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Abstract—Unsupervised speaker indexing sequentially detects
points where a speaker identity changes in a multispeaker audio
stream, and categorizes each speaker segment, without any prior
knowledge about the speakers. This paper addresses two chal-
lenges: The first relates to sequential speaker change detection.
The second relates to speaker modeling in light of the fact that
the number/identity of the speakers is unknown. To address this
issue, a predetermined generic speaker-independent model set,
called the sample speaker models (SSM), is proposed. This set
can be useful for more accurate speaker modeling and clustering
without requiring training models on target speaker data. Once
a speaker-independent model is selected from the generic sample
models, it is progressively adapted into a specific speaker-depen-
dent model. Experiments were performed with data from the
Speaker Recognition Benchmark NIST Speech corpus (1999)
and the HUB-4 Broadcast News Evaluation English Test material
(1999). Results showed that our new technique, sampled using
the Markov Chain Monte Carlo method, gave 92.5% indexing
accuracy on two speaker telephone conversations, 89.6% on
four-speaker conversations with the telephone speech quality, and
87.2% on broadcast news. The SSMs outperformed the universal
background model by up to 29.4% and the universal gender
models by up to 22.5% in indexing accuracy in the experiments of
this paper.

Index Terms—Generic models, localized search algorithm
(LSA), Markov chain Monte Carlo (MCMC) method, maximum
a posteriori (MAP), sample speaker models (SSM), universal
background model (UBM), universal gender models (UGM),
unsupervised speaker indexing.

I. INTRODUCTION

RECOGNIZING speakers from the speech signal is one
of the key challenges in biometrics. Speaker recognition

encompasses speaker verification and speaker identification.
Speaker verification is to verify a person’s claimed identity
from his (or her) voice. In speaker identification, without a prior
identity claim, the system decides who the person is. There are
two categories: text-dependent and text-independent speaker
recognition. In text-dependent recognition, the spoken phrase
is known to the system whereas in the text-independent case,
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the spoken phrase is unknown. Speaker indexing in general is a
text-independent speaker identification problem [1], [2].

Speaker indexing, the process of determining who is talking
when, is an integral element of speech data monitoring and con-
tent-based data mining applications. Consider, for example, ap-
plications such as meeting/teleconference monitoring, archiving
and browsing. A key motivation arises from the fact that it is im-
possible or tedious to attend all relevant meetings face to face.
Multimedia meeting or teleconference monitors and browsers
can be useful for conveniently obtaining meeting information,
such as who is saying what and when, remotely through on-line
or off-line systems [3], [4]. Specially, these applications com-
monly include a speaker indexing process that tags speaker-spe-
cific portions of data to pin point who is talking when [5].

Speaker indexing can be divided into two categories based
on processing requirements: on-line and off-line. Both on-line
and off-line indexing can be executed only sequentially, a char-
acteristic of speaker indexing. Off-line speaker indexing can
be used for record keeping, but it is not suitable for real-time
meeting or teleconferencing systems that demand on-line pro-
cessing. One of the main technical differences between off-line
and on-line speaker indexing is the feasibility of multipass pro-
cessing over the same data. Hence, in off-line indexing, it is pos-
sible to use various speaker indexing algorithms at each itera-
tion. However, in on-line indexing, only one strategy can be used
through the whole sequential process. Recently we proposed an
on-line method that picks out the speech segments from an audio
stream and classifies them by speakers [6].

To enable speaker indexing, ideally we need information
about speakers such as the number of speakers and the appro-
priate speaker models. However, in some scenarios, it is not
easy to obtain a priori information about the target speakers
in the data, including the number of speakers, in advance.
Consider for example speaker indexing applied to broadcast
news (interviews). It may not be easy to obtain information
about the reporters and interviewees in advance. Hence, unsu-
pervised speaker indexing may be required. Assuming one is
using streaming audio, we are limited to making any indexing
decision with only current and previously seen speech data
from the session. Furthermore, since the models of speakers
are not available a priori for indexing, we need to create and
update them on the fly. This leads to a number of challenges. In
general, under these circumstances of sequential learning, data
are not sufficient to build a speaker model initially. Although
a model can be roughly built, it is apt to cause decision errors
due to potential uncertainty in the unsupervised learning. To
address the problem, we need some method to enable effective
model bootstrapping [7].
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Fig. 1. Block diagram of the unsupervised speaker indexing process with
generic models.

There are two kinds of generic models that have been pro-
posed previously for this purpose: universal background models
(UBM) and universal gender models (UGM). In this paper,
we propose a new method for creating and evaluating generic
models, referred to as the sample speaker models (SSM). This
is built on the hypothesis that a speech data corpus, independent
from the target data, can help initialize a model set for unsu-
pervised speaker indexing. Samples are picked from a pool of
generic speaker models using the Markov chain Monte Carlo
(MCMC) method. The sample model set is predetermined at
training. It is important to note that the speakers in the training
data are independent of the testing data. In other words, the
generic model set can be used for initializing/bootstrapping any
speaker indexing process, and can be referred to during speaker
clustering with the target test data. After clustering, a selected
model can be continually adapted with the test data that are
used for clustering [Fig. 1]. The model adaptation step in this
paper uses the maximum a posteriori (MAP) scheme.

Before clustering, detection of speaker changing points is
needed. This step sequentially binds data segments according
to speakers that helps to improve the performance of indexing.
There are two issues associated with speaker change detection
implementation: the size of analysis segments and the specific
analysis approach. The size of analysis segments is usually
fixed. A large data analysis segment size is useful toward
an improved correct indexing decision, as it includes more
information about the speakers for indexing. However, it is
apt to miss any speaker changes that may occur within an
analysis segment. To solve this problem, a smaller data analysis
segment size can be used, but it requires a robust speaker
change detection process to improve the precision [6]. To detect
the changing points robustly, sufficient overlapping across the
analysis frames is required, resulting in higher computational
complexity. Without sufficient overlapping, changing points
are easily missed. The localized search algorithm (LSA) is
adopted as a compromise between these conflicting require-
ments. Section III will provide details about this algorithm.
We use the generalized likelihood ratio (GLR) Test for speaker
change detection. Though the GLR test can be unstable for
small amounts of analysis data, clustering can help compensate
for this instability.

Several efforts have been reported on speaker indexing.
Methods based on speaker verification using speaker subspace
for speaker indexing were proposed by Nishida and Ariki [9].
In this paper, a speaker model was initialized and then the next
speech segment was verified if it was from the same speaker
as the first one. They used only 1-s segments, and these were
too short to build an initial speaker model. Some segments
including the speech of more than two speakers could not
be correctly clustered without the speaker change detection.
Rosenberg et al. used the GLR test for initial segmentation of
speaker indexing. After initial segmentation, speaker models
were constructed and then repeatedly segmented. Their process
focused on the iterative segmentation and clustering that was
only for the off-line speaker indexing systems [5]. Solomonoff
introduced the metric based on purity and completeness of
clusters for speaker clustering. With this method, even though
it is not necessary to train speaker models, it is not found to
be robust to environmental noises [10]. There are other efforts
that have been reported on on-line speaker segmentation and
clustering without prior knowledge of speakers and speaker
models. The UBM was used to classify feature vectors by Wu
[11]. Liu used the hybrid speaker clustering method, which
utilized both the dispersion and GLR threshold [12].

In many previous scenarios of on-line speaker indexing or
clustering, there is no prior knowledge about the identity or the
number of speakers involved. The speaker indexing and model
construction can be performed sequentially without storing
all the testing data in advance. However, the problem is that
sequentially constructed models may not represent speakers
well due to model initialization problems. In addition, when
the training of speakers is not supervised, this problem also
potentially leads to continual error propagation. Without good
initial models for speaker indexing, we cannot effectively
build/update speaker models sequentially and incrementally.
Recall that sequentially constructed models in the unsupervised
indexing scenario cannot represent speakers well due to the
small initial amount of data. We try to solve this critical draw-
back by employing an alternative method of using the notion of
generic speaker models.

The experiments in this paper were conducted on data from
the “Speaker Recognition Benchmark NIST Speech Corpus”
(1999) and the “HUB-4 Broadcast News Evaluation English
Test Material” (1999). We performed two main experiments
with these data: model adaptation/convergence and speaker
indexing. The speaker indexing evaluation, that explores
the performance of the generic models, included three tests
with different speech materials: two-speaker conversations,
four-speaker conversations, and broadcast news. The exper-
imental results showed that our on-line (sequential, causal)
unsupervised speaker indexing can achieve a recognition rate
comparable with a state of the art off-line system [5]. It also
showed higher accuracy compared to other generic models such
as the UBM and UGM under the various experimental condi-
tions: two-speaker conversations, four-speaker conversations,
and broadcast news.

The rest of this paper is organized as follows: Section II ex-
plains our unsupervised speaker indexing system; Section III
describes speaker change detection using the LSA; Section IV
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introduces the notion of generic models, and explores bootstrap-
ping with these generic models; Section V discusses clustering
and model adaptation; Section VI and Section VII describe our
experiments and results, respectively. Conclusions and future
plans are described in Section VIII.

II. UNSUPERVISED SPEAKER INDEXING

A block diagram of the speaker indexing process is shown in
Fig. 1. The first step is front-end analysis where the incoming
audio samples are classified into foreground speech and other
background audio (noise) types. Generally audio data can be
categorized into four broad classes: speech, music, environ-
mental noise, and silence. In speaker indexing, we only need
speech/nonspeech discrimination. When there is background
noise or music, it is likely to be overlapped with speech. Cor-
rupted speech is not easily discriminated from noise. Since it
is critical that we should not lose any speech data, the focus of
the classification is to minimize false rejection, perhaps, even
at the cost of false acceptance. Usually, for speech/nonspeech
discrimination, a zero-crossing rate and short-time energy are
used. It is well known that speech has a higher level of variation
in the zero crossing rate [8].

Only the speech data are used for the next step, speaker
change detection. In this step, the system sequentially detects
whether a speaker change occurs in the middle of a speech
analysis frame, without assuming any specific knowledge
about speakers. Some of the challenges faced by this detection
problem are addressed in Section III. Once the speaker change
detection determines the boundary, all the data between the
speaker change points are used for speaker clustering. In the
clustering step, we use speaker models from a predetermined
generic model set. After clustering, the speaker-independent
generic model is adapted into an appropriate speaker dependent
model during the indexing process. The adapted model is
replaced with the original model before adaptation or inserted
back in the generic model set. When new audio samples after
the boundary of the current speaker come into the system, the
previous steps are repeated until all data are exhausted.

III. SPEAKER CHANGE DETECTION USING LOCALIZED

SEARCH ALGORITHM (LSA)

A. Speaker Change Detection

Robust speaker change detection is a critical prerequisite for
speaker clustering. If we falsely detect a speaker changing point,
we may compensate for the error through the speaker clustering
step. However, if we totally skip the real changing point, the
clustering step cannot recover it. In the speaker change detection
step, the system sequentially detects whether a speaker changes
in the middle of speech analysis frame assuming no knowledge
about the identity and number of speakers.

There are generally two categories of speaker change detec-
tion methods: metric-based and model-based. The metric-based
method employs the maximum point of an appropriately de-
fined “metric” between neighboring segments for signaling
detection. The model-based method on the other hand relies
on models for speakers, background noise, speech and music
built in advance. The incoming audio stream is then classified,

for example, by a maximum likelihood selection over a sliding
analysis window [22]. Model-based detection requires both
training data and some information about the test data such
as the number of speakers. In contrast to the model-based
methods, metric-based methods can be executed without such
data requirements. However, the former offers potential for pro-
gressive adaptation and regression against variability provided
data is available.

Unsupervised speaker indexing systems usually use a metric-
based method such as the Bayesian information criterion (BIC)
or the generalized likelihood ratio (GLR) tests based on the
comparison of two statistical models from two adjacent seg-
ments. BIC is a likelihood criterion penalized by the model com-
plexity: the number of model parameters [21]. The BIC pro-
cedure is to choose the model with which the BIC criterion is
maximized. The BIC difference of two competing models can
be seen as an approximation to the logarithm of the Bayes factor
[23]. BIC has some advantages: robustness and threshold-free.
However, its computation is costly. The GLR test is similar to
the Bayesian Information Criterion in that it compares two com-
peting models, but it is simpler and less complex to compute. We
have adopted the GLR test in our unsupervised speaker indexing
algorithm.

To detect speaker changes, we use an analysis window which
consists of two segments. The two segments within the window
are compared using the GLR test [5], [10]. Suppose there are
two feature vector sets, and , coming from each segment,
respectively. Hypothesis, , is that the speakers in two seg-
ments are same, while hypothesis, , is that the speakers are
different. Let and be the likelihood of
and where and represent model parameters that maxi-
mize each likelihood. Similarly let be the union of and

. is the maximum likelihood estimate for .
Gaussian models are used here, and includes the mean and
variance of the Gaussian model which are obtained from the
data of each segment. Then

GLR (1)

When two segments represent the same speaker, GLR value
goes up to 1; otherwise, it falls to zero. We apply a preset
threshold, which is empirically obtained, on GLR to determine
the latent changing point.

B. Localized Search Algorithm (LSA)

The length of the analysis segment used for the speaker
change detection can be either variable or static. In vari-
able-length segmentation, the speech stream is divided into
different lengths depending on several factors such as pauses
and background changes. However, static segmentation as-
sumes a fixed analysis segment. A static segmentation is
attractive since it is computationally simple but care has to be
taken while choosing the analysis segment length. Too short an
analysis segment may not provide adequate data for analysis
while a longer analysis segment may likely miss a speaker
change point. It has been found in our previous experiments
that the analysis segments should be at least longer than 2 s for
robust recognition [3]. Each analysis segment we considered
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Fig. 2. LSA. Analysis window (4 s) looks for the exact speaker changing point
near the potential boundary comparing with two analysis segments (2 s) of the
analysis window. The first analysis segment is the reference segment and the
segment of the second analysis segment is compared with the reference segment
using the GLR test. When the analysis window detects a latent speaker change
point, it shifts by 0.2 s to enable a finer search yielding a total of ten ratios
from GLR tests. The minimum is chosen, implying the highest probability of a
speaker change. The boundary between two analysis segments is recognized as
a true speaker changing point.

was 2-s long, and the total analysis window, which includes
two adjoining analysis segments, at any point is 4-s long.
This implies that we cannot detect a speaker change occurring
within an analysis segment shorter than 2 s. Smaller analysis
window shifts (e.g., 0.2 s) could lead to finer resolution [5]. But
computational complexity severely increases with the number
of analysis windows. For example, if the analysis window shifts
by 0.2 s, we need ten times more GLR calculations than in the
2-s shift case. To solve this problem, we propose a LSA. Our
algorithm seeks a compromise between accuracy and efficiency.
Fig. 2 shows an illustration of how this algorithm works.

We assume that the boundary between the two analysis seg-
ments is the speaker changing point. The analysis window shifts
by 1 s. The analysis window consists of two analysis segments,
the first of which is the reference for speaker change detection.
The speech data in the second analysis segment are compared
with the reference segment to detect whether they are from the
same speaker or not. The analysis window, which shifts over-
lapped by 3 s, is not appropriate to detect the exact speaker
changing positions. In other words, we cannot detect a changing
point within a 1-s duration with this amount of shift. For that
reason, firstly, the analysis window shifts by 1 s. When GLR
falls below the threshold, the data in the second analysis segment
of the current analysis window may include a latent speaker
changing point. Then, the LSA starts running through the 0.2-s
analysis window shift for enabling a finer search [5]. There are
ten candidates, one of which indicates a true speaker changing
point.

IV. GENERIC MODELS FOR BOOTSTRAPPING

To build effective speaker models, sufficient training data are
required. In the unsupervised scenario, there is no prior knowl-
edge about the speakers. When the speaker indexing process
starts, only the data seen thus far can be used for modeling due to
the sequential nature of the indexing process. Such models that
are constructed roughly on-the-fly can cause severe clustering
errors. The key issue here is finding a method for alleviating

Fig. 3. Generic Models. (a) UBM: the entire speaker data in the pool is used
to create a single model. (b) UGM: the data is used to create two gender models.
(c) SSM: speaker models are selected from the generic speaker data pool by the
proposed sampling method.

the model initialization problem. The idea of generic models
offers a promising alternative. We can create generic models of
speakers that are independent of the test set speakers with the
hypothesis that some speakers of the reference set are acousti-
cally close to the test speaker and can be adapted to be closer
with new data [18]. Although we do not know the exact number
of speakers, we assume that the number is finite. With this as-
sumption, the initial generic models are built through training
with data not directly related to the test condition. This can make
it possible for the speaker indexing system to operate without
training of true speaker models.

There are at least three possibilities that one can consider for
creating generic models: UBM, UGM, and the proposed SSM.
For example, suppose there are male speakers and female
speakers in the generic speaker data pool. The UBM is built
pooling the entire data of speakers. UGM includes two
models: one for male speakers (trained with data from male
speakers), and the other for female speakers (trained with fe-
male speakers). SSM is a new generic model set that we have
proposed in this paper. At first, we pick speakers, the number
of which is smaller than the total number of speakers in the
generic data pool, and construct speaker models. While UBM
and UGM involve “averaging” across a number of speakers,
SSM does not [Fig. 3]. When we use SSM as a generic model,
we have to address two problems. The first concerns the number
of sample models needed, and the other concerns the sampling
method needed for constructing the SSM set. At present we lack
an analytical way for seeking an optimal choice for these param-
eters. We evaluate these empirically in each case: for example
for the size of SSM, 16 is optimal for two-people conversations,
or 32 is optimal for four-people conversations. We assume that
this optimal number varies by the number of speakers and the
type of speech data including how the features are defined.

The MCMC approach offers a promising approach for model
sampling. Monte Carlo methods are computational techniques
to make use of random numbers. One of the uses of Monte
Carlo method is to generate samples from a given probability
distribution. We used the Metropolis algorithm, which is an
instantiation of MCMC method. The Metropolis method is
widely used for high-dimensional problems [13]–[15]. It gen-
erates samples by running an ergodic Markov Chain which
converges to a target distribution function . For an arbitrary
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starting value , a chain is generated using a transi-
tion kernel with the stationary distribution , which ensures the
convergence of to a random variable from . Thus, for
a “large enough” , can be considered as distributed
under . The number of samples can be predetermined, and
the samples are generated
from according to the criterion [16].

In our speaker indexing system, we tried to apply the MCMC
method to choose sample speaker models. It can be briefly
summed up as follows.

1) The target distribution of the sampling space is estimated
from the UBM that represents all the speakers in the pool.

2) The predetermined number of sample vectors are chosen
by Metropolis criterion from this initial distribution (a
normal distribution is assumed). The mean of this distri-
bution is obtained from the centroid of the UBM.

3) With every sample vector and every speaker model, the
likelihood is calculated.

4) A speaker model that provides the maximum likelihood
of a sample vector is chosen.

V. CLUSTERING AND MODEL ADAPTATION

The segments obtained from the speaker change detection
step are indexed in terms of speakers, and then the corre-
sponding models are adapted with the newly indexed data.
For clustering, we experimented with speaker models from the
predetermined generic model sets: UBM, UGM, and SSM. In
UBM and UGM cases, the generic pooled model was adapted
to create the speaker specific models. Since speaker indexing is
a sequential process, the first speaker model is always created
from UBM (or UGM) using the first speaker segment. With the
next speaker segment, the model just constructed is assumed
as a speaker model. However, if the likelihood of the second
speaker segment is lower than the threshold, then new speaker
model is created by bootstrapping from the UBM (or UGM).
The subsequent speaker segments are sequentially clustered in
a similar manner: Each time the new data segment is evaluated
against all available speaker models. Whenever new speakers
are detected, the number of models hence increases in the UBM
and UGM case. With SSM, the generic speaker models are
adapted into speaker specific models [Fig. 4]. The likelihood
of every speaker segment is calculated with the sample speaker
models, and the model with maximum likelihood is selected
and adapted sequentially. The number of models is kept the
same for the entire data [Fig. 5].

Model adaptation is executed by the MAP scheme. As the
amount of data increases toward infinity, the MAP estimate
converges to the ML estimate [17]. The MAP adaptation on
a GMM is straightforward [20]. Given the adaptation vectors

, we compute the probability

Pr (2)

where is the weight of each mixture in the GMM, and is
the probability of input, , in each mixture. is the number

Fig. 4. Model Adaptation: from generic speaker models into speaker specific
models.

of mixtures. In this system, means, , and weights, , of GMM
are updated as follows:

(3)

(4)

where is a scale factor. and are data-dependent adap-
tation coefficients which are defined as

(5)

where is the fixed relevance factor, and the sufficient statistics
of mixtures, , and the re-estimation of mixtures, , are
defined as

Pr (6)

Pr (7)

We assume that speaker models in the reference set are
independent of the test speech data. A desirable property of
the generic models hence is to ensure rapid adaptation to the
true speaker models. Furthermore, the acoustic environment of
generic models and test speech stream might be different. If
the difference is large, we need to compensate additionally for
such effects. To address this problem, for example, we may use
the first speaker segment to adjust for the channel difference
(e.g., for cepstral mean normalization).

VI. EXPERIMENTS

We used two audio data sources in this paper: the 1999
Speaker Recognition Benchmark Corpus from NIST (1999)
and the HUB-4 Broadcast News Evaluation English Test Mate-
rial (1999). For the generic model, we used 100 speakers (50
male speakers and 50 female speakers) who were randomly
selected from the training data in the NIST Speaker Recog-
nition Benchmark Corpus. For training each speaker model,
about one minute of speech data were used. We also tested our
speaker indexing system using independent portions of this
data corpora. The primary experiment focused on unsupervised
on-line speaker indexing. To investigate the convergence per-
formance under multipass (“off-line”) conditions, we repeated
the indexing over several iterations.
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Fig. 5. Clustering with SSM and adaptation.

We performed two main experiments with a variety of speech
materials: the first test focused on model adaptation and con-
vergence behavior with various lengths of analysis windows
and generic model types while the second test investigated the
overall performance with various generic models. Specifically,
in the first set of experiments, we evaluated speaker identifica-
tion error rates with various lengths of analysis windows (i.e.,
1, 2, 4, and 8 s) and with the three types of generic models
(UBM, UGM, and SSM) to find out the optimal conditions for
speaker change detection and model adaptation steps. We ran-
domly picked some speakers from the 100 speaker pool for SSM
using the MCMC method. Although the speaker pool consisted
of 50 males and 50 females, sampled speakers were not neces-
sarily evenly distributed in gender. The UBM and UGM were
also built using data from 100 speakers in the pool. In SSM, we
assumed that “16” was an experimentally suboptimal number
of speaker models as a reference set to index speakers with the
telephone conversation and Broadcast news materials [6].

The other experiment investigated the performance of the
generic models. The speaker indexing test included three tests
with different speech data sets: two-speaker conversations,
four-speaker conversations, and broadcast news. The first test
material was executed with about 24-min audio data from the
Speaker Recognition Benchmark NIST Speech (1999). The
length of each speech audio sequence was about one minute.
Each sequence included two-speaker telephone conversations.
One third of the sequences included mixed gender (one male
and one female) conversations. The other sequences include
two males or two female speakers. As for the second test
material, about 24-min audio data from the Speaker Recog-
nition Benchmark NIST Speech (1999) were used. Since we
needed exactly four-speaker conversations, we created them
with two-speaker conversations (“artificial sequences”) of the
Speaker Recognition Benchmark NIST Speech (1999). No
speaker used for building the generic model participated in the
test conversations. One third of the sequences included mixed
gender (two males and two females) conversations. The other
sequences included four males or four female speakers. The
third test material constituted about 45 minute audio data from
the HUB-4 Broadcast News Evaluation English Test Material
(1999). Broadcast news data included various categories of
audio data and environmental conditions. Speaker types in this
data included anchors, guests, interviewers, and interviewees.
For our experiment, we considered 20 news clips representing
different topics, and the number of speakers ranged from two

to six speakers. We tested which of the three generic models
(UBM, UGM, SSM) showed the best speaker indexing perfor-
mance on these multiple speaker conversations. In the SSM
case, we considered several sample set sizes (i.e., 8, 16, 32, 64,
and 100 sample models).

Since long silences have an adverse effect on speaker recog-
nition, we eliminated data segments which were longer than 100
ms and lower than 40 dB as silence. Experimental data were
sampled at 8000 Hz. As feature vectors, we used 26-channel,
24-dimensional Mel Cepstrum vectors. We also used a 30-ms
Hamming window that was shifted by 10 ms. Speaker models
were GMMs with 16 mixtures.

VII. RESULTS

Only the speech portion extracted from the input audio stream
was sequentially categorized in terms of distinct speakers using
the generic models. The first experiment was relevant to the
convergence of model adaptation, and the results are shown in
Table I. In this experiment, we wished to determine what length
of speaker segment was optimal to index speakers under var-
ious conditions such as the number of speakers in the speech
sequence and the type of generic models used.

When the length of the segment was increased (e.g., to 8 s)
under the same model conditions, speaker indexing error rates
decreased to almost 0% in most cases, although in some con-
ditions, the error rates slightly increased (the case with four
speakers and UGM). It implies that more speech data in a seg-
ment include more discriminatory information to represent a
specific speaker. For example, when the number of speakers
was 1, in the SSM case, the error rates decreased from 2.2% to
0% as the length of segment increased to 8 s. From our experi-
ments, we found that a segment of 8 s provided the best choice
(Table I). No significant improvements were found for segments
longer than 8 s. However, we may need a shorter data segment to
index shorter speaker segments. For example, to consider a 20-s
two-speaker conversation, we used 8-s-long analysis segments.
Suppose that one of the speaker’s speech lay between the 5-
and 7-s mark in the sequence (as measured from the beginning
of the audio stream). Although the first 8-s analysis segment in-
cluded two speakers, it would be recognized as one speaker. To
detect shorter speech episodes, we should use as short an anal-
ysis segment as we can. However, shorter (e.g., 1 second) seg-
ments could not capture a speaker’s information adequately in
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TABLE I
INDEXING ERROR RATES AS A FUNCTION OF AVERAGE LENGTH OF SEGMENT

PER SPEAKERS, NUMBER OF SPEAKERS IN THE TEST SEQUENCE, AND
GENERIC MODEL TYPES

our experiment. We determined empirically from this first ex-
periment, that a 2-s analysis segment offered a good compro-
mise.

As the number of speaker candidates in a conversation
increased, the error rates are expected to rise. For example,
suppose that we had four speakers in a test sequence. Each
speaker had about 1 min of speech data, hence totally about 4
min of data were used for speaker indexing. The point is that
the indexing process was executed only sequentially without
using any prior target speaker models. While the first minute
segments passed through the indexing system, some speaker
changing points might be falsely detected. The first adapted
speaker model and the generic model(s) were compared with
the group of segments that were hypothesized as speech of a
certain speaker. After one speaker model was adapted from the
generic model, the two models are now compared. Whenever
a speaker change occurred, the system looked for the next
speaker model. As the number of newly detected speakers
increased, the number of models we had to compare increased
which in turn might affect the overall error rate. Note that
since this corpus consists of fairly clean land-line telephone
conversations, there was no significant background noise to
adversely affect the recognition. However, in some conditions,
the number of candidates did not critically affect the error
rate of speaker indexing. This result implies that each speaker
spoke for about one minute without speaker changes which
gave enough speaker information to adapt speaker models and
to discriminate speakers well.

In Table I, we show results with the three types of generic
models: SSM, UGM, and UBM. SSM provided the most stable
performance across all experimental conditions, both in terms of
the number of speaker candidates and the length of the analysis
segment. Lower error rates also implied that the concomitant
model adaptation was better. Recall that whenever a segment
was assigned to a speaker, the corresponding speaker model was
updated.

The second experiment focused on speaker indexing on the
three different test materials with the three types of generic
models. Based on the results of the first experiment, we adopted
a 2-s analysis segment length. Fig. 6 shows the unsupervised
speaker indexing performance of the generic models for the tele-
phone conversations, four-person conversations, and broadcast
news clips. In Fig. 6, the initial UBM was a unitary GMM that
was trained with data from all the 100 speakers in the pool.
The UGM set consisted of two models: male and female. The
SSM set had variable number of models. In our experiments, we
used 8, 16, 32, 64, and 100 model sets to find empirically the
optimal number of samples for unsupervised speaker indexing
under various test conditions.

In the two-speaker case, when the number of generic model
speakers was smaller than 16, the indexing accuracy was below
90%. As the number of model samples became larger, the ac-
curacy peaked at about 92.5%, before slowly degrading, as the
number of samples increased further. The reason might be that
eight models were not adequate to recognize two speakers, as
they could not have adequate discriminatory power in our fea-
ture space. While the 32-model case (90.1%) performed better
than the eight-model case (87.4%), they were still worse than
for the 16-model set. However, as the number of models in-
creased further, too many similar models occupied the feature
space. In this situation, one (test) speaker could be recognized
as two or more (model) speakers. From this experiment, 16 was
found to be the optimal number of sample speaker models. The
results of UBM (82.8%) and UGM (86.1%) cases were worse
than that of the 16-SSM case. Recall that the UBM was built
with 100-speaker data, and UGM consisted of a male model
and a female model that were built with 50 male and 50 fe-
male speaker data, respectively. Each model of SSM, however,
was a specific generic speaker model. For that reason, UBM
and UGM had larger variances, and each speaker model was
adapted from those initial models. Although the model variance
could be adapted, it is difficult to represent a speaker well with
small amounts of data. In sum, UGM is better than UBM be-
cause gender models might have relatively smaller variances.

The results were similar for the four-speaker case; the best
performance (89.6% accuracy) was obtained with 16 sample
models. When the number of samples was 8, the accuracy was
about 69.5%. While for the 32 model case it was 84%. Again,
the results of UBM (60.2%) and UGM (67.1%) cases were much
worse than for the 16-SSM case. These experiments showed that
the automatic selection of initial models in a way most similar
to the final target models leads to better and faster model adap-
tation and convergence.

Based on the results of the two-speaker case and the
four-speaker case, the accuracy of two two-speaker indexing
was higher than that of four-speaker indexing with all generic
models except 100-SSM. The reason might be that the possi-
bility of false indexing increased as the number of speakers to
index increases. However, it is interesting that the difference of
accuracy decreased as the number of sample models in SSM
case increased. And, with 100 sample models, the four-speaker
case got slightly higher accuracy than the two-speaker case.

The broadcast news data posed significantly more challenges
mainly due to the diversity in the audio accompanying the
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Fig. 6. Indexing accuracy for various types of generic models (SSM, UBM, UGM). (a) Two-speaker conversations. (b) Four-speaker conversations. (c) Broadcast
news. Note that “samples” here refer to those drawn from the generic model pool by MCMC. The results for SSM were consistently better than for the UBM and
UGM cases.

speech therein. Our test set consisted of 20 audio clips, seg-
mented manually based on topics, from a 45-min broadcast.
There were two to sixspeakers in these clips; the distribution
of genders was uneven. There were more males than females.
Fig. 6(c) shows the speaker indexing result. Even though the
best performance was obtained with the sample model set of
size 64 and the accuracy was 87.2%, the difference in accu-
racies with the others (16, 32, 64) was small. There might be
several reasons. The different audio data conditions and the
variety in the number of speakers (two to six) could affect the
results. Based on our analysis, we might need more sample
models, but it is not directly proportional to the number of
target (true) speakers. The main reason that 64-SSM was best is
due to the stability of performance. Even though more sample
models make more errors, the variance of error rates in each
test was smaller. When the number of speakers is over six (i.e.,
10, 16, 32), we might need more sample models, at least equal
to the number of target speakers.

Based on this result, we compared the accuracy of 64-SSM
with those of UGM and UBM by the number of speakers in

the clips (see Table II). With any number of speaker models,
SSM with 64 sample speaker models was the best among the
three generic models. Even in the six speaker clips, the error rate
was 20% which implied the stability of SSM. The performance
could however be adversely affected from the environment and
individual speakers. That may explain why the accuracy of four-
speaker clips were much worse than that of two or five speaker
clips in not only the 64-SSM case but also the UGM and UBM
cases. In this worse condition, 64-SSM also showed a below
20% error rate for the four-speaker clips.

We also investigated the effect of using clustered speaker
models for initialization that uses averaged statistics from a pool
of like speakers much similar to universal/gender background
models. The main difference from the latter is that the aver-
aged speaker information used for modeling comes from a set
speakers deemed to be cohorts under a specific similarity crite-
rion such as the K-L distance. Our hypothesis is that averaging
information across speakers would reduce the model discrimi-
nation power and that their adaptation into target speaker models
in general would be slower. However, if the size of the clusters is
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TABLE II
NUMBER OF SPEAKERS IN CLIPS VERSUS ACCURACY FOR THE

BROADCAST NEWS MATERIAL

small, the results may be comparable to SSM. We did some pre-
liminary experiments to explore the effect of speaker clustering
on speaker indexing leveraging recent related work that con-
siders the notion of optimal quantization of the speaker model
space (Kwon and Narayanan, 2004). In that work, only one rep-
resentative speaker was selected from a given quantized region
to represent a speaker model. In the experiments for this paper,
however, we used the “clusters” generated in the quantization
process to create a clustered speaker model corresponding to
each quantized region. In our experiments with a portion of the
NIST 1999 corpus with 100 speakers, we found that there were
12 clusters and the number of members in each cluster varied
from two to 15. The indexing results showed that on average
SSM outperformed the clustered version about 4% absolute in
unsupervised speaker indexing on two-speaker telephone con-
versations.

The final experiment investigated the off-line indexing sce-
nario. The condition for the off-line indexing case is different
from that for the on-line indexing case since the former case
can be processed iteratively in multiple passes through the data
(i.e., relax causality constraint). We applied the 16-SSM to the
off-line system to see whether it is useful in the off-line environ-
ment or not. We used the two- and four-speaker conversations
that were used in the on-line speaker indexing test. The result
showed that the speaker indexing converged in the first iteration.
This may imply two possibilities: The first possibility is that the
off-line unsupervised speaker indexing with 16-SSM has the
same performance as that of the on-line system. The other is
that the selected initial models are adapted and converged well
(no changes after the first iteration) in the on-line unsupervised
speaker indexing with 16-SSM.

VIII. CONCLUSIONS

We presented a novel method for enabling unsupervised
speaker indexing. For an unsupervised sequential process
without any prior knowledge about the speakers, a generic
model set was incorporated into the general speaker indexing
framework. This generic model was shown to help the unsu-
pervised speaker indexing system to overcome some of the
difficulties arising due to the lack of data for building true target
speaker models. In particular, the SSM approach showed better
and more stable performance than the other generic model
methods such as UBM and UGM. Since these generic models
do not contain the type of speakers training data in the initial

for indexing, this implies that we do not have to retrain speaker
models whenever we test with different speakers.

We used telephone conversation data and broadcast news
to evaluate the performance of our algorithm. The condition
that yielded the best performance in our experiments was using
2-s analysis segments in conjunction with 16 sample speaker
models for two-speaker conversations. The total error rate was
7.53%, which was about 10% lower absolutely compared with
the UBM case (17.21% relative). In the case of four-speaker
conversations, 16 sample speaker models performed the best
with an error rate, 10.4%, which is about 30% absolutely better
than that of UBM. As the number of speakers present in con-
versations increases, the error rate of UBM increased at a much
higher rate than that of 16-SSM model set. In the experiment
with the broadcast news, the actual number of speakers was
not known. The news clips considered had between two and
six speakers. More samples were required than those in the
four-speaker telephone conversations to cover the wide range
in the number of speakers. The result showed that 64 was the
optimal number of speakers for broadcast news clips with an
error rate of 12.8%, which is about 20% absolutely better than
that of UBM (31.8%). Table II shows that the performance of
64-SSM was stable: the error rate was only 20% in the worst
case.

From the experiments in this paper, we can conclude that the
SSM approach is more robust and stable to variations in the
number of speakers and data types than previously proposed
generic model approaches such as the UBM and the UGM.
However, there are at least four key issues worth considering
to further improve the overall performance of unsupervised
speaker indexing: strategies for effectively sampling the SSM
set, detecting speaker changes in a robust way, adapting speaker
models, and integration of multimodal features.

In this paper, we adopted the MCMC method to pick the
samples from the pool. This method attained some measure of
success in obtaining suboptimal positions of speaker models
in the feature space primarily due to the fact that more sam-
ples were picked from the space where more speaker models
in the pool were concentrated in the feature space. There are
a couple of issues that need further investigation in this con-
text. One critical issue with this SSM approach relates to finding
the optimal number of sample models and positions in the fea-
ture space to use. For a given feature space, some of the models
can be severely overlapped, and some are farther apart, even if
this formation can be thought to be inherently natural. A more
principled approach, with supporting experiments, is required
in organizing the space spanned by the (generic) speakers for
SSM, such as feature space or speaker quantization for optimal
speaker (model) sampling. Lastly, higher level linguistic infor-
mation and multimodal features can be integrated to overcome
the limitations of the speaker recognition based on just spectral
envelope speech features.
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