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Abstract
One of the goals of behavioral signal processing is the auto-
matic prediction of relevant high-level human behaviors from
complex, realistic interactions. In this work, we analyze dyadic
discussions of married couples and try to classify extreme in-
stances (low/high) of blame expressed from one spouse to an-
other. Since blame can be conveyed through various commu-
nicative channels (e.g., speech, language, gestures), we com-
pare two different classification methods in this paper. The first
classifier is trained with the conventional static acoustic features
and models “how” the spouses spoke. The second is a novel
automatic speech recognition-derived classifier, which models
“what” the spouses said. We get the best classification perfor-
mance (82% accuracy) by exploiting the complementarity of
these acoustic and lexical information sources through score-
level fusion of the two classification methods.

Index Terms: behavioral signal processing (BSP), couple ther-
apy, blame, acoustic features, lexical features, fusion

1. Introduction
Traditional speech and language processing research focuses on
detecting more objective human processes. For example, auto-
matic speech recognition (ASR) attempts to map speech signals
to written language, and there have been steady improvements
over the past decades to each of the components of the recogni-
tion process (e.g., acoustic/language/dialog modeling).

In recent years, there have been increased research efforts
on modeling more abstract human behaviors/states, such as af-
fect/emotions [1–3] and other paralinguistic phenomena like in-
tent [4] and likability [5]. This has led to the emergence of be-
havioral signal processing (BSP) [6,7], whose primary goal is to
quantify and recognize complex human behaviors in naturally
occurring interaction settings, especially those that are relevant
to psychology and health-related research.

This paper builds upon our early BSP work [6], in which
we analyzed a large corpus of married couples discussing a
problem in their relationship. Each spouse was manually rated
with a number of session-level behavior codes (e.g., level of
blame), as guided by expert psychologists in the domain [8].
We showed that we could automatically classify extreme in-
stances (low/high) for a subset of these codes significantly bet-
ter than chance using static classifiers trained on functionals
(e.g., mean) of frame-level acoustic low-level descriptors (e.g.,
f0) [6]. While these initial results were promising, there was
still a performance gap in reaching human expert-like ratings.

In this work, our goal is to reduce this performance gap. We
concentrated on predicting a single code, the spouse’s “level of
blame.” Blame is particularly relevant for this type of discus-

sion and is oftentimes targeted in couple therapy, since blam-
ing behavior can lead to an escalation of negative affect and
resentment between the spouses [9]. Automatically detecting a
spouse’s level of blame from objective signal-based cues could
provide psychologists an alternative and potentially more con-
sistent procedure to quantitatively code human interaction data;
it could also provide insight into the production/perception re-
lationship of this human behavior.

We found blame to be one of the more challenging codes
to predict using the static acoustic classification method ap-
plied in [6]. We hypothesized that this method, which em-
ployed session-level statistics of acoustic features, was not mod-
eling the dynamics of the interaction adequately, and further-
more was ignoring important lexical cues regarding blame. The
coding manual used to rate blame says that, “explicit blaming
statements (e.g., ‘you made me do it’) warrant a high blame
score [8],” and the acoustic features we extracted in [6] were
not able to capture these types of spoken phenomena.

In this paper, we propose a number of extensions to our pre-
vious work. First, we improve upon the static acoustic classifier
by extracting additional hierarchical features that better capture
moment-to-moment changes in the interaction. Second, we in-
troduce an ASR-derived classification method that incorporates
lexical information through the use of two competitive maxi-
mum likelihood language models (one trained on “low blame”
text and the other trained on “high blame” text). We show that
even with noisy ASR, this method is able to capture discrimi-
native aspects of blame behaviors. Moreover, we show that we
can attain the highest classification performance by combining
the complementary acoustic and language information sources
through score-level fusion of the two classification methods. As
part of this work, we also provide an upper bound on perfor-
mance by running an oracle experiment for the case when we
have access to perfect word-level transcriptions.

Section 2 explains the corpus and the classification set-up.
Section 3 describes the acoustic features we extracted, and Sec-
tion 4 explains the various classification methods. We report
our results and provide a discussion in Section 5, and we offer
our conclusions and plans for future work in Section 6.

2. Corpus
2.1. Background

We used data collected as part of the largest longitudinal, ran-
domized control trial of psychotherapy for severely and stably
distressed couples [10]. The corpus consists of 569 ten-minute
wife-husband interactions (from 117 married couples), in which
they discussed a problem in their relationship. Each spouse’s
overall level of blame was coded on a 9-point scale by multiple

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

89



trained evaluators using a standardized coding manual [8].
The data consist of a single channel of far-field audio (with

variable noise conditions across the sessions) and correspond-
ing word-level transcription. The average estimated signal-to-
noise ratio (SNR) for the sessions ranged from -1 dB to 26 dB,
based on a voice activity detector (VAD) trained on a held-out
session [11]. In this paper, we ignored all sessions with an av-
erage SNR less than 5 dB. The word-level transcriptions were
chronological and included speaker labels (wife or husband),
but they did not contain any timing information. We provide a
more detailed description of the corpus in [6].

2.2. Speaker Segmentation

For data involving multi-person interactions, manually seg-
menting by speaker is a common pre-processing step. We
took a unique manual/automatic “hybrid” approach to speaker
segmentation by exploiting the available transcriptions. Us-
ing freely-available software we developed, SailAlign [12],
we split each session into wife/husband/unknown speaker-
homogeneous regions using a recursive speech-text alignment
procedure. The wife/husband regions can be thought of as
“pseudo speaker turns,” since portions of the actual turn may
not have been successfully segmented using this technique.

This hybrid speaker segmentation method has two main ad-
vantages over manual segmentation: 1) the resulting segmen-
tation is more representative of the hypotheses that would be
attained by fully automatic methods (i.e., both methods break
down under challenging conditions like overlapped speech and
noisy portions of audio), and 2) the hybrid method provides
an objective way to reject data that is too noisy to process for
acoustic pattern recognition tasks. For this corpus, we ignored
all sessions for which we could not automatically align at least
55% of both the husband’s and wife’s transcribed words.

Of the 569 sessions, 372 met both the 5 dB SNR and 55%
speaker segmentation thresholds, which left us 62.8 hours of
data across 104 unique couples. For the remainder of the pa-
per (with the exception of the oracle experiments), we treat the
speaker segmentation hypotheses as if they were generated by
a fully automatic system that only relied upon the audio signal,
i.e., we ignore the fact that we have knowledge of the lexical
content of each segmented wife/husband region. We do this to
simulate more realistic test conditions, where we would nor-
mally not have access to what each spouse said.

2.3. Classification Set-up

Since our goal was to automatically separate extreme instances
of blame exhibited by the spouses, we used a binary classifica-
tion set-up similar to the ones used in [4, 6] and partitioned the
data into two classes: high blame and low blame. The high
blame partition consisted of the 70 sessions (approximately
20% of the 372 sessions) with the highest average blame score
for the wife and the 70 sessions with the highest average blame
score for the husband. The low blame partitions consisted of
the 140 sessions with the lowest average blame score: 70 for
the wife and 70 for the husband. The blame scores for the two
classes ranged from 1.0-1.5 for low blame and 5.0-9.0 for high
blame, so they were separable to the human evaluators.

Whereas in [6] we trained gender-specific models, in this
paper we chose to train gender-independent models, thus effec-
tively doubling the amount of training data. We chose accuracy
to be the performance metric, defined as the percentage of cor-
rectly classified test sessions (out of 280); baseline chance accu-
racy is 50%. To ensure that the reported results were not over-
stated, we used leave-one-couple-out cross-validation to sepa-
rate training and test data, and we optimized all classifier pa-

LLD speech/non-speech, f0, intensity, 15 MFCCs,
8 MFBs, jitter, jitter-of-jitter, shimmer

Functional

mean*, median*, standard deviation*, minimum*,
maximum*, range*, skewness, kurtosis, min/max
positions, lower quartile, upper quartile,
interquartile range, linear approximation slope coeff.

Table 1: A list of the acoustic low-level descriptors (LLDs) and static
functionals we used; the six “basic” functionals are starred (*).

rameters at each train/test fold by using leave-two-couples-out
cross-validation on the training data. Therefore, there was no
“contamination” of the test couple during the training stages.

3. Acoustic Feature Extraction
3.1. Low-Level Descriptors

Table 1 lists the various acoustic low-level descriptors (LLDs)
we extracted across each session using standard short-time
speech signal processing techniques; we chose these LLDs,
based on our previous work [6] and related work in emotion
recognition [1–3]. The speech/non-speech LLD was estimated
using the VAD [11] as described in Section 2.1. The prosodic
LLDs (f0, intensity) were extracted with Praat [13] and sub-
sequently filtered and normalized as described in [6]. The re-
maining spectral and voice quality LLDs were extracted with
openSMILE [14] using the parameter settings proposed in [15].

Section 3.2 describes how we generated the final static
acoustic features from these LLDs. The lexical classification
method we implemented (Section 4.2) is based on ASR within
the hidden Markov model framework. We used the standard
frame-level 39-dimensional vector: the first 13 mean-subtracted
Mel-frequency cepstral coefficients (MFCCs) and their first-
order derivative (Δ) and acceleration (ΔΔ) coefficients.

3.2. Static Acoustic Features

We took an overgenerative approach to producing the static
acoustic features. The features were static functionals (Table 1),
computed for each LLD (Table 1) across five different speaker
regions and at six different temporal granularities.

The five speaker regions were: 1) where the rated spouse
was speaking, based on the speaker segmentation in Section 2.2;
2) where the partner of the rated spouse was speaking; 3) where
the wife was speaking, regardless of who was being rated; 4)
where the husband was speaking; 5) the entire session, regard-
less of who was speaking and who was being rated.

The six temporal granularities included one set of global
features, in which functionals were computed across the entire
session (for each LLD and speaker region), and five sets of hi-
erarchical features, based on [16]. The five hierarchical feature
sets were computed by first splitting the LLD/speaker region
into disjoint windows of durations: 0.1s, 0.5s, 1s, 5s, 10s. We
then computed the 14 functionals listed in Table 1 for each of
these windows, producing 14 vectors of functional values for
the entire session. Finally, we generated the hierarchical fea-
tures by computing the six “basic” functionals (Table 1) across
each of these vectors. Because of the windowing technique
used, these hierarchical features hopefully capture some of the
moment-to-moment changes that occur within the interaction;
note that we only computed global features in [6].

After removing static features with zero standard deviation,
there were about 53100 features at each cross-validation fold.

4. Classification & Fusion Methods
Sections 4.1-4.4 describe the static acoustic, ASR-derived lexi-
cal, oracle lexical, and fusion classifiers, respectively. Figure 1
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is a block diagram for the signal-driven classification methods.

4.1. Static Acoustic Classifier

The static acoustic classifier finds a mapping from the high-
dimensional static acoustic feature space, which represent vari-
ous properties of the spouses’ speech, to the binary blame class
labels. We used the support vector machine (SVM) implemen-
tation in LIBSVM [17]. Since there were orders of magnitude
more features (50,000+) than instances (280), we used a linear
kernel. All features were z-normalized by subtracting the mean
value in the training data and dividing by the standard deviation.

4.2. ASR-derived Lexical Classifier

The main problem in using ASR to derive lexical information is
the resulting “noisy” word hypotheses, due to numerous factors
(e.g., noisy audio, mismatched acoustic/language models). We
partially circumvented this noisy ASR problem by implement-
ing an ASR-derived lexical classifier, which incorporated dif-
ferences in language use between low and high blame spouses
via competitive language models. We derive the equation for
this classifier in Equations 1-7, based on [18].

[B∗,W ∗] = argmax
B,W

P (B,W |O), B ∈ {−1, 1} (1)

≈ argmax
B,W

∏

t

P (B,Wt|Ot) (2)

=argmax
B,W

∏

t

P (Ot|Wt, B)P (Wt|B) (3)

≈ argmax
B,W

∏

t

P (Ot|Wt)P̃ (Wt|B) (4)

Equation 1 states to choose the most probable blame class
B ∈ {−1, 1} (low/high blame) and most likely word sequence
W , given the acoustic observations O of the rated spouse’s
speech; we disregard the speech regions of the rated spouse’s
partner for this classification implementation. For computa-
tional reasons, we assume in Equation 2 that each speaker turn is
independent, and we denote the acoustic observations and word
sequence of turn t as Ot and Wt, respectively. We attain Equa-
tion 3 by applying Bayes’ theorem and dropping the B prior,
since both blame classes are equally represented in our experi-
ments. Equation 3 is a variation of the fundamental equation for
ASR, where P (Ot|Wt, B) corresponds to the “blame class”-
specific acoustic model (AM), and P (Wt|B) corresponds to the
“blame class”-specific language model (LM).

For this initial work, we did not train AMs for both blame
classes and instead used generic AMs; thus, we assumed that
the acoustic observations were independent from B, as shown
in Equation 4. We trained the “blame class”-specific LMs using
the transcriptions of spouses in the training data at each cross-
validation fold: a “high blame” LM on the text from spouses
rated as having high blame and a “low blame” LM on the text
from spouses rated as having low blame. We trained the LMs
on unigram word frequency counts for simplicity and to avoid
more complex smoothing procedures and data sparsity issues.
Both LMs were smoothed via interpolation with a λ-weighted
background (BG) LM trained on out-of-domain text:

P̃ (Wt|B) = (1− λ)P (Wt|B) + λP (Wt|BG), 0 < λ < 1 (5)

Since estimating the probability of the most likely path
through the ASR word lattice may not be robust, we incorpo-
rated the probabilities of the 100 most likely (“N-best”) paths
through the lattice for each speaker turn. We assumed in our
implementation that the N-best hypotheses were independent;
see Equation 6, where the n subscript refers to the nth most
likely path. In practice, we applied Equation 7 for numerical

�logprob 

�

�

�

ASR ASR N-best 

ASR ASR 

ASR ASR MFCCs 

f0 

. . . 

LLD Extraction Static 
Functionals 

+� +�� 

ASR 

LMlo 

LMhi 

SVM 

ASR 

sgn 

Lexical ASR ASR N-best 

Acoustic 

Fusion SVM 

prob 

Figure 1: System block diagram, from the low-level descriptors (LLDs)
to the blame class outputs for the static acoustic classifier, ASR-derived
lexical classifier, and fusion classifier; see Section 4 for details.

reasons. See Figure 1 for a depiction of the ASR-derived lexi-
cal classifier, where we denote the smoothed LMs for low and
high blame as LMlo and LMhi, respectively.

B∗ =argmax
B,W

∏

n

∏

t

P (Ot|Wt,n)P̃ (Wt,n|B) (6)

=argmax
B,W

∑

n

∑

t

logP (Ot|Wt,n)P̃ (Wt,n|B) (7)

4.3. Oracle Lexical Classifier

To find an upper bound on the performance of the proposed
ASR-derived lexical classifier, we ran an oracle experiment that
assumed we had perfect word recognition rate (i.e., we used the
manual transcription). This oracle classifier is shown in Equa-
tion 8, where W is the sequence of transcribed words across the
session for the rated spouse, and we used the same smoothed

LMs as in Section 4.2 to compute P̃ (W |B).

B∗ = argmax
B

P̃ (W |B), B ∈ {−1, 1} (8)

4.4. Fusion Classifier

Fusion of multimodal information has been advantageously ap-
plied in many engineering research domains. For example,
improved emotion recognition has been reported when fusing
audio/language/discourse features [1] and audio/video features
[19]. Fusion typically takes place at the feature-level (e.g., by
combining features at the input of a classifier), score-level (e.g.,
by combining output confidence scores from many classifiers),
or decision-level (e.g., by voting on multiple classifier deci-
sions). For our experiments, fusion at the score-level was most
applicable, given the high dimensionality of the static acoustic
classifier (not ideal for feature-level fusion) and since we only
had two classifiers (not ideal for decision-level fusion).

The fusion features FF were computed using Equation 9,
where confc is a non-negative confidence score for classifier c:

FFc = (confc)(B
∗
c ), B∗ ∈ {−1, 1} , conf ≥ 0 (9)

For the ASR-derived and oracle lexical classifiers, the magni-
tude of the difference in log-probabilities between the compet-
ing LMs served as the confidence score. For the static acous-
tic SVM classifier, class probability estimates (made by LIB-
SVM using internal cross-validation on the training data) were
the confidence scores [17].

We again used LIBSVM’s SVM for the fusion classifier and
z-normalized the fusion features, so they were on a comparable
scale. We tried three pairs of classifier combinations: fusing
the static acoustic and ASR-derived lexical classifiers (see Fig-
ure 1), fusing the static acoustic and oracle lexical classifiers,
and fusing the two lexical classifiers.
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5. Results & Discussion
Table 2 shows the performance of the various classifiers on the
280 instances. Using a difference in binomial proportions sta-
tistical test, we see that all proposed classifiers had significantly
higher accuracy than chance accuracy of 50% (all p < 0.01).
All oracle classifiers had significantly higher accuracy than all
non-oracle classifiers (all p < 0.01), with no statistical differ-
ence between any of the oracle classifiers (all p > 0.05). There
was no statistically significant difference between any of the
non-oracle classifiers (p > 0.05), except the acoustic and ASR-
derived lexical fusion classifier had significantly higher accu-
racy than the ASR-derived lexical classifier alone (p < 0.05).

In isolation, the oracle lexical classifier (which uses the
perfect transcription) performed best, which suggests that lexi-
cal information is critical for classifying blame behaviors; this
agrees with both intuition and the coding manual [8]. Even
though the static acoustic classifier ignores these important lex-
ical cues, it outperformed the ASR-derived lexical classifier,
although not significantly (p > 0.05). Achieving 75% clas-
sification accuracy with the ASR-derived lexical classifier is a
promising result, especially considering the noisy acoustic con-
ditions and spontaneous nature of the corpus.

The significant difference between the ASR-derived and or-
acle lexical classifiers can most likely be attributed to the qual-
ity of the ASR word lattices. We found the ASR word error rate
ranged from 40%-90% across the sessions (using standard met-
rics on the most likely word hypothesis). For less noisy data,
we would expect the quality of the ASR lattices to improve and
the classification performance to increase.

We see from the fusion experiments that performance de-
creased when we fused the two lexical classifiers, most likely
because both of these classifiers model the language use of the
spouses. We got a 0.7% absolute (0.8% relative) improvement
when we fused the static acoustic classifier with the oracle lexi-
cal classifier. Although this difference is not significant, it sug-
gests that the system was able to incorporate complementary
acoustic information from the spouses’ speech.

Although it is not a statistically significant difference in per-
formance (p > 0.05), we saw a 2.5% absolute (3.1% relative)
boost in performance when we fused the static acoustic and
ASR-derived lexical classifiers. This fusion classifier advanta-
geously combined automatically derived blaming cues from the
spouses’ speech and language. It also has the benefit of incorpo-
rating confidence scores, which can be interpreted to determine
the relative importance of “what the spouse said” versus “how
the spouse spoke,” with respect to the perception of blame.

6. Conclusions & Future Work
Using a corpus of married couples’ interactions, we showed
we could successfully separate 82% of the extreme instances of
blaming behavior conveyed by the spouses through fusion of au-
tomatically derived speech and language information. In the fu-
ture, we will work to improve: the static acoustic classifier (e.g.,
by implementing feature selection techniques); ASR-based lex-
ical classifier (e.g., by training “blame class”-dependent acous-
tic models and experimenting with other procedures to merge
N-best hypotheses); and fusion classifier (e.g., by experiment-
ing with new confidence score estimation schemes).

Blaming behaviors are an important cue to detect because
of their significance in the context of couple therapy. Automat-
ically detecting blaming behaviors in marital discussions could
facilitate clinician-guided drill-down therapy sessions to reduce
the occurrence of this negative behavior. As part of our future
work, we also plan to extend these fusion experiments to other
behavioral codes. In addition, we will apply these behavioral

System Classifier Acc (%)

Baseline Chance 50.0

Unimodal
Acoustic 79.6
Lexical/ASR 75.4
Lexical/Oracle 91.1

Fusion
Acoustic + Lexical/ASR 82.1
Acoustic + Lexical/Oracle 91.8
Lexical/ASR + Lexical/Oracle 87.5

Table 2: The accuracy of the proposed classification methods.

signal processing methodologies to other health-care related do-
mains, such as autism and addiction.
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