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Abstract
We address the problem of speaker clustering for robust un-
supervised speaker diarization. We model each speaker-
homogeneous segment as one single full multivariate Gaussian
probability density function (pdf) and take into consideration
the Riemannian property of Gaussian pdfs. By assuming that
segments from different speakers lie on different (possibly in-
tersected) sub-manifolds of the manifold of Gaussian pdfs, we
formulate the original problem as a Riemannian manifold clus-
tering problem. To apply the computationally simple Rieman-
nian locally linear embedding (LLE) algorithm, we impose a
constraint on the length of each segment so as to ensure the fit-
ness of single-Gaussian modeling and to increase the chance
that all k-nearest neighbors of a pdf are from the same sub-
manifold (speaker). Experiments on the microphone-recorded
conversational interviews from NIST 2010 speaker recognition
evaluation set demonstrate promising results of less than 1%
DER.
Index Terms: Speaker Diarization, Riemannian Manifold
Clustering, Fisher-Rao metric, Riemannian Locally Linear Em-
bedding (LLE)

1. Introduction
Speaker diarization tries to answer the question of “who spoke
when” from audio recordings using speech processing tech-
niques. In general, no prior information about the number of
speakers in the conversation or about timing details of turn tak-
ing are assumed. Typically, speaker diarization involves two
stages: speaker segmentation followed by speaker clustering.
Speaker segmentation breaks the entire audio signal into seg-
ments that are speaker-homogeneous by performing speaker
change detection. Speaker clustering then groups speech seg-
ments from the same speaker together while determining the
number of speakers present at the same time. These two stages
can be performed separately or combined together.

Most state-of-the-art diarization systems are based on a
HMM/GMM approach [9, 13]. In such a framework, the orig-
inal audio signal segmented by Bayesian information criterion
(BIC) or generalized log-likelihood ratio (GLR) is deemed to
have more initial clusters than the true number expected, i.e.,
each detected segment is assigned a cluster. The second step
is agglomerative hierarchical clustering (AHC) that merges two
similar clusters in each iteration until some stopping criterion is
reached. Each cluster is subsequently modeled with a mixture
of Gaussian pdfs (GMM), and when merged, a new GMM is re-
estimated based on the merged data. Viterbi re-segmentation is
performed subsequently to refine the segment boundaries using
the new models.

Recently, an information theoretic approach based on rate
distortion theory [14] has been proposed and proved to be com-
parable to the state-of-the-art systems with significant savings in
computation compared to the HMM/GMM approaches. An al-
ternative based on Variational Bayes is presented in [11, 15, 16]
to incorporate the notion of eigenvoices in diarizing telephone

conversations. Yet another approach [17] has proposed spec-
tral clustering of segments based on the Kullback-Leibler diver-
gence between the GMM models built on the segments. All of
the above methods require an Expectation-Maximization (EM)
algorithm at some point in the modeling.

Inspired by the spectral clustering approach, we present
a novel geometric algorithm for speaker diarization based on
the unsupervised Riemannian locally linear embedding (LLE)
framework developed in [7, 8], which has demonstrated impres-
sive performance in computer vision tasks. Almost all exist-
ing manifold learning algorithms are neighborhood based and
sensitive to the neighborhood, including the Riemannian LLE.
However, we will demonstrate that with a simple constraint on
the length of segments, we can reduce the sensitivity at the cost
of slight increase in computation, and make the algorithm EM-
free. In order to focus on speaker clustering, in our proposed
algorithm in this paper, we assume the number of speakers is
known and each speech segment is speaker-homogeneous.

We highlight our contributions in this paper in the next sec-
tion, and give a basic review of the mathematical foundation
for manifold learning in section 3. In section 4, we present our
diarization algorithm. In Section 5 and 6 we present the exper-
iments on the NIST 2010 microphone-recorded conversational
interview data set and a discussion.

2. Contributions
Our novel contributions in this work are two-fold: First, to the
best of our knowledge, this is the first work to apply manifold
clustering with an exact Riemannian metric to speaker diariza-
tion, despite the multitude of existing methods in this area. Sec-
ond, we provide a simple but efficient solution: (i) the proposed
solution can robustly work when there is insufficient data to rep-
resent local geometry on a statistical manifold; (ii) it also avoids
the drawbacks along with the Expectation-Maximization algo-
rithm.

3. Mathematical Formulation for Manifold
Learning

3.1. Riemannian Geometry

This section gives a review of the basic terminologies in Rie-
mannian geometry as the mathematical foundation for our di-
arization algorithm. For more detailed explanation, please refer
to [2].

Intuitively, a differentiable manifoldM of dimension d is a
space that “locally” resembles a copy of the Euclidean space of
the same dimension but not necessarily globally. The concept
of the tangent space manifests the locally Euclidean property.
Suppose x ∈ M and suppose α(t) : [−ε, ε] → M is a curve
onM for some ε > 0 with α(0) = x. The tangent space at x
on M, denoted by TxM, is a vector space of tangent vectors
α̇(0) for all curves α(t) that pass through x. A tangent space
TxM can be viewed as a local linearization of the manifold
around x. A Riemannian metric on a differentiable manifold
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M associates to each x ∈ M a differentiable inner product
〈·, ·〉x on TxM and the induced norm by a Riemannian metric
is defined as ‖v‖2x = 〈v,v〉x ∀v ∈ TxM. A manifold with
a Riemannian metric is called a Riemannian manifold. Define
the minimum distance between two points xi and xj on the
manifold M to be the Riemannian distance and denote it by
dist(xi,xj). Among all smooth curves from xi to xj , the one
with minimum Riemannian distance is called the geodesic curve
from xi to xj . For any x ∈M and any v ∈ TxM, there exists
ε > 0 and a geodesic curve γv(t) for all |t| < ε such that
γv(0) = x and γ̇v(0) = v.

Now consider the exponential map expx : TxM → M
sending a tangent vector v to γv(1), expx(v) = γv(1). The
inverse of expx is the logarithm map logx : M → TxM.
For any two points xi, xj ∈ M, the tangent vector to the
geodesic curve from xi to xj is given by v = logxi

(xj) and
expxi

(logxi
(xj)) = xj . The Riemannian distance between xi

and xj is defined as dist(xi,xj) = ‖ logxi
(xj)‖xi .

3.2. Riemannian Analysis of Probability Density Functions
The application of Riemannian geometry to the manifold of
probability density functions plays an important role in this
work. Rao [1] first introduced the manifold of statistics where
each point on the manifold is a pdf. Geometrization high-
lights the invariance under coordinate transformation. Rao
also showed that the Fisher-Rao metric is a Riemannian met-
ric. In fact, Fisher-Rao metric is the intrinsic unique metric
on the statistical manifold and the only metric invariant to re-
parametrization [5]. Srivastava et al. [6] gave a “spherical”
version of the Fisher-Rao metric that allows closed form ex-
pressions for various Riemannian properties. The crux is to re-
parametrize pdfs. Let P be the set of pdfs:

P =

{
p : R→ R

∣∣∣∀s p(s) ≥ 0,

∫
R

p(s)ds = 1

}
.

For v1, v2 ∈ TpP , the Fisher-Rao metric [1] is defined as:

〈v1,v2〉p =

∫
R

v1(s)v2(s)
1

p(s)
ds.

It turns out this formulation is hard to deal with because it is not
easy to maintain the geodesic curve of any two points of P to
lie on P under this Fisher-Rao metric [6].

Consider another representation for the set of pdfs.

Ψ =

{
ψ : R→ R

∣∣∣∀s ψ(s) ≥ 0,

∫
R
ψ2(s)ds = 1

}
,

is called the square-root re-parametrization of pdfs. Rather than
a pdf, a point on the statistical manifold now represents a pos-
itive square-root of a pdf. It can be shown that the Fisher-Rao
metric for the square-root re-parametrization becomes [18]:

〈w1,w2〉ψ =

∫
R

w1(s)w2(s)ds,

where ψ ∈ Ψ and w1, w2 ∈ TψΨ. With such re-
parametrization, the Fisher-Rao metric is equivalent to L2 met-
ric and the set of pdfs is a unit sphere in a Hilbert space. The
differential-geometrical properties of a sphere immediately ap-
ply. For any two points ψ1, ψ2 on a unit sphere, the Riemannian
distance dist(ψ1, ψ2) is the angle between them:

dist(ψ1, ψ2) = cos−1〈ψ1, ψ2〉

The geodesic curve between ψ1 and ψ2 is

γ(t) =
(1− t)ψ1 + tψ2

t2 + (1− t)2 + 2t(1− t)〈ψ1, ψ2〉
,

and the exponential and the logarithm maps are

expψ1
(w) = cos(‖w‖ψ1)ψ1 + sin(‖w‖ψ1)

w

‖w‖ψ1

logψ1
(ψ2) =

u(∫
R u2(s)ds

)1/2 cos−1〈ψ1, ψ2〉

where
〈ψ1, ψ2〉 =

∫
R
ψ1(s)ψ2(s)ds,

u = ψ2 − 〈ψ1, ψ2〉ψ1, w ∈ Tψ1Ψ.

3.3. Euclidean and Riemannian LLE
With the appropriate metric introduced, this section discusses
the clustering framework: one of the best known nonlinear
dimensionality reduction techniques, locally linear embedding
(LLE), and its generalization to accomodate Riemannian mani-
folds [7, 8].

Nonlinear dimensionality reduction techniques can be
broadly divided into two categories, namely global and local.
ISOMAP [4] and LLE [3] are arguably the representatives for
these respective categories. The difference between global and
local techniques is the scope of properties they intend to pre-
serve.

LLE tries to uncover the nonlinear local embedding of high
dimensional data while preserving the neighborhood. The phi-
losophy is to compute similarities between points within a pre-
defined neighborhood size and to apply the spectral clustering
on the learned similarity matrix. In general, the free parameters
are the size of neighborhood k and the intrinsic dimension d.
Since the focus in this work is to apply the LLE algorithm to
clustering of speaker segments, the neighborhood size k is the
only parameter. Following is the outline of the LLE algorithm
for clustering:

1. For each data point xi, i = 1, · · · , n, find its k-nearest
neighbors based on Euclidean distance. Denote N(i) the
index set of k-nearest neighbors of xi.

2. Construct the similarity matrix W by solving the mini-
mization problem for each xi

min
wi

‖
n∑
j=1

wijxj − xi‖2 s.t.
n∑
j=1

wij = 1,

where wij = 0 if j /∈ N(i). wi is the i-the row of W .
3. Solve the eigen-decomposition problem of matrix M ∈

Rn×n, where M = (I − W )T (I − W ), I ∈ Rn×n
the identity matrix. Select eigenvectors corresponding
to the second to the (m + 1)-th smallest eigenvalues
Z = [u1, · · · ,um] and apply k-means algorithm to as-
sign rows of Z into m clusters. If i-th row is assigned to
clustermi wheremi ∈ [1,m], then xi belongs to cluster
mi as well.

The second step is simply a constrained 2-norm minimization,
which can be easily solved by Lagrangian multiplier method.
The solution is

[wii1 , · · · , wiil , · · · , wiik ] =
1TC−1

i

1TC−1
i 1

, ∀il ∈ N(i), (1)

where 1 is the vector of all ones and Ci the local Gram matrix
at xi defined as Ci(j, l) = (xi − xj) · (xi − xl).

To generalize the LLE algorithm to incorporate Riemannian
structure [7, 8], some modifications to the minimization prob-
lem are necessary. First, replacement of the Euclidean distance
by the Riemannian distance accounts for the nonlinearity. Next,
follow the same spirit to compute the similarities for points on
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the statistical manifold. The geodesic linear interpolation of xi
by all data points in the neighborhood can be expressed as

x̂i = expxi

(
n∑
j=1

wij logxi
(xj)

)
.

Then solve the following minimization of Riemannian distance
square for wi:

min
wi

∥∥∥ logxi

(
expxi

(
n∑
j=1

wij logxi
(xj)

))∥∥∥2
xi

subject to the same constraint on wi as in the Euclidean case
∀1 ≤ i ≤ n. Since expxi

and logxi
are inverse to each other,

the objective function can be simplified to

min
xi

‖
n∑
j=1

wij logxi
(xj)‖2xi

.

The solution by the Lagrangian multiplier method gives the
same formula as in Eq.(1) with the local Gram matrix replaced
by Ci(j, l) = 〈logxi

(xj), logxi
(xl)〉xi .

4. Riemannian Manifold Based Diarization
4.1. Two Challenges
Some observations and issues deserve attention here. First of
all, due to the existence of the closed-form expression, the al-
gorithm is computationally simple. There are no iterations in-
volved and certainly there are no convergence issues. However,
in order to apply LLE, the choice of neighborhood size is crit-
ical to the accuracy of clustering [19]. If the size is too small,
the similarity matrix loses the ability to capture sufficient in-
formation on the local geometry, especially when the neighbor-
hood size is smaller than the intrinsic dimension. On the other
hand, if the size is too large, there is a risk of including points
from other sub-manifolds into the same neighborhood on which
a similarity matrix is falsely computed. It is also possible [19]
that for every neighborhood size, there is always a mixture of
points from different sub-manifolds. In such case, the insuffi-
ciency of sample points has a great impact on the accuracy.

Challenge 1: As we have discussed above, the neighbor-
hood size is critical to accuracy. However, it can happen that
for each sub-manifold, there is only a small number of sample
points but the intrinsic sub-manifolds are of high-dimension. A
large neighborhood size is thus necessary to capture well the lo-
cal geometry. The difficulty comes from the fact that due to the
small number of sample points, a large neighborhood size tends
to include points from different sub-manifolds, which will re-
sult in a poorly learned similarity matrix. This is an unwanted
situation.

Challenge 2: The second challenge is on the computational
aspect. Usually, speech signals are modeled by GMMs, instead
of a single Gaussian pdf, to account for the diversity of human
speech production. The most common GMM training tool is
the well-known EM algorithm, which has certain disadvantages
like local maxima and slow convergence. Therefore, it is unde-
sirable to integrate the EM algorithm into the Riemannian LLE.

4.2. Length Constraint
Fortunately, we can address both of these challenges by impos-
ing a length constraint on each segment. Although it increases
the size of problem by a factor depending on the turn taking
frequency, the slight increase in computation indeed pays off.
For small segments as short as one second, a single Gaussian is
sufficient to capture the variability of the signal. Thus the issues
of local maxima and iterative computations disappear. Second,

since points from the same speaker still lie close to each other
because they are generated from the same speaker, each speaker
now is represented by a denser set of samples. Therefore a
large neighborhood size now incurs a smaller risk of connecting
points from different sub-manifolds, and the learned similarity
matrix based on this larger neighborhood can better capture the
local geometry. Experimentally, we set the length constraint to
be one second.

4.3. Neighborhood Size k
The choice of k is generally heuristic and data dependent. El-
hamifar et al. [19] and Cetingul et al. [20] proposed an auto-
matic way to select k for each sample point xi by adding a l1-
norm regularization to the minimization problem in the formu-
lation of the LLE. The original constrained 2-norm minimiza-
tion becomes a constrained least squared l1 regularization prob-
lem (constrained LASSO), which can be processed as quadratic
programming and solved by algorithms such as interior-point
method. However, importing sparsity constraint into the LLE
problem leads to an overhead that at each point the local Gram
matrix is of RN

2

rather than of Rk
2

, and the amount of com-
putation time becomes prohibitive. Moreover, the time spent in
solving the convex minimization problem turns out to be a se-
vere bottleneck for the entire clustering problem. Although we
highly prefer less supervision and less tuning, for now we do
not adopt this sparse approach. While k is a tunable parame-
ter, we will show that for a wide range of k, the performance
remains stable below 1%.

4.4. Algorithms
4.4.1. Algorithm 1

Directly apply the Riemannian LLE [7, 8] on the speaker clus-
tering problem as the baseline.

1. Input: a sequence of speaker-homogeneous segments
{x1, · · · ,xn}, each of which contains a number of
acoustic features.

2. For each xi model it as a single full multivariate Gaus-
sian pdf of acoustic features and denote the square-root
re-parametrization of the pdf by gi.

3. For each gi find the k-nearest neighbors using the Rie-
mannian distance. Denote the index set of k-nearest
neighbors of gi by N(i).

4. For each gi compute the local Gram matrix by
Ci(j, l) = 〈loggi

(gj), loggi
(gl)〉gi , and solve for wi

by

[wii1 , · · · , wiik ] =
1TC−1

i

1TC−1
i 1

,

∀1 ≤ l ≤ k, il ∈ N(i) and wij = 0 if j /∈ N(i), where
1 is the vector of all ones.

5. Solve the eigen-decomposition problem for M = (I −
W )T (I−W ), where I is the identity in RN×N and i-th
row of W is wi. Select the eigenvectors u1, · · · , um
corresponding to the second to the (m + 1)-th small-
est eigenvalues, respectively, and stack them together as
Z = [u1, · · · ,um], where m is the number of clusters.

6. Apply k-means clustering to rows of Z into m clusters.
If i-th row is assigned to cluster j, then gi belongs to
cluster j, and therefore, xi lies on the sub-manifold j.
Assign xi to cluster j.

7. Output: assignments of segments {x1, · · · ,xn}.

4.4.2. Algorithm 2

Based on Algorithm 1, we present our modified algorithm for
speaker diarization.
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1. Input: a sequence of speaker-homogeneous segments
{x1, · · · ,xn}, each of which contains a number of
acoustic features.

2. For each speaker-homogeneous segment xi, slice it into
one-second long chunks xii1 , · · · ,xiiN .

3. Repeat step 2 for all 1 ≤ i ≤ n. Suppose in total it
results in N chunks of one-second long speaker homo-
geneous segments, where N =

∑n
i=1 iN . Denote them

by {y1, · · · ,yN}.
4. Apply Algorithm 1 to the set {y1, · · · ,yN}, and take

the result as the output assignments.

5. Output: finer segments {y1, · · · ,yN} of the original
{x1, · · · ,xn} and assignments of {y1, · · · ,yN}.

5. Experiments
5.1. Data Preparation and Evaluation Scheme

We used the microphone-recorded conversational interview au-
dio in core condition from the NIST 2010 speaker recognition
evaluation plan as our test set. There are two channels denoted
by A and B, respectively. Channel A is recorded by a designated
room microphone and most of the speech is from the intervie-
wee, while the interviewer in the channel B is recorded by a
head-mounted close-talking microphone. We merged these two
channels into a mono channel audio stream. The data set con-
tains 2477 audio files of five-minute long, roughly 206 hours
in total. The acoustic features in the experiments consisted of
20 dimensional raw MFCC, computed with frame size 40 ms
and frame shift 20 ms, without first coefficient and without any
type of normalization. The reason for 20 MFCC is because
they have been proved to be useful in speaker recognition task
[10, 11]. Since the feature dimension was 20, the manifold of
Gaussian pdfs had dimensionality of 20+202/2+10 = 230(the
mean and the upper triangle of the covariance). In our experi-
ments, we took advantage of the speaker segmentation infor-
mation within the data set such that each segment was speaker-
homogeneous. We thus concentrated on the speaker clustering
part in focus of our contribution in this paper. Our diarization
performance evaluation followed the two-speaker conversation
method employed in literature, e.g. [11, 12]. Although this
method makes decision on overlapped segments when cluster-
ing, they are ignored during evaluation. Because our algorithm
takes one segment as a unit, we did not require any “no-score
zones” around the segment boundaries. The diarization error
rate (DER) in this setting boils down to mis-clustering error
rate. The performance varied over the corpus, so we reported
the weighted mean and weighted standard deviation of the DER
over all files.

5.2. Comparison

For the first experiment, we tested the original Riemannian LLE
with no constraint on the length of segments. Each segment
was modeled as a single full multivariate Gaussian pdf. Our
expectation to the performance was not optimistic due to the
limitations of long segments and insufficient samples for the
Riemannian LLE, but to our surprise the DER is below 5% from
k = 20(mean = 4.806%, std = 1.423) to k = 25( mean =
4.893%, std = 1.366%). The best is at k = 23 with the mean
DER 4.607% and the standard deviation 1.283%.

For the result by Algorithm 2, with the constraint on the
length of segments, the weighted average error rate is even bet-
ter, drastically reduced to below 1% for a wide range of k from
35(mean = 0.971%, std = 0.137%) to 75(mean = 0.988%, std
= 0.092%). The best performance is found at k = 57 with the
mean DER 0.881% and the standard deviation 0.093%.

These statistics tell that Algorithm 1 does not learn suffi-
cient information about the local geometry within the samples

when k is smaller than 23. As k increases Algorithm 1 grad-
ually gains more accuracy as the similarity matrix improves
based on a larger neighborhood size until the effect of connect-
ing points from different sub-manifolds in the neighborhood
predominates after k passes 23. However, the optimal k for
the algorithm to capture well the local geometry is far away at
57 as seen in Algorithm 2. On the other hand, Algorithm 2
also gains more accuracy as the neighborhood size k increases.
Since there are denser samples, the effect of a mixture of sam-
ples from different sub-manifolds is none or insignificant for a
wide range of k. Hence Algorithm 2 has a better chance to learn
the local geometry. This performance of Algorithm 2 supports
our proposed scheme by demonstrating the immunity to spar-
sity in samples and the robustness to the neighboghood size k.
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%
)
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Figure 1: Performance of Riemannian LLE with (below) and
without (above) 1s constraint on the length of segments. The
horizontal red line indicates the level of 1% DER.

6. Discussion
The upper plot of Figure 1 justifies the application of the Rie-
mannian LLE to speaker clustering. We attribute the accuracy
in Algorithm 1 mostly to the proper Riemannian metric in use.
However, the lower plot of Figure 1 shows that Algorithm 2
achieves a much better, more than 80% relative reduction on
DER, with only a simple constraint on the segment lengths at
a cost of slight increase in computation. We want to note that
no post-processing (such as smoothing) has been applied to the
output of Algorithm 2. The limitation of the current work is
that we have only considered two-speaker conversational inter-
views, assuming that the the number of speakers and the speaker
segmentation information. Such conditions should be relaxed
in future research efforts. A method to automatically select the
length constraint is important to investigate further.

7. Conclusion
We reported our work on the problem of speaker diarization
for the conversational interview corpus. We took a geometric
approach, which is distinct from past methodologies, to deal
with the problem of speaker clustering. The proposed scheme
of constraining length of speech segments served as a simple
approach to solve the problem of insufficient local samples and
to avoid using the EM algorithm. The proposed diarization al-
gorithm demonstrated the immunity to sparsity in samples and
the robustness to the neighboghood size k.
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