use the monster names where
they are killing them, which is reasonable – they are in the
close proximity to the monster, maybe they can see it on the
screen, so it not necessary for them to refer to the monster
explicitly.

The third cluster picked up quite a few German words – it
is possible that some German-speaking people were playing
the game during those 3 days.

8. DISCUSSION AND FUTUREWORK
These are our first experiments with the MMORPG do-

main. We see several possible improvements for the current
study and many research questions (ranging from text pro-
cessing to other activity detection and player classifications)
remain open.

Our analysis of spatial patterns in Section 7 was limited
to a 3 days period. The choice of the time interval was
motivated mostly by time and resources required to process
and analyze the data in time for the submission. We plan to
repeat the spatial analysis on the whole experimental data
set for the final version of the paper.

Our model of time and space dependencies was quite sim-
ple – we segmented the time and the space into blocks with
well-defined boundaries and all words collected from the chat
messages inside those blocks had the same weight. We plan
to investigate more elaborate models of those dependencies.
For example, we may consider the words that occur in close

Figure 5: Message content clusters on the world
map. Also the towns are shown as squares and the
monster killings represented by circles.

0 1 2
kill village anubis
dragon guard gestern
bone possy aber
dokk suit meiner
time help crossing
tyrant mice computers
guardian skelles gefunden
maze teens entrance
tree patches dokk
look colors musashi
quest dungeon crickets
memory time hewre
warriors levelling schau
dungeon verses einfach
movie babe dimms
queen place back
personna corners poses
boss crap stirbt
lord quest sarges
might home water

Table 6: Top best terms in the 3 largest clusters.



proximity to the activity to be more important than those
that occur at some distance. We can use a bell-shaped
weighting function on the word probability estimations in
the language models.

We observed that the language of chat messages is rather
different from the traditional well-formed text we can ex-
pect from newspaper articles or web pages. Messages are
very reach on typos, acronyms, and domain-specific lexicon.
They are informal and ungrammatical. Often important and
unusual information is expressed using punctuation charac-
ters, e.g., the author’s emotion is conveyed with the emoti-
cons. It is clear that traditional text processing techniques
such as stemming will not be successful without significant
effort on adapting them to this environment. Even the pro-
cess of word tokenization is an open question.

We only have one type of players’ activity recorded in our
data set – monster killings. While this activity is impor-
tant to the game process, we are also interested in analyzing
other activities, e.g., quests, item exchange, goods trading,
resource farming, tutoring of new players, etc. Such an anal-
ysis may require an extensive annotation effort. However,
we can automatically detect when several players meet and
stay together for a significant period of time. We hope that
such gatherings are noticeable events in the players’ life and
carry important meanings. We may attempt to cluster the
conversations that happen during those meetings, e.g., to
isolate when people trading items from the cases when one
player coaches another.

Another area of analysis that remains unexplored is the
classification of players. Suppose you meet an unknown per-
son in the virtual world and start chatting with her. How
quickly can you estimate her level of experience? To setup
such an experiment we can approximate the skill of each
player by analyzing the time she spent on-line and the num-
ber of activities in which she has participated. Now given
a random sample of text messages from a player can we
predict her experience? How large that chat sample has to
be?

Bartle [3] does an extensive analysis of player types and
concludes that there four major types that should be at-
tracted to a game for it to flourish: achievers, explorers, so-
cializes and killers. He also believes that these players have
distinct language patterns. We can construct individual lan-
guage models for the players, cluster them, and attempt to
verify his statement.

9. CONCLUSIONS
In this paper we considered the domain of massive col-

laborative environments where people meet, discuss various
topics and do things together as an exciting area for IR stud-
ies. Our focus was on the dependencies that exist between
people’s activities in those environments and the content
of the messages people generate in regard to the activities.
One example of such an environment is a massive multi-
player online role-playing game. We showed how such a
game can serve as a rich source for experimental data. We
have defined three research tasks to analyze some aspects
of the activity-content dependencies and demonstrated the
success of language modeling and text clustering techniques
in solving those tasks. The final contribution of this paper is
the outline of potential directions for exploring this domain
in the future.
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